
Discrete Mathematical Structures

Dr. Kamala Krithivasan

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture - 38

Finite State Automaton

Today we shall consider the topic finite state automata. This is a very useful topic it has

got lot of applications. It finds use in the lexical analysis part of a compiler. You know

that a compiler is a very big program which translates a high level language into a

machine language and it has got several parts. And in the lexical analysis part of a

compiler the idea of finite state automaton has found lot of use. And it is also used in text

editing and in computer networks and in image compression and so on. There are a lot of

applications for that. Though we may not study all of them I will indicate you the

application of finite state automaton in the lexical analysis part.

Actually, if you know about sequential circuits the finite state automaton is an abstract

model of a synchronous sequential circuit. So let us start with a serial adder and go into

the concept of a finite state automaton. Consider two binary numbers and consider the

addition of these two numbers 1 0 gives you 1 0 1 also gives you 1 1 1 gives you 0 with a

carry 1 and that carry along with this 1 gives you 0. And there is a carry and the carry

with 0 0 gives you 1. Now, there is no carry, this 1 1 also gives you a 0 and there is a

carry and that is given here.

(Refer Slide Time: 02:45)

Now, if you want to represent it as a state diagram like this, this is called a state diagram,

first you get 10, the input is 10 then the input is 01 then the input is 11 then 01 then 00

11, the output is 1 1 0 0 1 0 1. Let us see how you get this from this diagram.

First you are starting in the initial state q0 which is marked like this then in this you get

10, the 10 gives you a output 1 and you go here that is what you get.

Then you get an input 01 then also the output is 1 and you go here then you get a input 11

so the output is 0 and you go here and then you get an input 01 so you get 0 as the output

and you go here then you get the input 00 so you go here with a output 1. And from here

you get the input 11 so the output is 0 and go here and from here you get 00 that is there

is no output, the last output, for this there is no input but without loss you can assume it

as 00 so from here you get 00 and you output 1.

Now, here the input is a pair of binary digits 00, input is either 00 or 01 or 10 or 11 two

digits, and the output is 0 or 1. In the diagram the input is written first with a slash and

then the output is written.

(Refer Slide Time: 05:10)

So let us write the inputs like this, this is the 1 which I am going to get first, then this then

this and so on. So, first you get 10 then 01 then 11 then 01 00 11 and 00.

So initially you are starting in state q0, after getting 10 you are again in state q0 and at that

time the output will be q0 10 gives you an output 1, then next you are in state q0 and you

get 01. So you go to q0 again and the output is 1 these two are called states. So from q0 if

you get 1 1 you go to q1 and the output is 0 now.

From q1 if you get 01 you go to q1 again and the output is 0, from q1 if you get a 00 you

go to q0 and the output is 1, from q0 if you get 11 you go to q1 and the output is 0, from q1

if you get 00 you go to q0 and the output is 1. So when the inputs are 10 01 11 01 00 11

00 that is this sequence, the sequence of states will be q0 q0 q0 q1 q1 q0 q1 q0 and the

output will be 1 1 0 0 1 0 1 that is 1 1 0 0 1 0 1. This is what you get and this you get

from this diagram.

(Refer Slide Time: 07:24)

Now when you look at this diagram carefully you see that this state q0 corresponds to a

no carry state. When there is no carry the machine is in q0 and when there is a carry this

corresponds to a carry state. When you read two binary numbers digit by digit that is

pairs of digits you read then after reading a particular portion either there will be a carry

from the previous digits or there will be no carry. So when you see that initially when you

start there is no carry. So when there is no carry if you add a 0 and 1 you get 1.

Again there is no carry without a carry when you add 0 and 1 you get 1 and now also

there is no carry but when you add 1 and 1 you get the output 0 but there is a carry. So

you have to distinguish between two types of states one is when there is a carry and the

other is when there is no carry. The whole thing can be represented by a diagram like

this, this is called a state diagram. And this is an abstract model of a synchronous

sequential circuit. You know that a serial adder is a synchronous sequential circuit and

abstract model is represented like this.

