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Today we shall learn about functions. A function from a set A to a set B is a rule which 

connects an element of B with every element of A. So it is a rule which specifies one 

element of B with each element of A. Let us see the formal definition of function.  
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Let A and B be sets. A function or map or transformation f from A to B denoted f: A 

arrow B is a relation from A to B such that for every a belonging to A, there exists a 

unique b belonging to B such that a, b belongs to f. if a, b belongs to f then we write f a is 

equal to b. So it is a map or a transformation which is usually denoted like this. And with 

every element of a you associate a unique element of b and this you denote as f a is equal 

to b and it is a particular case of a relation. Relation is ordered pair so the first component 

will belong to A and second component will belong to B. Here there are some restrictions 

on this relation which defines a function.  
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A function f from A to B is a binary relation from A to B with the special properties that 

every element of A occurs as the first component of an ordered pair f and if f a is equal to 

b and f a is equal to c then b is equal to c. These two properties must be satisfied by the 

definition of a function, it is a particular case of a relation. Now let us see some examples 

of what are function and are what are not functions.  

 

Consider two sets A and B and A has say elements a, b and B has elements 1 2 3. Then if 

you say like this; this is an example of a function. And another example would be on the 

same sets. 



 

Here you can say f(a) is equal to 2 and f(b) is equal to 3. So these are examples of 

functions. If you represent it as a relation it will be represented as ordered pairs so you 

will have a2 b3 as ordered pairs. Every element of a will be the first component of some 

ordered pair and you can have only one element with a as the first component you cannot 

have something else. So let us see some more examples. If you have this like this this is 

also an example of a function, this is also a function, here f(a) is equal to 2 fb is also is 

equal to 2.  
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What are not examples of functions?  

Look at this, the same set where A consists of two elements a and b and B consists of 

three elements 1 2 3 and A consists of two elements. Now if I define like this this is not 

an example of a function because for b we do not have a map at all. Only a occurs as a 

first component of an ordered pair for b we do not have anything so this is not a function. 

Now you look at this, there are two ordered pairs a1 and a2 a occurs in two ordered pairs 

as the first component. Then also it is not a function, a is mapped on to 1 and also that is 

not possible, a should be mapped on to a unique element so this is not a function.  
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Sometimes this is called like this; this is called a partial function we will come to that a 

little bit later. So we have two conditions; every element of A occurs as the first 

component of an ordered pair f and if f a is equal to b and f a is equal to c you cannot 

have two different elements b and c so b should be is equal to c. Actually, you have come 

across functions in schools, you would have studied about several functions, some 

continuous functions, differential build functions and so on from the set of real numbers 

to the set of real numbers they are all examples of functions only.  

 

But here, after learning relations we are looking into functions as a particular case of 

relation and we will also be looking at some special properties and what are inverses of 

functions and things like that.  

 

For example, take the set of natural numbers to natural numbers. A function from non 

negative integers to non negative integers, you can define like this f(x) is equal to 1 if x is 

odd you can define this way and f of x is equal to x by 2 if x is even. In that case what 

can you say about f(0)? F(0) is even so 0 by 2 is 0, f of 1 is 1 because it is odd, f(2) is 

even so it is x by 2 1, f(3) is odd so it is also 1, f(4) will be 4 by 2 that is 2 and f(5) will be 

1 because it is odd and so on, this is one example.  
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Any graph if you take that also represents a function like you know if you take the set of 

real numbers this is a real number this is a real plane and you draw a line like this, this 

represents the line y is equal to x or this represents the function f(x) is equal to x. And if 

you take some function like this some graph this represents the y is equal to x square and 

this represents the function f(x) is equal to x square from the set of real numbers to the set 

of real numbers. Like that you can represent real functions from real to real as a graph in 

the two dimensional plane.  
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Now you have a domain A and a codomain B. in relation when you define a relation on A 

cross B you call A as the domain. Here also, for the function also you use the same 

terminology you call A as the domain and B as the codomain and sometimes it is also 

called as range, B is called the codomain or the range. So, if you have the set A and 

another set B what does the function f do? f is from A to B where A is the domain and B 

is the codomain. Now, take an element a this will be mapped onto an element f(a). Take 

another element b this will be mapped onto an element f(b) here. 

