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So we were considering the reflexive closure of a, binary relation, symmetric closure and 
transitive closure. Let us recall the definition.  
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Let R be a binary relation on a set A, the reflexive closure of R is the relation R dash such 
that R dash is reflexive, R dash contains R, for any reflexive relation R double dash if R 
double dash contains R, then R double dash contains R dash. That is the reflexive closure 
of a relation. R is the smallest reflexive relation containing R. Similarly, we can define 
symmetric closure and transitive closure. As a graph we have seen that if you have binary 
relation represented by a graph, to get the reflexive closure we have to add the self loops 
at every node and to get the symmetric closure if there is an arc in one direction you must 
add the arc in the other direction. To get the transitive closure if there is a path between 
some nodes then you have to add the arc corresponding to the path. This is what we have 
seen in a rough manner and we considered the reflexive closure.  
 
 
 
 
 
 
 
 



(Refer Slide Time: 2:33) 
 

 
 
Let R be a binary relation on the set A then reflexive closure of R is denoted by R union 
E. Then we have also seen what is meant by the converse of a relation. If R is a, binary 
relation whenever you have a pair x, y in R you have the pair y, x in R power c.  
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Then we also considered some properties of converse relations.  
 
 
 
 



(Refer Slide Time: 3:05) 
 

 
 

This also we have already seen, if R is a, binary relation on a set A then R is symmetric if 
and only if R is equal to R power c. Now, let us consider this portion, how do you define 
the symmetric closure? What is the symmetric closure of binary relation R? Let R be a, 
binary relation on the set A then the symmetric closure of R is R union R power c. R is a, 
binary relation on a set A then the symmetric on A the symmetric closure of R is given by 
R union R power c.  
 
How do you prove? What is the symmetric closure?  
The symmetric closure should contain R it should be symmetric and any other symmetric 
relation should contain the symmetric closure of R. suppose R dash is equal to R union R 
power c then we have to show that symmetric closure is R dash the symmetric closure of 
R is R dash. Now what are properties of R dash? R dash contains R this is the first 
property that is true and R dash is symmetric why, because look at this result, R is 
symmetric if and only if R is equal to R power c. Now what can you say about R union 
Rcc the converse of this by the results you have seen earlier let us see R1 union R2 
powerc is R1 power c union R2 power c. Making use of this property R union Rcc is Rc  
union Rcc and that is nothing but Rc union R. So the converse of this is equal to this so R 
dash is symmetric.  
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Now the third part is, let R double dash be a symmetric relation containing R. Then we 
have to prove R double dash contains R dash. Now let a, b belong to R dash. What is R 
dash? R dash is R union R power c. So if a, b belongs to R dash there are two 
possibilities a, b belongs to R or a, b belongs to R power c. Now R double dash contains 
R so a, b belongs to R means a, b will belong to R double dash because R double dash is 
a symmetric relation containing R so if a, b belongs to R R double dash will contains that 
pair so a, b belongs to R double dash. Now, if a, b belongs to R power c what does that 
mean? b, a, belongs to R and because R double dash contains R from this you will 
conclude b, a, belongs to R double dash but R double dash is a symmetric relation so 
from this you conclude a, b belongs to R. So whenever you take a pair a, b belonging to R 
double dash it also belongs to R double dash so R double dash contains R dash. So the 
third property also satisfied so the symmetric closure of a relation is given by s(R) is 
equal to R union R power c.  
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Now, let us consider the transitive closure. What is the transitive closure? When we you 
have a path as when you represent a relation as a graph when you have path between 
some nodes a transitive closure will contain the R between the two nodes. This is the idea 
of a transitive closure. We have already seen that in a, communication network if direct 
connection is denoted by an arc then the transitive closure represents all the pairs of 
nodes by which from the first node you can send the communication to the second node. 
This transitive closure has lots of practical applications. Now the transitive closure is 
given by this.  
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Let R be a, binary relation on the set A then the transitive closure of R is union i is equal 
to 1 to infinity R power i that is equal to R union R squared union R cubed union etc. 