(Refer Slide Time: 09:03)

Now, let us consider one more example, consider this example q0 and q1 when you get 0

output is 0 when you get 1 the output is 1 when you get 0 here the output is 1 when you

get 1 the output is 0 here the input is the symbols 0 and 1 that is also the output. Q0 is an

initial state the initial state is marked by an arrow like this so suppose I get the input 0 1 1

0 1 0 0 1 suppose I get this input what will be the state sequence? Initially the machine is

in state q0 when you get a 0 it goes to q0 again, what will be the output? Output will be 0

here.

In q0 if you get 1 you go to state q1, here again the input and output are written with a

slash. The first symbol is input then slash then the output. This is the convention which

we write. In q0 when you get 1 you go to q1 and then the output is 1. In q1 when you get a

1 you go to q0 and output is 0. In q0 when you get 0 you are in q0 and output is 0. In q0

when you get 1 you go to q1 and output is 1. In q1 when you get 0 you remain in q1 and

output is 1. In q1 again when you get 0 you remain in q1 and output is 1. In q1 when you

get 1 you go to q0 and output is 0.

Now, if you look at this very carefully this is the input 0 1 1 0 1 0 0 1 and this is the

output 0 1 0 0 1 1 1 0. Now, this is the time with which we start time t is equal to 0 then

after reading time one you read this, time instance two you read this, time instance four

and so on.

What does this do now?

At time five you have read this portion of the input and what is the output at time five? It

is 1. At time six you have read this portion and what is the output? It is 1. At time eight

you have read this portion and what is the output? That is 0.

At any time instance the output denotes the number of 1s you have read so far whether it

is an odd number of 1s or even number of 1s. So this machine is actually a parity checker,

this is a parity checker. So at time instance 0 you are in q0, then at time instance 1 you

read 0 and output 0. That is so far you have not read any one so even parity.

Next you read a 1 so you have read 11 after this point so the odd parity so you get 1. At

next instance you have read two 1s so you have read even number of 1s so even parity

you get 0. So, fourth instance also you get 0 so this tells you that you have read an even

number of 0s so the output is 0. So whenever there is even parity the output is 0 so you

get this even parity you get output 0 odd parity is denoted by the output 1 this is known

as a parity checker. This is again a state diagram and there are two states q0 and q1 and

input and output are written like this; input and then slash and then output, this is known

as a finite state automaton. This is another example you know that parity checker can also

be implemented by synchronous sequential circuit and this is an abstract model.

(Refer Slide Time: 15:04)

Now apart from this let us consider a simple one, suppose you are having a TV and when

you switch on the TV is initially off then when you switch on it goes to the on state and

when you switch off it goes to the off state, this is a small instance of a day-to-day life

which you can represent it by means of a state diagram like this.

(Refer Slide Time: 16:00)

In general a state diagram consists of the following things; it has states written in the

form of circles, states will be written like this, they are called states. And the initial state

will be denoted like this; you have initial state marked then transitions are marked by

arrows and on the transitions you have input slash output.

Later on we shall consider that you can look at it also as a recognition device in which

case you will not talk about output but only input but some of the states will be

designated as final states.

(Refer Slide Time: 17:13)

So let us consider one more example like this; this also has got two states and the input

can be 01 which is also the output, in that case when you get 0 the output is 0 when you

get 1 you go to q1, in q1 when you get 1 you remain there, again in q1 when you get 0 you

go here but the output will be 1. So this is another state diagram of a machine. Let us see

what this machine does.

Let us consider the state sequences, initially you are in q0 and when you get 0 you are in

q0, in q0 when you get 1 you go to q1, in q1 when you get 1 you go to q1, in q1 when you

get 0 you go to q0 and in q0 when you get 1 you go to q1 and in q1 when you get 0 you go

to q0 and in q0 when you get 0 you go to q0 and in q0 when you get 1 you go to q1.