 

F(a) is the image of a and f b is the image of b. You use the word image, f(a) is the image 

of a, f(b) is the image of b, a is the preimage of f(a), you can also use the word preimage, 

so a is the preimage of f(a) and so on. Now, if I take a subset here denoted by A dash 

each element of this will be mapped here and all these images if you take that will be a 

set B dash. So you can also look at this function as mapping subsets of A into subsets of 

B. Function maps a into individual, each element of a into individual elements of b. But 

you can also look at it this way, you can look at it as mapping subsets of a into subsets of 

b, this is what we will consider now.  
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 Let f be a function from A to B and let A dash be a subset of the domain A. Then f(A 

dash) denotes a subset of B called the image of A dash under f. That is f(A dash) is equal 

to f(x) where x belongs to A dash. The image of the entire domain f(A) is called the 

image of the function f. If you have a function f mapping A to B then you have a subset 

of A dash of A then this is mapped onto a set B dash this A dash is mapped onto B dash 

and B dash is called the image of A dash under f. And the whole set, I may have this B 

and A. If you consider all the elements mapping on they may be mapped on to the whole 

set B or sometimes it may be a subset of B then this is called the image of A under f.  

 

For example, if you take these three elements and three elements here a b c and 1 2 3 a 

will be mapped on to 1, suppose b is also mapped on to 1, c is mapped on to 2 then the 

image of the whole set is only 1 2 a subset of this set. Now let us consider some example 

and explain this concept. Suppose you have a set A is equal to 1, 2, 3, 4 and B a set is 

equal to a, b, c, d so you have something like this 1 2 3 4 and a b c d, a map is defined 

like this 2a, 3d, 4c like that, this is a function.  

 

Now what can you say about f?  

If you take individual element you can say like this; f3 is d and so on. If you take a subset 

f of what is f of 2 3? Here 2 is mapped on to a and 3 is mapped on to d so this will be a, d. 

So you can look at it as mapping subsets into subsets. If you take f of 1, 2 where 1 and 2 

are both mapped on to a so you will get a. if you take the whole set 1, 2, 3, 4 then 1 and 2 

are mapped on to a, 3 is mapped on to d, 4 is mapped on to c you get a, c, d this is the 

image of this, this is the image of this and so on.  
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Next, we shall consider composition of functions. You know that you can combine 

relations. You have composition of relations R1 and R2, you have R1 and R2 and you talk 

about the compositions.  

 

How do you combine a function?  

That is the next point we will consider. Suppose you have a relation R1 on A cross B and 

R2 on B cross C then R1 R2 specifies a relation on A cross C. And how is that defined? a, 

c belongs to R1 R2 if there exists b belonging to B such that a, b belongs to R1 and b, c 

belongs to R2 this is how we define composition of relation. Now how do you define 

composition of functions?  
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Now, let g be a function from A to B, g is a function from A to B and f is a function from 

B to C. Then f dot g you can use this symbol or just sometimes just write fg, this is a 

composition of functions it is defined like this f. g it is from A to C it will be a map from 

A to C and it is defined like this; f dot g(x) is equal to f(g(c)). So if you have a function, 

now g is from a b c to 1 2 3 something like this and f is from 1 2 3 to some x or m n p, 

then 1 is mapped on to m, 2 is mapped on to n, 3 is mapped on to n then what is f dot g? 

It is from A to C, A to B this is B to C so it is from A to C.  

