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                                                           Order Relations  
 
Today we shall consider about order relation. We have been considering binary relations 
on a set A. So we consider binary relations on a set A. A transitive relation, a binary 
relation that is transitive defined on a set A is called an order relation if it helps to 
compare two elements of the set. Though we may not be able to compare all pairs of 
elements some pairs of elements we may be able to compare and such a relation a 
transitory relation on a set A which helps us to compare elements of the set is called an 
order relation. 
 
We shall consider several order relations like the partial order, the quasi order, the linear 
order, well order etc. First let us see what is meant by a partial order. A binary relation R 
on a set A is a partial order if R is reflexive, antisymmetric and transitive.  
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So, a partial order is a relation a binary relation R if it is reflexive, antisymmetric and 
transitive if it has got all these three properties. The ordered pair A, R is a partially 
ordered set or a poset. So we see that a binary relation R on a set A is a partial order if R 
is reflexive, antisymmetric and transitive. The ordered pair A and the relation R on A is a 
partially ordered set or called a poset.  The relation R is said to be a partial order on A. 
Let us consider some examples of partial order. 
 



If you take some set say B and the power set of B, it is a set of all subsets of B then this 
contained relation is a partial order because you can compare two elements. For example, 
if is equal to a, b, c, d then a, b is one subset and a, b, d is another subset. This is 
contained in this and such a relation is called a partial order. It is reflexive because a, b is 
contained in a, b.  
 
Let us see the three properties; it is reflexive, it is antisymmetric because if you take two 
subsets S1 contained in S2 and S2 contained in S1 that would mean S1 is equal to S2 
which is the definition of antisymmetric. And it will also satisfy the transitive property 
because if S1 is contained in S2 is contained in S3 obviously S1 will be contained in S3, 
this is the definition for transitivity. So, this relation is reflexive, it is antisymmetric and 
transitive and so this is a partial order.  
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And the set A R that is here the power set of a set B and the relation is contained in this is 
a poset. This example is a poset. You call it as a partially ordered set or a poset. Another 
example is, take the set of non negative integers and the less than or equal to relation. 
Here, again if you see if a is a non negative integer a will be less than or equal to a and so 
the reflexive property is satisfied, it is reflexive. And you can see that it is antisymmetric 
if a is less than or is equal to b and b is less than or is equal to a this would imply a is 
equal to b so the antisymmetry property is also satisfied. And obviously if a is less than or 
is equal to b and b is less than or is equal to c then from this you can conclude that a is 
less than or is equal to c so the transitive property is also satisfied. So this relation is 
reflexive, antisymmetric and transitive. So the less than or equal to relation on the set of 
non negative integers and you can also take set of integers same thing will hold. So this 
satisfies all these properties and therefore it is called a poset or a partially ordered set.  
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Now, let me take a simple example of a set of a relation. Take a set A a, b, c, d and a 
relation on the set represented like this a b c d like this. So this relation has ordered pairs.  
 
What are the ordered pairs here?  
A, b and a, c and b, d and a, d then a a, b b, c c and d d. So these are the ordered pairs in 
the relation represented by this diagram.  
 
Now is it a partial order?  
You can see that you have self loops at every node so the reflexive property is satisfied. 
And antisymmetric means between two nodes you can have no arcs or arc in only one 
direction, you should not have in two directions so antisymmetry property is also 
satisfied.  
 
And is it a transitive relation?  
Here you find that from a to b, b to d you have so you also have a to d so the transitive 
property is also satisfied and this is a partial order.  
 
Now, when we want to represent a partial order as a diagram we usually do not write 
everything on the graph. As a diagram we want to represent a partial order we will not 
write everything or we will not draw all the arcs we will write only the minimum number 
of arcs. For example, we know that a partial order is reflexive so there will be self loop at 
every node and it is not necessary to explicitly draw the self loop. So usually a partial 
order is represented by means of R dash, if R is a partial order diagram only will 
represent R dash such that R dash star is equal to R.  
 