Now, let us see what is the output, the output is q0 0 is 0, q0 1 is 0, q1 1 output will be 1,

q1 0 you go to q0 but output 1 and q0 when you get 1 you output 0 and go to q1, in q1

when you get 0 you output 1 and go to q0, in q0 when you get 0 you go to q0 and output 0,

in q0 when you get 1 you go to q1 and output 0.

Now, you look at it carefully, what does the output represent? The output represents like

this, leave al1 the first output the first output will be 10 here always, afterwards look at

the input sequence and the output sequence 0 1 1 0 1 0 0 so the same input you are

getting here except for the first one and the first one will always be 0. And you are in

state q1 now next whether you get 0 or 1 you are getting q1 next instance you may get 1 or

0 but the output will be 1, next instance what ever may be the input the output will be

only 1.

So if you forget about the first output the same input sequence you are getting here and

this machine is called a one moment delay machine. The first output is 0 afterwards this

input is output one instance later, second instance you get 1 but you output what you got

at the first instance, third instance the input is 1 but you are outputting what you got at the

second instance and so on. That is why this machine is called a one moment delay

machine, this is again another example of a finite state machine. Like that we can

consider several examples. In all these examples we have input we have output but we

did not say anything about final states and so on.

(Refer Slide Time: 22:13)

You can also look at the finite state automaton as a Recognizer or an Acceptor. It is

accepting strings, you consider an input alphabet sigma and consider strings over sigma,

this is denoted as sigma star this we know, strings over sigma are denoted by sigma star.

A finite state machine can be designed such that it accepts a subset of sigma star.

(Refer Slide Time: 23:00)

Let me consider one example; look at this machine the alphabet is a, b. Let us consider

this diagram, there are four states q0 q1 q2 and D, now you see that you are not marking

any of them like input slash output the transitions but it has only one symbol which

denotes the input. Now, we are bothered about only the input. And you see that this state

is marked with a double circle that is called a final state and this is the initial state.

Now, if you traverse a path along for a string for example consider a string a a a b b this

is the input, what will be the state sequence for this? q0 a will give you q1, q1 a will give

you q1, q1 a will give you q1, q1 b will give you q2, q2 b will give you q2. Hence, for the

sequence a a a b b and after reading the string a a a b b you reach the state q2 which is a

final state. So, given a string you start with q0 and after reading the whole string if you

reach a state which is a final state that string is said to be accepted by this final state

automaton.

Consider this string b a a or consider the string a b a what will be the state sequence for

this? This is q0, q0 b will be D why I am calling it as D and not q3 will be clear in a

moment, D a is D, D a is D. Similarly, start from here q0 a is q1, q1 b is q2, q2 a is D. After

reading these strings you are in the state D which is not a final state. So these two strings

b a a and a b a are not accepted by the machine look at this string also a a a start from q0

after reading a you will be in q1 after reading a again you will be in q1 after reading a you

will be in q1 q1 is not a final state so this string also cannot be accepted by the final state

automaton. So starting from the initial state after reading the string if you reach a final

state the string will be accepted. So you look at this, this string will be accepted whereas

this string or this string or this string will not be accepted by this machine.

So, if you look at the diagram very carefully you will realize that any string where you

have a sequence of a’s followed by a sequence of b’s will be accepted but there should be

at least 1 a and 1 b. Hence, a sequence of a’s followed by a sequence of b’s will be

accepted by this machine with a condition that there should be at least 1 a and 1 b any

other string will not be accepted. This is the idea of a finite state automaton as a

recognizer.

(Refer Slide Time: 28:20)

Let us see the formal definition. Now, before going into that the idea is represented like

this; you have an input tape in which you have the symbols say for example here you

have the symbols. There is a finite control this is called finite control which represents the

state of the machine. And there will be an input head, initially the input head will be

pointing to the left most symbol of the input tape, this is the input tape. So now the input

is a a a a b b b and initially the machine will be in state q0 which is the initial state. Then

at any particular instance depending upon the state and the symbol you go to the next

state and the input pointer will be moved one point to the right.