Now, we have to prove this equality, that is t(R) is equal to R union R squared union R 
cubed union etc and this you represent i is equal to 1 to infinity R power i. Now, we will 
prove it in two parts, first this is contained in this and then this is contained in this, so 
first part is we prove that union i is equal to 1 to infinity R power i is contained in t(R) 
this is what we have to prove. Now to prove this part use induction R is contained in t(R) 
by definition because the definition of R is, if it contains R it is transitive and it is the 
smallest such relation this is the basis clause. Now, the induction portion also suppose R 
power n belongs to t(R) to show R power n plus 1 belongs to t(R) this is the induction 
portion of it.  
 
Now, let a, b belong to R power n plus 1 that is R power cross R when can you say that a, 
b belongs to R power n plus 1? When there exist c such that a, c belongs to R power n 
and c, b belongs to R. When you say a, b belongs to R power n plus 1  that means there 
should be c in A these are all defined on a set A so a, c belongs to R power n and c, b 
belongs to R. now, by induction hypothesis this belongs to t(R) and this also belongs to 
t(R) because anyway R is contained in t(R) so a, c belongs to t(R) and c, b also belongs to 
t(R) but t(R) is a transitive relation t(R) is transitive therefore a, b belongs to t R. So we 
have seen that if you assume R power n belongs to t(R) R power n plus 1 also belongs to 
t(R) so union of i is equal to 1 to infinity R power i is contained in t R. So we have 
proved this portion.  
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The other way around we have to show that t(R) is contained in union of i is equal to 1 to 
infinity R power i this is second portion. How do you prove that? First you prove that 
union of i is equal to 1 to infinity R power i is transitive, how to prove this? Suppose you 
have a, b belonging to some R power s and then b, c belongs to some R power t a, b 
belongs to R power s means a, b belongs to this union; b, c belongs to R power t it also 
belongs to this. Now what can you say about a, c? In that case a, c will belong to R power 
s cross R power t that is equal to R power s plus t a, c will belong to R power s plus t. 



That is a, c will also will belong to union of i is equal to 1 to infinity R power i. so when 
you have two pairs a, b and b, c belonging to this you also have a, c belonging to this and 
when this condition is satisfied you say that the transitive property is satisfied. So, we 
have proved that i is equal to 1 to infinity R power i is transitive. And i is equal to 1 to 
infinity R power i obviously it contains R power 1 so this is a transitive relation 
containing R. And by the definition of t(R) t(R) is contained in any transitive relation 
containing R. It is the smallest transitive relation. So this is the transitive relation 
containing R and by definition of t(R) any transitive relation containing R should contain 
t(R) so we get this result t(R) is contained in union of i is equal to 1 to infinity R power i. 
So these a and b together give us this result.  
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 That is t(R) is equal to union of i is equal to 1 to infinity R power i R union R squared R 
cubed etc. let us consider some examples. Consider the set of non negative integers and a 
relation R such that x is related to y if y is equal to x plus 1. That is any number i will be 
related i plus 1 define R like that on natural numbers, what is the transitive closure of 
this? What is the transitive closure of R? Now, we have seen that R squared means x will 
be related to x plus 2 for any x; R power s is x is related to x plus s and so on and t(R) is 
union of i is equal to 1 to infinity R power i so what is that relation it is less than relation 
so t(R) is the less than relation.  
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Now, if you have this relation set of human beings then R denotes the relationship x 
related to y. x is the child of y then what is the transitive closure? What is the t R? This is 
the relation this represents a relation x is the descendant of z x t(R) z means x is the 
descendant of z.  
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Now what about this? n we have considered this infinite set what about the finite set? Let 
R be a, binary relation on a set A where A has n elements. Then you can show that t(R) is 
equal to union of i is equal to 1 to 2 power n squared R I where R is a binary relation on a 
set A and A has n elements where n is a finite number. Earlier we have seen that with n 