A relation R dash whose reflexive transitive closure will be R will be represented on the 
diagram that is called a hasse diagram or a poset diagram. In this case it will be 
represented like this: a, a to b, b to d and a to c this is all and you do not mark the arrows 



also here, the arrows are supposed to be directed like this from below to above directions 
are like this. So, if you take the reflexive closure of this you will have the self loops and 
also if you take the transitive closure because there is an arc from a to b and b to d there 
will be an arc from a to d. So the whole thing is represented by means of a smaller 
relation R dash and that too without the directed arc and we assume that the arcs are 
directed from below to above and this smaller relation reflexive transitive closure is R. 
This is easier to draw, in this case there are only four elements in the set so it may not 
make much of a difference but in other cases it may make a difference. So, it is easier to 
draw a diagram like this rather than the whole diagram with self loops and arcs and so on.  
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Another example of that is, take the set of integers the set A you take from 1, 2, 3 up to 
12. And a is related to b, the relation is defined like this a is related to b if a divides b. 
You can very easily verify that this is a partial order. It is reflexive and it will be 
antisymmetric and it will be transitive. Each number divides itself, if a divides b and b 
divides a that means a is equal to b if a divides b and b divides c then a will be dividing c 
so all the three properties such as reflexive, antisymmetric and transitive are satisfied so 
this is a partial order on the set A containing integers from 1 to 12. 
 
Now how will you represent it as a Hasse diagram or a poset diagram?  
Now 1 will be below that, so 1 divides 2 it divides 3 and it divides 5 it divides 7 it divides 
11 this is 2, 3, 5 we have to mark six more elements 1 2 3 4 and 2 divides 4 so 4 will be 
like this. Here, there is no arc between 1 and 4 but by transitivity 1 also divides 4. Then 4 
divides 8, 1 2 3 4 5 6 so 2 and 3 divides 6 so 6 will be somewhere here, 2 divides 6 and 3 
divides 6 so it will be like this. Then what about 1 2 3 4 5 6 7 8 9, 3 divides 9 so 9 will be 
marked like this, then 10 2 and 5 divide 10 so 10 you can mark somewhere here like this 
and then 2 divides and 5 divides you can mark at the same level this level also you can 
mark. Then 11 is there 12 3 and 4 and 6 also divides 12 so 4 and 6 divide 12 so 12 will be 
marked like this 4 divides 12 and 6 divides 12 and so on. This is the poset diagram or the 



hasse diagram for representing the partial order which contains the set A of integers from 
1 to 12 and the underlying relation is; a related to b if a divides b.  
 
Therefore, you can easily see that 1 divides 2 and 1 divides 8 also or may be 2 divides 8 
but you do not have a direct arc from 2 to 8 you have an arc from 2 to 4  then 4 to 8 these 
arcs are directed from below to above. So like this and like this the arcs are directed. You 
do not have a direct arc from 1 to 9 but 3 to 9. Similarly, 12 is divided by 3, 2, 6, 4. But 
you only draw the lines from 4 to 12 and 6 to 12. So this is the way you draw a poset 
diagram or a Hasse diagram.  
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Now, if you do not want to have the reflexive property you define what is known as a 
quasi order.  
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Let R be a binary relation on a set A, R is a quasi order if R is transitive and irreflexive.  
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So partial order, we were considering partial order it has to satisfy the three properties 
reflexive, antisymmetric and transitive. A quasi order is almost similar to that. You have 
the irreflexive instead of reflexive that is no self loops and this property also you will 
have and you have the transitive property. We need not have to specify that antisymetry 
property explicitly because these two together will imply antisymetry property. Let us see 
how it is.  
 



What is the definition of antisymetry property?  
If x is related to y and y related to x this means x is equal to y this is the way antisymetry 
property is defined. But you will see that if you have irreflexive property and transitive 
property this will be always false, this will always be false. And we know that in an 
implication if the premise is false the implication is true this is what we have seen in 
large.  
 
And why is this always false? 
If you have x related to y and y related to x then the set has transitive property this from. 
You can conclude that x is related to x. But if it is irreflexive for any x x is not related to 
x if it is irreflexive so this is not correct and so this is always false. If this is true x will be 
related to x because of transitivity which we know is not correct. So the premise of this 
implication is always false and because the premise is always false the whole statement is 
true and so the antisymetry property will automatically hold. So these two conditions 
together will imply this. So a quasi order is a binary relation on a set A which is 
irreflexive, antisymmetric and transitive.  
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Examples are; if you consider a set B and the power set of the set B and use proper 
containment instead of containment the relation is the proper containment and in this case 
reflexive property will not hold. If it is containment reflexive property will hold. If it is 
proper containment reflexive property will not hold so it will be irreflexive. The other 
two conditions antisymetry and transitive will automatically hold. And if you take the set 
of non negative integers or the set of integers and consider the relation less than, we have 
seen that less than or equal to as a partial order if you consider the relation less than then 
it will be a quasi order because it is not reflexive it is irreflexive and less than is 
antisymmetric and transitive. So this is an example of a quasi order.  
 