Let us consider this example, so initially the machine is in q0 reading the symbol reading

a, what is q0 a? q0 a is q1 so the next instance it will go here, the input pointer will be

moved and you will be in state q1. In q1 it is reading a a so depending upon the state and

the symbol it will move the pointer to the next cell and the state will be changed.

What is q1 a?

From this diagram you can see that q1 a is q1 so here you will get this. So state q1 is

reading again q1, a is again q1 so it will move its pointer here and it will be reading this in

q1. Again q1 a is q1 so the input pointer will be moved and you will go to the next cell.

What is q1 b in the diagram?

q1 b will be q2 so from q1 b the machine will go to q2 and the input pointer will be moved

next. In q2 if you read a b you will get only q2 the next state will be q2. So now the input

pointer will be moved and you will go to this cell in state q2. In q2 again you are reading a

b so the next state is q2. So after reading the whole input you are in state q2 which is a

final state. So initially you start reading the left most symbol in the initial state and after

reading the whole input if you reach a final state the string will be accepted by the

automaton. If you reach a non final state then the string will not be accepted by the

automaton. So let us go to the formal definition.

(Refer Slide Time: 31:42)

A finite state automaton m is a five tuple, m is denoted formally like this m is equal to k

sigma delta q0 F where K is a finite set of states, sigma is a finite set of input symbols q0

in k is the initial state and one of the states is designated as the initial state. A subset of

the set of states is designated as final states. F contained in K is the set of final states.

Delta is a mapping from K into sigma into K or you denote delta as K into sigma into K.

(Refer Slide Time: 32:42)

And the whole thing is denoted by a state diagram like this. The states are marked with

circles, the initial state is marked with this, the transitions delta mappings are denoted like

this. The whole thing can be represented by what is known as a state table also.

There will be one column corresponding to each input symbol and there will one row

corresponding to each state q0 q1 q2 and D in this particular example. Let us consider this

example, the initial state is marked like this q0 is the initial state so it is marked like this

and q2 is the final state which is marked like this.

The transitions are marked in the state table like this.

What is q0 a?

q0 a is q1, q0 b is b. so q0 a is q1 q0 b is D.

What is q1 a?

q1 a is q1 and q1 b is q2, q2 a is D q2 b is q2. So this is d this is q2, D a is D and D b is also

D. So the same diagram you can represent as a table like this, you see that each cell

contains a single state and so on.

(Refer Slide Time: 35:11)

Why is this state D?

I am denoting as D. Once you reach this state afterwards you cannot go to any final state

so the string has to be rejected only, so such a state is known as a dead state. D

corresponds to a dead state here that is why we are calling it as a D. So we have seen that

a finite state automaton is a five tuple and it has got five components K sigma q0 F, we

have seen what is that, delta is mapping from K into sigma into K. And this transition,

this is the called transition mapping and that can be represented by a state diagram like

this or by a state table like this.

Now, let us define the language accepted in a formal manner. Now extend delta to delta

bar where this is from K into sigma star to K, delta is from K into sigma now you are

extending into K into sigma star into K. You define like this; delta cap q epsilon the

empty word equal to q for all q in K. And if x is a string and a is a symbol then you

define delta cap as of course q belongs to K.

What can you say about delta cap q x a?

That is equal to delta of delta cap q of x, a. In a sense it means like this you have a string

x the last symbol of which a you start in the beginning with a state q, what is the state to

which you go after reading this x a that is denoted by delta cap q(x a). That is after

reading q x you will be in a particular state and from that state say p then from that state

you read a symbol a and go to a state. Therefore, after reading x you are in a state and

from that state you read a and go to this state say r this is what is meant by this.

Now, if you look at this carefully for a single symbol delta cap q a is the same a delta q a.