 

You have to define each element and it is defined like this. So f. g(a) is equal to f(g(a)) 

and what is that f of what is g(a)? It is f(1) and what is f(1)? That is m. So f(g(a)) is m, f. 

g(b) will be f(g(b)) and that is f of what is g(b)? It is 2 so 2 is mapped on to n. What is f. 

c? That is f(g(c)) that is f of what is g(c)? That is 2 so that is n. So this composite relation 

will be represented by a diagram like this a b c m n p, f(a) is this is f. g and f(b) is n, f(c) 

is also n it will be mapped on like this, this is known as composition of functions.  

 

(Refer Slide Time: 19.34) 

 



 
 

(Refer Slide Time: 19.39)  

 

 
 

Now this is represented by a diagram known as the commutative diagram. Composition 

of functions is denoted. We have considered composition of functions to represent that 

we use a diagram known as the commutative diagram, how is this represented? 

 

For example, A to B you have g, g is a function which maps on to A on to B. Then B to C 

you have a function f. Then when we combine f. g denotes a function from A to C. So, 

this is denoted as f dot g then f dot g will be from A to C. Please note that it is not gf it is 

fg. So from A to B you have a function and from B to C you have a function f then f dot g 

is marked from A to C.  

 



Now, composition of function is an associative property. Here you must note that if you 

want to have this composition g is from A to B and f is from B to C. If these are different 

then you cannot talk about the compositions. In the composition of relations also we have 

seen that when you want R1 R2 to be combined then the co domain of R1 should be the 

same as the domain of R2. Similarly, if you want to have the composition of functions the 

domain of f should be the same as the codomain of g.  
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The composition of function is associative. Suppose f, that is you want to show that f(gh) 

is equal to f(g(h)). Now, h is a function from A to B, g is a function from B to C and f is a 

function from C to D. In the commutative diagram you will represent like this; from A to 

B you have h from B to C you have g and from C to D you have f. Now, how do you 

denote this? This denotes g dot h and this denotes g dot h and this denotes f so this will be 

denoted by f(gh).  

 

The other way round you can also look at it like this; A B C D this is h and this is g and 

this is f. So if you combine these two, if you have composition of functions here this will 

be f dot g and so using this you will get this as f. g and h. So you can see that f dot g dot h 

is the same as f dot g dot h. 
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Or in other words if you have like this; h we have seen that h is from A to B, g is from B 

to C, f is from C to D. Suppose there is an element a belonging to A such that h of a is 

equal to b and there is an element c now b belongs to B, c belongs to C, d belongs to D 

such that h of a is equal to b and g(b) is equal to c and f(c) is equal to d. Then what can 

you say about (f(gh)) (a)? f(gh) will be from A to D, how can you define that? f(gh) of a 

will be is equal to f(gh) (a) and what is gh(a)? f(gh) (a) and that is equal to f(g(ha)) is b is 

equal to f(gb) is c f(c) is equal to d.  
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Now the other way round, so if you consider f(g(h(a))) what will be this?  



This is f(g(ha)) and we know that ha is b. So this is f(g(b)) and what can you say about 

this? This is f(g(b)) and what is g of b that is c fc is equal to d. So for every element we 

can prove like that. So f(gh) is equal to f(gh) or composition of functions is associative.  
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Now because of composition of function is associative without any problem if f is a 

function from A to A then without any problem you can talk about f power n, f power 0 

will be the identity function you denote it like this that is f(x) is equal to x you define like 

this then f power 1 is f, then f power 2 is f(f) and f power 3 is f cross f cross f because of 

associativity you can put the bracket this way or this way it does not matter. So without 

any ambiguity you can talk about f(n), f power n plus 1 will be f of n cross f. And you are 

able to define this because of the associative property.  
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For example, consider f from non negative integers to non negative integers f(x) is equal 

to x plus 1. Then what can you say about f square? That is f cross f that will be f cross 

f(x) if you take x as the argument x, f of f of x is x plus 1 so that is x plus 1 plus 1 is equal 

to x plus 2. So f squared will represent f squared of x will be x plus 2. You can very 

easily see that if you say that f power kx that will denote x plus k, this is a example where 

you see the composition of functions.  
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Now you can talk about inductively defined functions. What is this? We have seen that a 

set can be defined inductively and a relation can be defined inductively. And because 



functions are particular cases of relations you can also define function in a inductive 

manner. But when you do that the underlying set, a function is a mapping from a set A to 

a set B, if the underlying set A is inductively defined then you can use inductive 

definition for defining a function.  