Some other examples of quasi order are; if you take a set of courses in curriculum and c1 

related to c2 course one is related to course two if c1 is a prerequisite for c2 you consider 
the set of courses in some curriculum and you define the relation R such that c1 is related 
to c2 if c1 is a prerequisite for c2, this is irreflexive, a course cannot be a prerequisite for 
itself and it will be antisymmetric because if c1 is a prerequistive to c2 obviously that c2 
cannot be a prerequistive so that sort of a premise will always be false in the 
antisymmetric condition. 
  
What about transitive if property?  
If c1 is a prerequisite for c2 and c2 is a prerequisite for c3 then c1 is obviously a 
prerequisite for course c3 also so this is a transitive relation, it is irreflexive and transitive 
and so it is a quasi order.  
 
Another example is; you want to sort of allocate the tasks in a big way. I mean you have 
number of tasks you have to find out which one should be completed before other and so 
on. For such a thing in operations research you must use what is known as a PERT 
diagram. And there it tells you which jobs can start after which job only after this job is 
completed the other job can start and so on. So in such a thing you define a relation like x 
is related to y if x has to be completed before y starts then such a relation will again be 
irreflexive and transitive and so it is an example of a partial order.  
 
You come across such examples in several things, in practical use, in several fields of life 
though you may not realize that you are really using a partial order or something like that, 
technically you may not use that word but in several aspects of practical life in several 
fields in computer science you use this idea. So, with this relation we have the following 
results.  
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Let R be a binary relation on A then if it is a quasi order it is irreflexive. So if you add E 
to that, if the reflexive closure you take and add E it will be a partial order obviously. 
Then if R is a partial order it will be reflexive and if you take away the E if you remove 
all the self loops then R minus E will be irreflexive and so it will be a quasi order. So 
from a quasi order you can very easily get a partial order by adding E and from a partial 
order you can get a quasi order by removing the self loops or by removing the elements 
of the equality relation E.  
 
Now, these two things we have considered sometimes some more conditions may be 
there. See, for example, in the case of that divides relation in a partial order you may be 
able to compare elements but you may not be able to compare all the elements.  
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Take for example this one which we considered. You know that 2 is related to 4 you 
know that 4 is related to 12 and so on 4 relates to 12 some elements you are able 
compare. But what can you say about 7 and 9? There is no relationship, neither 7 is 
related to 9 or 9 is related to 7 there is no relationship between them that is why this is 
called a partial order. You cannot compare every pair of element. So only in some pairs 
that relation exists. Now, if in a partial order you are able to compare every pair of 
elements then it is called a linear order.  
 
When you are comparing two elements, a partial order is usually denoted by this set A 
and the relation is you can use the less than or equal to symbol but it is slightly different 
from the less than or equal to symbol, usually it is denoted like this, the underlined set A 
is denoted like this, the relation is denoted like this, usually when you write it is slightly 
different from the less than or equal to. But if you are not able to use this symbol you can 
use less than or equal to also slightly different from the less than or equal to symbol.  
 



Now, if you take any element you may be able to say a is less than or equal to b or b is 
less than or equal to a. but in the partial order it may not be possible to do like this for 
every pair of elements. But if you are able to do for every pair of elements you say that a 
will be less than or equal to b or b will be less than or equal to a then that is called a 
linear order and you say it is a chain.  
 