So, we need not have to write delta cap and delta. Actually delta cap is when you have a

string and delta is when you have a single symbol because they are the same when you

take a single symbol you need not have to distinguish and write two different symbols

you can just use the symbol delta itself.

So what is the language accepted?

The language accepted is denoted by this, sometimes it is denoted as L(M), sometimes it

is denoted as T(M) where M denotes the finite state automaton, that is the set accepted,

set of strings accepted and that is denoted by set of strings of the form x belongs to sigma

star delta of q0 x belongs to F.

So the set of strings which takes you from the initial state to a final state or when you

start reading a string starting with the initial state and if you reach a final state such a

string will be accepted by the machine. That is what we have seen in this example also.

So the language accepted is denoted like this.

(Refer Slide Time: 39:11)

Let us consider a few more examples. Let us take the alphabet sigma is equal to a, b input

alphabet is this, look at this diagram there is only one state and you have this diagram.

What is the set of strings accepted?

Any string if u take consisting of a’s and b after reading that starting from q0 you will be

in q0 only there is only one state so the set accepted or the language accepted is just sigma

star in this case any string of a’s and b’s will be accepted by this machine.

Let us consider this example; q0 is the initial state as well as the final state there is a state

q1, if you read a you go here if you read a b you go here, then there is one more state this

one.

What is the set of strings accepted?

If you get a string of the form ababab start from here a b a b a b you will reach a final

state q0. So any string of the form a b a b a b a b like that will be accepted by the

machine. But if you have a string of the form a a something like that or a string beginning

with b what will happen a a you will go to this afterwards you will remain in state D only.

Similarly, if a string begins with b you will go here and afterwards you will be in the

dead state only.

Once you reach a dead state you cannot go back to other states so string cannot be

accepted. So the language accepted is the set of strings of the form a b power n n greater

than or equal to 0. What do I mean by n greater than or equal to 0 is epsilon the empty

string will also be accepted by this machine. This machine accepts the empty string also.

(Refer Slide Time: 42:28)

When does epsilon gets accepted?

If the initial state is a final state the empty string will be accepted.

Look at this diagram, what sort of strings will be accepted by this machine. Here we are

having two states q0 and q1 and q0 is the initial state and q1 is the final state. Here also any

string of a’s and b’s will be accepted. First you have a then you can have any string, first

you have b then you can have any string so any strings of a’s and b’s will be accepted but

q0 is not the final state so at least one symbol should be there in the string to get it

accepted so epsilon will not be accepted by this machine. This machine does not accept

the empty string but any other string of a’s and b’s will be accepted. So the language

accepted is sigma plus any string of a’s and b’s will be accepted but empty string will not

be accepted by this machine so the language accepted by this is sigma plus.

(Refer Slide Time 44:23)

Let us consider a few more examples so this idea is clear. Look at this machine q0 q1 q2 a

b a b like the initial state of the final state so epsilon will also be accepted. What sort of

strings will be accepted by this machine? Here again you see that if you take any string a

b a b b b something like that it will be accepted a b a b b b will be accepted. But the

condition is the length of the string should be divisible by 3. So if you just take a alone

starting from here you will go here so it will not be accepted. Or if you take five letters a

a b a b you will reach this state and it will not be accepted. If you take a four letter one a

b b a starting from here a b b a you go to q1 it will not be accepted.

(Refer Slide Time 46:00)

Any string of a’s and b’s will be accepted provided the length is divisible by 3. So the

language accepted are L(M) T(M) is the set of strings x x belongs to sigma star of course

sigma is a b here a, b and the length of the string is of the form 3K, K is an integer, this is

another example.

(Refer Slide Time: 46:42)

Like that we can consider several examples. Now, let us see how an integer can be

represented by this and a Fortran identifier or a Pascal identifier will be accepted by this.