 

Let us consider some examples. Take the example of a function which maps an alphabet 

sigma8 into the set of non negative integers. And this function defines the length of a 

string. Suppose f(x) denotes the length of x, for example suppose I take sigma to be a, b 

and a, b, c then a string x to be abbacab something like that, then what will be the length 

of x? The length of x is 1 2 3 4 5 6 7 so 7 so it maps a string into a non-negative integer. 

This function is defined like this. How do you define this function inductively? How can 

you define this function in an inductive manner? 

 

First of all you note that sigma power star can be defined inductively. How do you define 

sigma power star inductively? The basis clause will be lambda belongs to sigma power 

star. And the induction clause will be if x belongs to sigma power star then xa belongs to 

sigma power star for all a belonging to sigma. This is how you define this set sigma 

power star in an inductive manner, lambda is the empty string and x is some string, 

lambda is the string of length 0 it is a empty string then if x is some string belonging to 

sigma power star then a is one alphabet then xa belongs to sigma power star for all a 

belonging to sigma, this is the induction clause. This shows how to build more and more 

elements of the set from the basis blocks.  

 

Now in a set you also have the extremal class of definition. That is all the elements of the 

set are formed like this. This is the smallest class which is defined in this manner. We 

have already seen these things. Now, knowing that this can be defined inductively like 

this how can you define this function inductively? You see that the basis class you can 

define like this; the length of lambda, f is the length so f of lambda you can say is 0 the 

length of the empty string is 0 and the induction portion you define like this; how do you 

define these strings inductively?  

If x belongs to sigma power star, xa belongs to sigma power star. So if f(x) is equal to 

some n then f(xa) will be n plus 1 this is what we want to say. Or you can say in an easier 

way f(xa) will be f(x) plus 1 you can define like this. Usually when you define a function 

you need not have to define the extremal class because that is not necessary. Even though 

defining the underlying set you need the extremal class. So the basic building blocks are 

lambda here. So f of lambda is 0 you defined. Then in the induction class from x xa is 

built. So you see that if f(x) is equal to n f(xa) will be n plus 1 or you can say that f(xa) 

will be f(x) plus 1 like this you can define a function inductively.  
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Let us consider some more examples because this is the way certain things are defined. 

Take the set of non negative integers to non negative integers. Then x plus 1 instead of 

saying f(x) is equal to x plus 1 you usually call it as a successor of x, s(x), s(x) is equal to 

x plus 1 where s is the successor function. Then making use of this you can define 

addition.  

 

Now, one more point I want to mention is usually we have taken the function from A to 

B. Now, A could be A1, A2, An, it could be a Cartesian product of n sets. Then you define 

the function like this; f is from A is equal to like this. then you say f(x1, x2, xn) is equal to 

b you define like this where x1 will belong to A1, x2 will belong to A2 and so on xn will 

belong to An and b will belong to B, this is called an n-ary function. There are n 

arguments here these n arguments are mapped on to a single argument like that.  
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For example, if you take the sum of two integers 2 plus 3 is equal to 5 like that so this is 

defined like this, if you denote this by plus where plus maps N cross N to N, let us take 

the non-negative integers it maps N cross N to N like this. For example, plus of 2, 3 is 

equal to 5 and plus 7, 12 is equal to 19 and so on.  

 

How do you define this function in an inductive manner?  