elements if you look at it as a graph you can see that with n elements you have a graph if 
its a relation the ordered pairs will be represented by arcs so you can have maximum n 
squared arcs in such a graph that the maximum number of ordered pairs in a relation is n 
squared and any relation you can have each one of the pair present or not present, there 
are two possibilities there can be maximum n squared pairs and each one of them may be 
present or may not be present in a relation so that gives you 2 power n squared 
possibilities so maximum you can have two power n squared distinct relation on A. So 
this R power R, R power 0 is the equality relation that we are not bothered about now, in 
transitive closure we start from 1 to 1. So if you consider R, R squared, R cubed etc up to 
R power 2 n squared R power 2 power n squared plus 1 among this set this will get 
repeated so you can at the most 2 power n squared distinct relation. If you consider R 
power 2 power n squared plus 1 this will be one of these relations only. So it is not 
necessary to consider more than this.  
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So t(R) is given by this, t(R) is union of i is equal to 1 to 2 power n squared R power i.  
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Not only that you can see that in this case t(R) is union of i is equal to 1 to n R you need 
not even consider up to when n is finite when the underlined set is a finite set t(R) you 
have to consider only i is equal to 1 to n R power I, why? You can see that t(R) is nothing 
but i is equal to 1 to n you need not even consider up to i is equal to 2 power n squared it 
is enough if you consider up to n, why because what is really t(R) is it transitive closure? 
That means if R is represented by a directed graph like this that is in t(R) any path you 
also have an arc that is t. Now, any path in R power 2 power n squared if an element is R 
power i if ordered pair x, y is in R power i that means between x and y there is a path of 
length i that is what it means. Now this is R, we will consider the transitive closure but 
before that if this represents R x, y is an ordered pair in R power i means in R there is a 
path between x and y of length i.  
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Now, if you have a path between two nodes if you have a path between two nodes 
something like this from x to y directed path remove all the cycles from that remove still 
there is a directed path from x to y. Earlier we had a path like that a directed path which 
was not simple like this, now remove the cycles from this then you get a directed simple 
path from x to y. so whenever there is a path between x and y directed path between x 
and y you can get a simple path between x and y by removing the cycles and what can 
say about the length of  this simple path? Even if it visits all the nodes and comes back to 
x it will be of length n only. So the length of such a simple path will be at the most n 
when you have n elements in A.  
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So we need not even consider up to 2 power n squared, it is enough if you consider i is 
equal to 1 to n. So in the definition of t(R) whenever there is a directed path it should be 
replaced by an arc. But we know that if you have the directed path by removing the 
cycles you can get a simple path between x and y of length less than or equal to n so you 
can add the arc in the transitive closure. So t(R) is nothing but i is equal to 1 to n R power 
i. this give us a very simple procedure to find the t R.  
 
Now we have already seen that, take that simple one, simple binary relation having just 
two paths, so what is the transitive closure of R? This is R and what will be the transitive 
closure of R? Whenever there is a directed path you have to add the arc so the transitive 
closure will be this a, b, c. Now, if you represent the adjacent c matrix of R like this what 
will be a, b, c? What will be the adjacency matrix? a to b there is an arc, b to c there is an 
arc so this is the adjacency matrix of R. Suppose I denote this by A then what can I say 
about A squared?  
 