Let us take the alphabet sigma to be, I shall use only capital letters A to Z and 0 to 9. I am

just taking only capital letters small letters also can be taken in some other example. But

here the alphabet consists of the symbols A to Z and the digits 0 to 9. Now, a Fortran

identifier has a maximum length of 6 Fortran identifier and it begins with the letter A to Z

and afterwards you can have a letter or a digit.

So that can be represented by a state diagram like this, we start with q0 the initial state

then q1 q2 q3 q4 q5 q6. So it begins with the letter A to Z starting from q0 if you get A or Z

A B C D any Z you go to q1. And it can be just that you may end there also so this also

happens to be a final state but you can have two letter identifiers so the second symbol

can be A to Z or 0 to 9 then you go to q2 again you can end up here or continue further so

this also happens to be a final state.

Then we have three letters, an identifier consisting of three symbols the first one of

course is the letter, second one is a digit, third one can be a digit or a letter so you go

here, the fourth one again could be A to Z or 0 to 9 then this can again be a final state you

can have a fifth letter which is A to Z or 0 to 9 again this can be a final state this also can

be a final state sixth letter can be letter from A to Z or 0 to 9.

(Refer Slide Time: 50:09)

In Pascal you do not have the limit on the length of the thing so suppose I use only capital

letters then you can have like this, any number of symbols you can have the first letter

has to be A to Z then you may get q1 A to Z or 0 to 9.

Of course I should also have something like this; the identifier cannot begin with a digit

so if you get 0 to 9 I should go to a dead state and like this A to Z 0 to 9. So a Pascal

identifier can be given by this, a Fortran identifier can be given by this, an integer should

not begin with a 0, how do you represent an integer using a finite state diagram?

Initially you have q1 the first symbol you do not want to be any integer decimal integer so

1 to 9 if you get you go to q2 then it can be followed by any digits 0 to 9. So this diagram

represents an integer. Of course when you get a 0 you do not expect it to begin with a 0

you go to a dead state and so on.

(Refer Slide Time: 51:42)

So, you see that you can represent identifiers and integers using a state diagram. You can

also represent something like 10172.673 like this a decimal number like this using a state

diagram.

Initially you will have an integer q0 q1 then it can be followed by any digit then a decimal

point so here I am just writing those symbols which will lead you to find states and here

the alphabet will also consist of a dot. So when you do not get a proper thing you have to

go to a dead state that portion of it I am not marking on the diagram q3. And in q3 you

may get any digit 0 to 9. So this represents a decimal number. In lexical analysis parts of

the compiler you have one finite state automaton to represent the identifier one to

represent integer and one to represent keywords and so on.

So this entire finite state automaton will work together on the input. the program is taken

as a sequence of symbols it will work on this and whenever you recognize an identifier or

an input or a special symbol, logical operators like that you will take an you will take it as

token and that will be entered in a proper table a symbol table or a constant table and you

will put it there and corresponding action will take place then the parsing will start taking

place. So that recognizing each one as a token is called the lexical analysis and in this

part the finite state automaton plays a very useful part. not only that in text editing

suppose I want to replace a particular portion of a text by some other thing that particular

text alone can be represented by a finite state automaton and in that you will remove that

and replace it and so on.

The same idea is useful in text editing also. This is one of the very important uses of

finite state automaton. And one of the things you must notice here is that when you are in

a particular state and when you get a next symbol the next state is uniquely determined.

So whatever we have considered today is called a deterministic finite state automaton. In

contrast to this you may also have non deterministic finite state automaton about which

we shall study in the next lecture. In the deterministic finite state automaton the mapping

is from K into sigma into K whereas in the non deterministic finite state automaton it will

be from k into sigma into finite subsets of k.

We shall consider some examples and see whether the power is really increased or not.

The power will not be increased, non deterministic automaton also has the same power.

One more thing is the language accepted by a finite state automaton is called a regular

set.

In the next class we shall see more about finite state automaton, in fact non deterministic

finite state automaton and also some minimization procedures.