A partial order on a set A is linear sometimes you call it is as a simple order and 
sometimes you call it as a total order if either a is less than or equal to b or b is less than 
or equal to a for every a b belonging to A. That is if you take any two elements you will 
be able to compare them. If that is a linear order on A then the ordered pair A in that 
partial order relation is a linearly ordered set it is called a linearly ordered set, this is 
called a linearly ordered set. 
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Now, take the set of integers and the less than or equal to relation. You can take the less 
than or equal to relation. You can write like this: 0 minus 1 minus 2 minus 3 1 2 etc. You 
can compare any two of them. Any two elements if you take you will be able to compare. 
if you take the set of non negative integers and the less than or equal to relation it will be 
like this: 0 1 2 3 it looks like a chain, the poset diagram will look like a chain that is why 
we use this name chain, this is again a linear order. But if you take the set B and all 
subsets of B for example take B to be a, b, c, d and take all subsets of B and the contained 
relation this is not a linear order because for example take a, b and take b, c you cannot 
say this is contained in this or nor this contained in this you cannot compare them so this 
is not a linear order.  
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Now let us see what a well order is.  
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And before going to well order we will see what is meant by a greatest element and what 
is the least element of a set. Let A and this relation be a poset you have a partial order A 
and this is like this you have a partial order. I will read it as less than or equal to though it 
is slightly different from the less than or equal to function. I will read it as a less than or 
equal to, A less than or equal to be a poset and B a subset of A. Then an element of B is a 
greatest element of B if for every element b dash belonging to B b dash is less than or 
equal to b. An element b belonging to B is the least element of B if for every element b 



dash belonging to B b is less than or equal to b dash this is the definition. If I take an 
example it should be clearer to you.  
 
Take the set A as the power set of a set having two elements. so this has got and the 
contained  relation  a, b is one set the empty set is one, a alone is one subset b alone is 
one subset. The poset diagram is defined like this. This is contained in this and this is 
contained in this obviously this is contained in this because of the transitivity.  
 
Now, if you look that the whole set a, b this is the greatest element because every other 
element is less than that. And this is the smallest element here or the least element this is 
the greatest element and this is the least element. But I do not consider any all of them 
suppose I consider only this and this. If I consider only this and this, among this you find 
that this is the greatest element because everything else is less than that and this is the 
least element because this is less than every other element.  
 
Now, if I consider this, a set consisting of only this and this, a subset consisting of a 
subset of A, I am considering B the definition is with respect to a subset B of A. So the 
subset has only these two elements, if you consider this they cannot be compared. This is 
not less than this or this is less than this. And this subset has no greatest elements because 
you cannot define an element with which you can compare these two and say that these 
two are less than that. So, if you take a subset having these two alone this has no greatest 
element neither it has got least element it does not have a least element either. So a 
greatest element may exist a least element may exist or may not exist. So, after having 
defined let us see what it is and if the element exist if the greatest element or the least 
element exist it is unique.  
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Let A less than or equal to be a poset and B is contained in A B is a subset of A and if A 
and B are the greatest elements of B suppose you are having two elements A and B as the 



greatest element then A should be equal to B. Or in other words, the greatest element if it 
exists is unique, why? Suppose I have two elements A and B both of them are greatest 
elements. Then by the definition of greatest elements a will be less than is equal to b 
because b is the greatest element and by the definition of greatest elements because a is 
the greatest element b will be less than or is equal to a in which case from this you can 
conclude that a is equal to b. So the greatest element need not exist but if it exists it is 
unique. Similarly, the least element if it exists is unique. 
 
Now having defined the greatest element and the least element we will see what happens. 
A binary relation R on A is a well order. If R is a linear order and every nonempty subset 
of A has a least element. The ordered pair A R is called a well order well ordered set and 
R is a well ordering of A.  
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So, first we defined partial order quasi order then we defined linear order and in this 
linear order if you put the restriction that every nonempty subset has a least element then 
it is called a well order. Let us see some examples. 
 
Consider the set of non negative integers and the less than or equal to relation. You see it 
can b represented by a poset diagram like this 0 1 2 3 etc. This is a well order because if 
you take any subset that will have a least element. Instead of that you take the set of 
integers and the less than or equal to relation the poset diagram will look like this it is not 
complete it is like this 1 2 minus 1 minus 2 like that. Now, if you take a subset say all set 
of negative integers that has no least element, you cannot define the least element for 
that. So this is not a well order. 
 