What can you say about A squared? It is 0 1 0, 0 0 1, 0 0 0 cross 0 1 0, 0 0 1, 0 0 0. If you 
multiply what do you get? Here 0 1 0 cross 0 this multiplied by this is again is 0 this 
multiplied by this will give you 1 and the rest of the element this multiplied by this is 0 
this multiplied by that is also 0 and so on. So R squared represent A squared. Now if you 
consider the graph or the binary relation a, b, c this is R, R squared consists of only one 
arc between a and c any path of length of two is replaced by an arc so R squared has this 
which is represented by this matrix. Now what about R cubed? In R cubed there is no 
path of length three so R cubed is the empty relation that is obtained by multiplying R 
cubed is R squared cross R so that is obtained by multiplying this the matrix representing 
A squared and A that is 0 1 0, 0 0 1, 0 0 0. So if you multiply you will see that that is the 
0 matrix.  
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So we see that R which is this is represented by 0 1 0, 0 0 1, 0 0 0. And R squared is a, b, 
c and this is represented by 0 0 1, 0 0 0, 0 0 0. R cubed is just empty relation and 
represented by the 0 matrix. So the transitive closure of R is R union R squared union R 
cubed union of i is is equal to 1 to n R cubed that is you find the union of these three 
matrices you will get 0 1 1, 0 0 1, 0 0 0 and that is nothing but this a, b, c if you represent 
there is an arc from a to b, there is an arc from a to c, there is an arc from b to c this is the 
transitive closure. So you get the transitive closure by matrix multiplication like that. 
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How much time it will take to calculate the transitive closure? 
So R is a binary relation represented by the adjacency matrix and this is of size n by n. 
Then to calculate the transitive closure of R you have to find A, A squared, A cubed up to 
A power n. how much time it will take? To multiply two matrices of size n by n you 
require ordered n cubed operations. Like that you are multiplying once, twice, thrice like 
that n minus 1 times actually so you are performing this matrix multiplication order n 
times, order n times this matrix multiplication is performed. So totally it will take order n 
power 4 of course addition will take some time but the total time is, this is the 
predominating factor so order n power 4 time it will take to find the transitive closure of a 
relation.  
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There are very good algorithms to find the transitive closure like the Warshall’s 
algorithm and Warren’s algorithm may be we shall consider them later they are very 
good algorithms very efficient algorithms for calculating transitive closurethey are very 
simple also they take only order  n cubed time to find the transitive closure. 
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Now, let us consider some properties connecting the relation that is what the symmetric 
closure is, what the transitive closure is and how they are related and so on. If R is 
reflexive then s R and t(R) are reflexive.  
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If R is symmetric then r R and t(R) are symmetric and if R is transitive then r R is 
transitive. Now let us see, these are very simple and straight forward. Let us consider the 
first statement alone: R is reflexive then s R and t(R) are reflexive. R is reflexive would 
mean R is represented by a graph like this some directed arcs, if it is reflexive you will 
have self loops at every node. Now, to get the symmetric closure whenever there is an arc 
in one direction you will add the arc in other direction. This is not going to affect the self 
loops in anyway those self loops which are originally there are going to be there still. So, 
if you considered the symmetric closure that will still be reflexive. And similarly, 
consider the transitive closure of R, the transitive closure of R when you have a path 
between two nodes you will be adding an edge between the two nodes. And these self 
loops which are originally present are going to be still there and are not going to be 
affected and so the transitive closure will also be reflexive. So similarly we can prove the 
other two parts b and c; R is transitive then r R is transitive.  
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Now let us consider these relationships. Let R be a, binary relation on a set A then rs(R) 
is equal to sr(R), rt(R) is equal to tr(R) and ts(R) contains st(R), how do you prove that? 
Let us take one by one, rs(R) is equal to sr(R). What is this and what is this? Take R first 
find the symmetric closure then find the reflexive closure. I will write like this so that it is 
clear: first find the symmetric closure and then find the reflexive closure. Here first find 
the reflexive closure then find the symmetric closure. They are all equal, either way you 
can do, first find the reflexive closure then find the symmetric closure or find the 
symmetric and the reflexive either way you can do it. So what is r? I write r like this: 
rs(R) is equal to reflexive closure of what is s(R)? s(R) is R union R power c and that is 
equal to reflexive closure of a relation is R union R power c union E. You are adding the 
equality relation.  
 
Now what can you show about the symmetric reflexive closure of R? sr(R) is equal to it 
is a symmetric closure of what r is, R that is R union E. And what is this? This is equal to 
R union E union R union E power c that is equal to R union E union R power c union E 
power c. equality relation is just the set of pairs of the form x x, as a graph if you look at 
it is just consisting of self loops at every node. So E power c is the same as E so you need 
have to not write it twice so this becomes R union E is equal to R power c and of course 
because of commutativity you can write it as R power c union E. So you find that this and 
this are equal so you get reflexive closure of the symmetric closure of a relation is the 
same as the symmetric closure of reflexive closure of that relation, that is the first part.  
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Look at the second part; you want to show that the reflexive transitive closure of a 
relation R is same as the transitive reflexive closure of R, that is, what we want to prove 
is this rt(R) is equal to tr(R), now what is rt(R)? rt(R) is r of t(R) and we know that t(R) of 
R, that is the transitive closure is R union R squared union R cubed union etc. And the 
reflexive closure of that is E union R union R squared union R cubed etc where E is the 
equality relation. Now we want to show that this is the same as this that is the transitive 
reflexive closure of R is the same as this. But before going into that let us make some 
observations, E power i is the same as E for any i where i is an integer, what does that 
mean? If you take the equality relation that consists of just self loops and if you take any 
power of that that will be the same as the original equality relation. So E power i is the 
same as E for all i.  
 