You can make use of the successor function for this. So plus of basis class you can define 

like this, plus of a number x with 0 is x itself. If you add 0 to any number you will get x 

so you can define like this. Now the induction class here will be something like this; plus 

of x with successor of a number y will be equal to successor of x, y. Or in other words it 

means that if you want to add x with y plus 1 successor of y will be y plus 1. If you add 

like this, this is equivalent to saying find the sum of x plus y and find the successor that is 

this. So this sort of a definition will be used when you define recursive functions.  
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Recursive functions are defined using some constant functions and composition of 

operations and what is known as primitive recursion, bounded minimalization and so on, 

primitive recursive functions these things we shall study later. But this is just to tell you 

how to define this function in an inductive manner. You can also see that the Fibonacci 

numbers are defined in this way, another example is like this; consider the Fibonacci 

numbers. It is 0 1, f(0) is 1, so 1, 1, 2, 3, 5, 8, 13 and so on. That is f(0) is 1, f(1) is 1, f(2) 

is 2, f(3) is 3, f(4) is 5 and so on.  

 

In general, you find that f of n is equal to f(n) minus 1 plus f(n) minus 2. It is from natural 

non-negative integers to non-negative integers this is known as the Fibonacci sequence. 

So you see that f(0) is 1, f(1) is 1, 1 plus 1 is equal to 2, 2 plus 1 is equal to 3, 2 plus 3 is 

equal to 5 and so on. This is also known as a recursive definition of the function.  
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Similarly, factorial function if you take, factorial is again from N to N, factorial 0 is 1, 

factorial 1 is 1, factorial 2 is 2, factorial 3 is 6 and so on. So, in general factorial n is n 

cross factorial n minus 1 you can define like this. This is again a recursive definition of a 

function.  
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Now, when a function is defined recursively like this to calculate that function sometimes 

it will be advantages to use a recursive procedure, you know what is meant by an iterative 

procedure and a recursive procedure.  

 



Factorial can be calculated both by writing a recursive routine and by a procedure which 

uses iteration. So usually when a function is defined in this manner recursively you can 

use iteration to write a program to calculate that function or you can use a recursive 

routine to calculate that function. 

 

Now, sometimes in the definition of the function we have seen that for every element of 

the domain it has to be defined. You may want to relax a little bit and say that for some 

elements of the domain it need not be defined then you call it as a partial function. Here 

again the other condition that each element should be mapped on to a unique element of 

B is there. That is you cannot map one element of A into two different elements of B. But 

for some elements of A you need not define the function, you need not have the map that 

is known as a partial function. 
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Let A and B be sets. A partial function f with domain A and a codomain B is any function 

A dash to B where A dash is a subset of A. For any x belonging to A minus A dash the 

value of f(x) is said to be undefined. 

 

For example, take this function, take a b c 1 2 3 A to B the function is from A to B 

defined in this manner f of a is 1, f of b is 3 but f of c is not defined, so when we consider 

the function initially we said this is not a function, this is not a total function but it is 

called a  partial function because for c it is not defined but for a it is 1 and for b the map 

is 3 so this is called a partial function. Again partial functions also we can define 

composition of functions. When you have two partial functions f and g you can talk about 

the composite function f. g that will also be a partial function. Then the composition will 

be associative and other properties like that you can define.  

 

In general, the recursive functions form an important class. We shall learn about that a 

little bit later. We talked about total recursive functions and partial recursive functions. 



Partial recursive functions are the functions which are exactly computed by tuning 

machines. And it is the class of computable functions. They are known as computable 

functions. That is, they are computable by what is known as a tuning machine.  
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Now, we will consider some special properties of functions.  
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Let f be a function f from A to B. f is surjective or onto if f(A) is equal to B. f is injective 

one-to-one if a dash a not equal to a dash implies f(a) not equal to f(a dash) that is if f(a) 

is equal to f(a dash) then a is equal to a dash. f is bijective one-to-one and onto if f is both 



surjective and injective functions with these properties are called surjections, injections 

and bijections respectively. So let us consider some examples first with finite sets and 

other sets you can consider.  

 

Look at this, 1 2 3 from A to B this is a and b this is the set B. Now 1 is mapped onto a, 2 

is mapped onto a, 3 is mapped onto b. Now, this is the domain, this is the codomain. 