Sometimes it may be really necessary to have a well order if you have a linear order it 
may not be sufficient we may require a well order. a slightly different version of that we 
have studied in proving program correctness which we considered earlier after logic 



portion we considered that and there we defined what is known as a well founded set that 
was slightly different and the definition is slightly different from well ordered set but 
there also the condition was that every subset should have a least element. So, you can 
see that N less than or equal to, if you take the set of non negative integers and less than 
or equal to relation that is a well ordered set.  
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Now, we have considered set operations on sigma stars taking sigma star and you find 
some lexicographic ordering and so on. Before going into that we saw that i less than or 
equal to is not a well order. But you can induce a well order on that, induce a well order 
on it or into it, how do you do it?  
Here two integers a and b are compared like this a less than or is equal to b the 
comparison is like this. Now if they define the relation a less than or equal to b in this 
manner such that a less than or equal to b if mod of a is less than mod of, the numerical 
value is less than b if or if mod of a is equal to mod of b then a is less than b.  
 
If you define the relation like this you can define a well order into the set of integers, it is 
like this. For example, if you do that 0 you will order the elements in this way: minus 1 
and 1 will be less than or equal to minus 2 and 2 because if the modulus the value of that 
is less than the value of this then this will come before that so they will be ordered like 
this. And within them minus x and plus x the minus x will come because of this condition 
minus x will come before plus x. So minus 3 plus 3 like that you can order them so you 
can say this is the first element, this is the second element, this is the third element, 
fourth, fifth, sixth, seventh like that you can say.  
 
And if you define like this you can compare any two of them. If you take again you can 
compare any of them and also if you take any subset that will have a least element in this 
case. But you must remember that the relation we are defining is not less than or equal to 
on the set of integer but it is a relation R which is defined this way: a is related to b if the 



value of a is less than the value of b, numerical value of a is less than the numerical value 
of b and if they are the same a is less than b. So if you define this relation it becomes a 
well order but not under less than or equal to.  
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The next is we consider some operations on sigma star. What is sigma? Sigma star we 
have seen earlier. Sigma is an alphabet and sigma star denotes the set of all strings over 
sigma where lambda or epsilon denotes the empty string R, lambda or epsilon denotes 
empty string of length 0. We have seen all these earlier such as what is a length of a 
string and so on. On sigma star you can define two types of relation one is called the 
lexicographic ordering and another is called the well ordering or canonical ordering. Let 
us see what that is.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 42:05)  
  

 
 
Let sigma be a finite alphabet with an associated alphabetic order, what do you mean by 
that?  
 
Sigma is a, b, c here a comes before b and b comes before c that is the associated order on 
it. So generally you write a, b, c or you can write a1 a2 a3 which one is first that you 
should mention clearly. And one point we have to note that all this linear order and well 
order if you define on a finite set then any linear order will be a well order because it will 
always have a least element. A linear order on a finite set will be a finite chain like this so 
it will always be a well order you will have the least element but only on infinite set that 
problem will come. So let sigma be a finite alphabet with an associated alphabetic linear 
order if x belongs to sigmastar then x is less than or equal to y in the lexicographic 
ordering of sigmastar  
 
If x is a prefix of y or x is equal to zu and y is equal to zv where z is a string in sigmastar 
and that is the longest prefix common to x and y and the first symbol of u precedes the 
first symbol of v in the alphabetic order. It is lexicographic ordering is the same as the 
order followed in a dictionary. So if you have two strings x, y when do you say that x is 
less than or is equal to y? x comes before y in the dictionary. That is possible when x is a 
prefix of y that is suppose I have a1, a2, an and another string a1, a2, an and an plus 1 
something like that am this will come before this in the dictionary so this x will come 
before y, this is x and this is y. Otherwise x is of the form say some a1, a2, ai, ai plus 1 etc 
an, y is of the form a1, a1 is the same as this and up to ai it is the same then bi plus 1 and 
so on. And this comes before this in the order, a comes before b like that. In that case you 
say x will come before y in the dictionary or x is less than or is equal to y. This is the 
alphabetic ordering or the lexicographic ordering.  
 
 
 



(Refer Slide Time: 44:57) 
 

 
 

Let us take some strings and compare. For example; take a, bc, aabc, aaba which will 
come before this?  
This will come before this. If you want arrange this a will come before these and among 
these aaba will come before aabc and bc will come afterwards. This is called the 
lexicographic ordering or a linear order. This is a linear order because if you take any two 
strings you can always say that this string should come before the other string so it is an 
example of a linear order.  
 