RE is the same as ER is the same as R, what does that mean?  
Suppose E is the relation consisting of self loops equality relation, suppose it is on some 
set a b c d and another relation is there on a b c d represented by R so this will have some 
arcs. Now, what is the concatenation of this and this, what is the composition of this and 
this? ER, first this and then this, that will mean c to c if you have c to c of course let me 
say it is like this, c to c then here you have c to d so in the composition relation you have 
an arc from c to d. Similarly, b to b you have and then here you have b to c and when you 
combine the relation the concatenation of the relation you will have b to c so E cross R is 
the same as R.  
 
Similarly, if you look at RE an arc in RE will consist of a pair bc and then cc here. That 
will essentially compose of only bc. So an arc from here to here then a self loop followed 
by a self loop combine them together that it will just an arc b to c. Similarly, an arc from 
c to d combining with the self loop here will give you only the arc from c to d. So R cross 
E also will give you only R, E cross R also will give you only R. And we also know that 
E power i is equal to E for all i. Making use of this you will realize that t of r of R will be 



t of what is the reflexive closure? It is R union E, so t(R) of R of that will be R union E 
union R union E squared union R union E cubed and so on. And we know that E power i 
is E for all E and then RE is equal to ER and so on and E power i is the same as the E, RE 
is the same as ER. So making use of these results this will essentially reduce to E union R 
union R square union and so on. And this we have seen earlier, it is nothing but rt(R). So 
we see that tr(R) is the same as rt(R).  
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Let us come to the third portion, the third portion is not an equal portion it is contained 
ts(R) contains st(R) how do you prove that? We want to show that ts(R) contains st(R), 



now this can be proved in this manner; take the symmetric closure of a relation R, s(R) 
will always contain R by definition s(R) contains R. Now, take the transitive closure on 
both sides so ts(R) will contain t(R). Now on both sides take the symmetric closure so 
sts(R) contains st(R). But ts(R) is already symmetric it is a symmetric relation because 
first of all we are taking the symmetric relation and then taking the transitive closure. 
That symmetric property will not be affected by that, that we have seen earlier. So this is 
a symmetric relation and taking the symmetric closure of that does not make any 
difference you get the original relation itself and because this is symmetric these two are 
the same and because these two are the same you can write it as this: ts(R) contains st(R).  
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So, we prove the third part and the first two parts was equality and the third part is 
contained in. Let us show why it is contained in. Take the less than relation, what is ts of 
less than relation and what is st of less than relation. Look at this first, less than is a 
transitive relation so t of less than is the less than relation only and the symmetric 
transitive closure of that is the symmetric closure of the less than relation which is the not 
equal to relation. This is the less than relation on the set of non negative integers.  
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So st of less than is the not equal to relation whereas if you say ts less than what is the 
symmetric closure of less than relation? That is a not equal to relation. And what is the 
transitive closure of this? That is the transitive closure of the not equal to relation which 
is the universal relation, universal relation on the set of non negative integers, they are 
not the same, self loops are absent here self loops are present here. So, that shows that 
they are not equal but ts less than this will contain this so ts less than contains st less than. 
So it is the containment in this case not the equality. There are examples to show that 
they cannot be equal.  
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Now, generally you say that if R is a binary relation on a set A, then R plus which 
denotes the transitive closure. Transitive closure is usually denoted by R plus. Instead of 
t(R) many times you use the notation R plus that is the transitive closure. An R to the 
power star is read as R to the power star that denotes the reflexive transitive closure of 
the relation R. And rt(R) is tr(R) that we have seen, so instead of saying that you use R to 
the power star. These transitive closure relations are really very useful in many cases.  
 
