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So in the last lecture we have seen about composition of relations. We have also seen in 
what is a power of a relation. So if  a R power 1 is a relation on A cross B and R power 2 
is a relation on B cross C then R power 1 R power 2 you can define on A cross C from A 
to C. Now, if R is a binary relation on A that is A cross A then you can talk about the 
power of R. R power 0 is the equality relation, R power 1 is R and R power 2 is R cross R 
because of the associative property of composition of relation we can say without any 
ambiguity R power n plus 1 is R power n cross R. We have also seen that R power m 
cross R power n is R power m plus n and R power mn is equal to R power mn, these 
things also we have seen.  
 
Let us consider one more example; take a relation on a set A consisting of four elements 
a, b, c, d and R is written like this by a directed graph a b c d this is the relation. So, R 
consists of the pairs a, bb, ab, c and c, d. Now what is R power 0? R power 0 is the 
equality relation on the set so that can be represented by the diagram like this. It consists 
of the pairs aa, bb, cc and dd. and R power 1 is R.  
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Now what can you say about R squared and R cubed? R square can be represented by the 
diagram like this. If there is a path of length two that will be replaced by a single arc in R 
squared. So a to b, b to a you have so there will be a self loop here, b to a, a to b is there 
so there will be a self loop here and a to b, b to c is there so a to c there will be an arc, b 
to c, c to d there is an arc so b to d there will be an arc this is R squared. Then R cubed 



will consist of all paths of length three replaced by a single arc. So what is R cubed? If 
you write like this, a path of length three will be replaced by a single arc. So R cubed will 
consist of an arc representing a path of length three in R, R is this, so a to b, b to a, a to b 
there is a path of length three here so it is like this, then b to a,  a to b, b to a there is a 
path of length three so there will be an arc like this, b to a, a to b, b to c there is a path of 
length three here so it will be like this, then a to b, b to c, c to d there is a path of length 
three so there will be an arc like this, this is R cubed.  
 
Now what about R power 4? So I shall write here, R power 4, let us see what are the arcs 
representing R power 4 may be this. R power 4 if you take any path of length four should 
be replaced by a single arc here one two three four so there will be a self loop here, 1, 2, 
3, 4 so there will be a self loop here, one two three four so there will be an arc like this, 
one two three four so there will be an arc from here to here. So you will find that R power 
4 is this same as R squared so R power 5 will be the same as R cubed. So in this case you 
find that R power 0 represents the equality relation, R power 1 represents the given 
relation, R squared you have found R cubed and R power 4 is the same as R squared and 
R power 5 is same as R cubed so R power 6 will be the same as this and R power 7 will 
be the same as this. So after sometime the pattern repeats you do not have anymore 
different relations but the powers will represent the already existing relations. So we have 
this result.  
 
(Refer Slide Time: 7:48) 
 

 
 

 
 
 
 
 
 
 



(Refer Slide Time: 8:34) 
 

 
 
If A is a finite set with n elements and R is a relation on A then there exist s and t such 
that R power s is equal to R power t for some s and t between 0 and 2 power n squared, 
for two values s and t R power s is equal to R power t if the underlined set A consists of n 
elements. R is a relation on A and A has n elements where n is a finite number why this? 
It is because if A has n elements what is the maximum number of ordered pair you can 
have on A cross A n squared elements you can have on A cross A, A cross A will have n 
squared elements. And any relation on A or rather A cross A can include each one of 
them or can exclude each one of them. So possibly you can have 2 power n squared 
distinct relation on A because if you look at it as a graph each one of the arc may be 
present in the relation or not present in the relation.  
 
And maximum you are having n squared arcs so possibly totally you can have 2 power n 
squared distinct relations on A cross A. This includes the universal relation where you 
have all the elements present all the ordered pairs present and the empty relation where 
you do not have the any of the ordered pairs present. So looking at that way you see that 
if you take R power 0, R power 1, R power 2, like that up to R power 2 power n squared 
in this sequence you are having 2 power n squared plus one element but maximum you 
can have 2 power n squared distinct relation on A cross A so some of them should be 
equal, at least for some values of s and t they should be equal. So there will be some s and 
there will be some t such that R power s is equal to R power t between these values that is 
what is meant by this result.  
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A is a finite set with n elements and R is a relation on A then there exist s and t such that 
R power s is equal to R power t and s and t lies between 0 and 2 power n square.  
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We can also look at another example where this can be made of use of. Look at this 
relation with eight elements a b c d e f g h, a relation is represented by this. Now find 
smallest m and n such that R power m is equal to R power n, m less than n. How will you 
tackle this problem? In the last class we have seen that if you take R like this R power 0 
is the equality relation R is this R square is this then R cubed will again be the equality 
relation because each path of length will be replaced by a loop if you take first 