Every element of the codomain is the image of some element of an element here. And 

such a function is called onto function or a surjective function.  

 

Look at this function, from a b c to d e f where a is mapped onto e, b is mapped onto e, c 

is mapped onto f. This is a function no doubt but d is not the image of any element here 

so this is not a surjective function. This is an example of a surjective function, this is an 

example of a function which is not surjective because d is not the image of any function.  
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So look at the first definition; f is surjective or onto if f of A is equal to B. Second is, if f 

is injective one-to-one if a is not equal to a dash implies f(a) not equal to a dash.  

 

Again let us consider some examples here, you have A and you have B suppose I have a 

b c 1 2 3 4 a is mapped onto b, b is mapped onto 2, c is mapped onto 4. This is an 

example of an injective function because different elements should be mapped onto 

different elements. In that case you say that the function is injective or one-to-one. 
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Look at this example, here 1 and 2 are mapped onto the same element so this is not an 

injective function. It is not an injective function because two elements are mapped onto 

the same element. If f(a) is equal to f(b) then a should be is equal to b here f1 and f2 are 

equal but 1 and 2 are not equal, so this is an example of a function which is not injective 

and this is an example of a function which is injective. If a function is injective as well as 

surjective it is called a bijective function.  

 

A bijective function will be like this, look at this function here, 1 is mapped onto a, 2 is 

mapped onto b, 3 is mapped onto c so the whole set is the image of the function and 

every element here is the image of some element here so it is surjective, different 

elements are mapped onto different elements so it is injective so this is an example of a 

bijective function, it is both injective and surjective.  

 

Now you must note that if you are having finite sets, a function defined between 

functions A and B are finite set if A has n elements and if it is a bijective function both of 

them should have the equal number of elements then only different elements can be 

mapped onto different elements and the whole set B will also be covered. So if it is on 

finite sets A and B you will have the same number of elements in A and B.  
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Now let us consider some real functions. We will see what happens, set of functions 

functions from real number to real number.  

 

Look at this line, this is the x axis this is the y axis you define the function y is equal to f 

of x. Now this denotes y is equal to x like line or here the function is f of x is equal to x. 

What can you say about this function? This is, different elements are mapped onto 

different elements so it is injective. and every element is the image of some element, if 

you take some number y y will be the image or if you take some real number p p is the 

image of p so it is also surjective and hence because these two are satisfied it is bijective.  
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Now, look at the function y is equal to e power x, the graph will be like this what can you 

say about this? Different elements will be mapped onto different elements, you can see 

that if you have x1 not equal to x2 e power x1 will not be equal to e power x2 and so 

different elements will be mapped onto different elements so it is injective.  

 

But the negative numbers are not the image of any elements here so it is not surjective. 

This is an example of a function which is injective but not surjective.  

 

Look at this function y is equal to x cubed plus 2x square something like that, how will 

the graph look like? It is 3x square plus 4x would be 0 x is equal to 0 and then where will 

you cut the x axis, it is at minus 2x is equal to minus 2 so the graph will be something 

like this. Is this a surjective function? You can see that for every element there will be 

one element for which it is the image so it is an example of a surjective function. But here 

two elements are mapped onto the same element so it is not injective. This is an example 

of a function which is surjective but not injective.  
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And look at this function y is equal to x square the graph will look like this. What can 

you say about this function?  

The negative numbers are not the image of any elements so you will find that it is not 

surjective and two different elements will be mapped onto the same element here so it is 

not injective. This is an example of a function which is neither surjective nor injective.  
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So it not necessary that all functions should be injective or surjective or something like 

this. Some functions can be injective functions, some functions can be surjective 

functions, some functions will be bijective functions and so on.  

 

Why should we consider this? What is the necessity to consider these properties of such 

functions? There are some functions known as the hash functions, some functions are 

called hash functions which are very useful in Computer Science and in compilers. For 

that you would rather prefer to have a bijective function if not you will at least try to have 

a function which is close to an injective function and so on.  

 

We shall see this application in the next lecture.   