We will consider one or two applications. One is, consider a set of procedures, you have 
a set of procedures P1 P2 P3 etc, then you represent like this; Pi R Pj if Pi calls Pj. If Pi 
calls this Pj as a sub routine then you say Pi or Pj then what does Pi R plus Pk represent, 
what does it represent? See Pi may call Pj and Pj may call P R, P R may call Pk and if 
you say Pi R plus Pk the set of such Pks are the set of procedures which will be called 
when Pi is executed. When the procedure Pi is executed you will get Pi R plus Pk that 
means Pk will be invoked during the execution of Pi.  

tion.  

 
And what does Pi R to the power star Pk represent?  
Of course because this will represent the reflexive transitive closure so it will also include 
Pi. Here this may not include Pi this is the set of procedures which will be active at some 
point when Pi is invoked. When Pi is called the set of procedures will be active at some 
point of time is denoted like this. Now, when do you say that Pi R to the power star Pi 
because reflexive closure will always contain Pi so this will always hold. But if you say 
Pi R plus Pi what does that mean? It means that during the execution of Pi it invokes 
itself either directly or indirectly. Pi may call itself or Pi may call Pj or Pj may call Pi 
whatever it is in that case Pi is recursive, it is a recursive program directly or indirectly so 
this is one applica
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Usually this sort of notations is also used in grammars. This star and plus we already seen 
when we defined sigma plus and sigma power star. So in grammars again this notation is 



used. suppose you have a string say some a1, a2 and an and some portion of it is I will 
denoted by u is replaced by a roll u goes to v, so from this string you get this, if I write as 
w1 it is a string over some alphabet and if a portion of it is replaced by v, this u is 
replaced by v but the rest of the strings will be there then you get w2 it is usually denoted 
by w1 derives w2 this represents a relation between strings and this is called directly 
derives, this is if w1 derives wn by this step that is represented by this notation which is 
know as the reflexive transitive closure.  
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So if w1 is derived in one step you call it as directly derives. But if you have w1 deriving 
w2 then w2 deriving w3 in one step and so on until you get some wn. Each is obtained 
from the previous one by the application of a single rule. And this you write as w1 to the 
power star wn that is this star you call it as derives. Or in other words if you get w2 from 
w1 in one step you write w1 derives w2. 
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If you get w2 w1 in several steps wn from w1 in several steps you write it as w1 double 
arrow power star wn. This denotes derives. This denotes directive derives, this also 
represents a relationship between the strings, this also denotes the relationship between 
the strings and generally we have wi to the power star wi because each string is derived 
from itself, that is what we have. So generally we can easily see that this is the reflexive 
transitive closure of.  
 
Therefore, to find out the communication paths in a communication network all the pair 
of nodes which can be connected or from one node where you can send a message to any 
other node you have to calculate the transitive closure. And here again like in grammar 
you have this derivation. Even in automaton which is a corresponding acceptance device 
for a grammar you have these relationships and you may be making use of this in several 
subjects in computers science and transitive closure is a very important concept. That is 
why people have spent time in finding efficient ways of finding the transitive closure as 
we have already seen if you represent the relation by the adjacency matrix then if you 
calculate the transitive closure in naive manner then you may require order n power 4 
time because the adjacency matrix will be represented by as n by n Boolean matrix and 
you have to calculate a, a squared, a cubed up to a power n and find the sum.  
 
But there are other efficient methods like Warshall’s algorithm and Warren’s algorithm 
where you need not go through all those steps it takes only order n cube. So we have 
considered some closure properties of relations like reflexive, transitive and symmetric 
closure. There are other aspects of relations like partial order, linear order, well order, a 
lexicographic order on string and so on, they are also very useful in certain things. Then 
there is an equivalence relation which is also a very important concept. We shall consider 
about partially ordered sets and partially orders and also equivalence relations in the 
coming lectures. 