component alone. The relation consists of two components. The first components repeats 
after three steps R power 0 will be is equal to R cubed I will call this as R power 1 and R 
power 2 so R power 1 will repeat after three steps. Now the same argument you can use 
for the second component also, R2 power 0 will be the equality relation and R2 power 1 
will be this R2 power 2 will be every path of length two will be replaced by an arc, R 
power 3 will be every path of length three will be replaced by an arc, R power 4 will be 
every path of length four will be replaced by an arc, R power 5 will be every path of 
length five will be replaced by an arc.  
 
If you follow the same argument as the earlier case you will find as R2 power 1 R2 power 
2 R2 power 3 R2 power 4 will be different but when you consider R2 power 5 R2 power 0 
will be is equal to R2 power 5 is equal to R2 power 10 and so on. So the first component 
will repeat after every three steps, the second component will repeat after every five 
steps. for the relation to be the same both the components have to repeat in the same 
manner so you will find that after fifteen steps this will be the same and this will also 
repeat after fifteen steps, three and five this repeat every three steps this repeat after every 
five steps so taking the LCM of 3 and 5 after fifteen steps the whole thing will get 
repeated so the smallest m and n such that R power m is equal to R power n where m is 
less than n the answer will be m is equal to 0 the equality relation n is equal to 15 this is 
also will be the equality relation on this so you get R power 0 is equal to R power 15.  
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Let us look at the small result on this power of R. 
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Let R be a binary relation on a set A and suppose that R power s is equal to R power t for 
some s and t with s less than t. Before proceeding to that I want to mention one more 
point that R power s becomes is equal to R power t only if A is a finite set with n 
elements. If A is an infinite set this may not true at all. For example, let us consider the 
relation on the set of non negative integers, the underlined set is the set of non negative 
integers 0, 1, 2 etc and the relation is R is represented like this, x is related to y y is equal 
to x plus 1. So what is R squared? R squared will represent R squared if y is equal to x 



plus 2 and any R power s will be x R power s, y if y is equal to x plus s. let us consider 
this situation in a graphical manner. So the set of natural numbers you can represent like 
this; R will be represented by this, A is related to B if B is equal to A plus 1. So R power 
s will be denoted by, 0 will be related by s and 1 will be related to s plus 1 and so on. So 
if a is related by R power s to b then b will be a plus s. In this case you find that none of 
the Rs are equivalent R power 0 R power 1 R power 2 etc they are all different. So the 
result which you had for finite set like this will not hold when A is an infinite set. When 
A is a finite set we had this result this will not hold when A is an infinite set that is what 
we have considered now. Let us consider one more result about the power of a relation.  
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Let R be a binary relation on a set A and suppose R power s is equal to R power t for 
some s and t where s and t are integers and s is less than t. let p be is equal to t minus s 
then R power s plus k is equal to R power t plus k for all k greater than or is equal to 0. R 
power s plus kp plus i is equal to R power s plus i for all k i greater than or is equal to 0 
and there is a third result let S be is equal to R power 0 R power etc up to R power t 
minus 1 then every power of R is an element of the set S. That is, if you have any R 
power q it will belong to S for all q belonging to N. Let us prove by one by one.  
 
First let us consider the first part R power s plus k is equal to R power t plus k for all k 
greater than or is equal to 0. So this is what we want to prove. We know that R power s is 
equal to R power t, we have to show R power s plus k is equal to R power t plus k for all 
k greater than or is equal to 0. Use induction basis clause k is equal to 0 you know that R 
power s is equal to R power t, k is equal to 1 you know that R power s cross R is equal to 
R power t cross R. See you are combining with R you are concatenating with R so this 
will be R power s plus 1 is equal to R power t plus 1. Then the induction portion is like 
this; assume R power s plus i is equal to R power t plus i to prove R power s plus i plus 1 
is equal to R power t plus i plus 1. You know that this equal to R power s plus i cross R 
and because R power s plus i is equal to R power t plus i you can write it like this and this 