For example, take sigma to be a, b, c and then we have considered some strings, is it a 
well order? It is a linear order, this is a linear order, is it a well order? It is not a well 
order, why?  
You cannot find a least element in a subset. Well order means if you take a subset of that 
it should have a least element. For example, consider this set b, ab, aab, aaab like that 
consider the set. That is a power n b n greater than or is equal to 0. Now you can see that 
if you take ab this will come before b and if you take aab that will come before this and if 
you take aaab that will come before that. But what is the least element, which one is the 
least element here? This is less than this, this is less than that, what is the least element? 
There is no least element in this set so this is not a well order. In order to compensate for 
that, you define a well order on the set of alphabetic order.  
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Let sigma be a finite alphabet with an associated alphabetic order and let the mod of x 
denote the length of x then x is less than or is equal to y in the standard ordering of 
sigmastar. If the length of x is less than or is equal to y or if the length f x is equal to 
length of y then x precedes y in the alphabetic ordering or lexicographic ordering of 
sigmastar. If you define this way again you get a linear order and not only that you can 
talk about the least element in this order. For example; take sigma to be a, b, c again a 
comes before b and b comes before c.   
 
How will you talk about the strings?  
Here you can arrange them in the order, first the empty string will come then strings of 
length 1 will come which is a, b, c then strings of length 2 will come and among that they 
will be arranged in the alphabetic order. So strings of length if you arrange aa, ab, ac they 
will be in this order ba, bb, bc, ca, cb, cc and so on. If you take ab, abb and abac this will 
come before this because the length of this is 3 and the length of this is 4 even though in 
the alphabetic order this will come before this but in the well order this will come before 
this because the length of this is less than the length of this.  
 
And if you take two strings of the same length abc and aca something like that, which one 
will come first?  
This will come before that because in the alphabetical ordering this will come before this. 
So, if you compare two strings the smaller string will come before the lengthier string in 
this order and if they are of same length then the string which will appear in the 
alphabetical order first will come before the string which will appear later. Now in this 
case consider the set b, ab, aab, and so on. This will be the least element. This is of length 
1 and the rest of them are length more than that so that will be the least element.  
 
Since you can arrange them into one corresponding to the set of non negative integer 0 1 
2 3 4 5 and so on so you can arrange them in this order you can talk about the ith string in 



this enumeration. When you can do this it is always a well order so you can always talk 
about it, any subset you take you can always talk about the least element of the set, so this 
is a well order. And this is very important because in many cases you may want to have 
an enumeration of the strings over the alphabet sigma. I will continue with this 
enumeration.  
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Suppose I have a string xa what will be the successor of xa?   
xb will be the successor of, x for xa what is the successor what is the next string? It will 
be xb. For xb what will be the successor in this well order? It will be xc. For xc what is 
the successor? It will be ya where y is the successor of x. And similarly if you take the 
predecessor for xb the predecessor will be xa, for xc the   predecessor will be xb x is 
some string and for the string xa the predecessor will be yc where y is the predecessor of 
x. This is a way you define. You can arrange the strings of length 3 also here. We have 
arranged the first strings of length 0 then 1 then 2. If you want to arrange strings of length 
3 it will be in this order aaa, aab, aac, aba, abb, abc and so on. Then it is aca, aca, acb, acc 
and so o.  
 
So you find that the successor of xa is xb, the successor of xb is xc and the successor of 
say xa will be yc where the successor of xc will be ya and y is the successor of this aa for 
aa ab is the successor this is what we have seen. So, from this example we can very easily 
see the successor of xa is xb, the successor of xb is xc, but the successor of xc is ya where 
y is the successor of x, ab is the successor of aa. And similarly, you can that the 
predecessor of xb is xa, the predecessor of xc is xb and the predecessor of xa is yc where 
y is the predecessor of x, this is the way you define. So you can arrange the strings in this 
order and you can have a 1 to n mapping with the set of non negative integers. You can 
talk about the ith string in the element supposing in this well order over the alphabet a, b, 
c. 
 



If I ask about what is the 47th string in the enumeration you can always say you can find 
out and tell what the string is and so on. And this sort of an idea is very useful in proving 
some very difficult theorems in automata theory about decidability. So we shall see more 
about this ordering in the next lecture.    