is nothing but R power t plus i plus 1. So R power s plus k is equal to R power t plus k for 
all k greater than or is equal to 1. 
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Next we have to take the second portion that is R power s plus kp plus i is equal to R 
power s plus i for all k, i greater than or is equal to 0. R power s plus kp plus i is equal to 
R power s plus i for all k, i greater than or is equal to 0. Here again make use of induction 
where P is t minus s, P is defined as t minus s. Now, from the previous result if you prove 
R plus kp is equal to R power s then i can vary by adding i on both sides you can say that 
they are equal, there is no problem. So what you to show that R power s plus kp is equal 
to R power s. If k is equal to 0 R power s is equal to R power s you get. k is equal to 1 R 
power s plus p that is equal to R power s p is t minus s is equal to R power t. But we 
know that R power t is R power s. So this is somewhat like a basis clause of induction 
and you can show that again use induction portion.  
 
Suppose R power s plus kp is equal to R power s suppose, then R power s plus k plus 1 p 
is equal to R power s plus kp plus p is equal to, what is R power k plus? This is R power s 
plus kp R power p but what is p? R power s plus kp is R power s, R power p is t minus s 
so this equal to R power s plus t minus s is equal to R power t and we know that by 
assumption R power t is R power s. So we can prove in this manner that for any k and i 
again if you multiply by this R power i and multiply this by R power i that plus i you will 
get. So for any k and i greater than or is equal to you can show that R power s plus kp 
plus i is equal to R power s plus i.  
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Now let us come to the third part, what is the third part? S is equal to R power 0 R power 
1 R power 2 R power t minus s then for any power of R you can say that R power q 
belongs to S for all q belonging to N. So for any power any q which is a natural number 
R power q belongs to S where S is defined as R power 0 R power 1 up to R power t 
minus 1. What we already have is R power t is equal to R power s. And the previous two 
results we have already proved.  
 
Now, there are two possibilities take q belonging to N, q is any natural number then q is 
less than t if q is less than t obviously it is in this R power q will be in this side so that is 
okay. If q is less than t R power q is in this side so the result is proved but if q is greater 
than t greater than or is equal to t what happens? Then you write q as s plus kp plus i you 
can write q as s plus kp plus i how it is possible? First from q you subtract s then 
whatever is remaining divide by p as much as possible where k is the quotient and i is the 
remainder. So what can you say about i? i will be less than p it is the remainder you are 
dividing by p so i is less than p, what is p? That is i is less than t minus s. So any q if it is 
greater than or is equal to t you can write it in this form s plus kp plus I, how do you get 
this? From q subtract s you get q dash and divide this q dash by p you get k as the 
quotient and i as the remainder.  
 
Now, by the second result we know that R power s plus kp plus i is equal to R power s 
plus i for all k and I this we know from the previous result. So R power q if you write it 
as R power s plus kp plus i it will be is equal to R power s plus I in this case when q is 
greater than or is equal to t you can write it as R power s plus i where i is less than t 
minus i now i is less than t minus s so s plus i will be less than t. So this s plus i is less 
than t so R power s plus i because s plus i is less than t it will be one of these elements so 
R power s plus i that will belongs to S. So we have considered both the cases when q is 
less than t and q is greater than or is equal to t. When q is less than t by definition itself it 
will belong to this set but when q is greater than or is equal to t you express it in the form 



express q in the form s plus kp plus i so that R power q becomes is equal to R power s 
plus I and so s plus i is less than t so this will be one of the elements here and belong to S. 
So this proves the result. So these are some results about powers of R.  
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The point to remember is, if you represented it as directed graph, if you represent R by a 
directed graph then R power N will consist of a directed graph where every path of length 
N in R is replaced by a single R, this is what you have to remember.  
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Next we shall study about some closure. We have seen what is meant by a relation to be 
reflexive, to be symmetric, to be transitive and so on. We shall see what is meant by a 
reflexive closure, symmetric closure and transitive closure. Why is it necessary to study 
this? For example, you may have a communication network in which there is a direct link 
between A B there is a direct link between B and C and there is a direct link between C 
and D but there is no direct link between A and D or B and D or A and C. Now, I want to 
find out from which nodes I can direct a message to which node. See, there is a direct link 
between A and B and also there is a direct link between B and C so I can root a message 
from A to C, so I want to find out all the pairs of nodes where from the first node I can 
root a message to the second node. This in essence will be finding the transitive closure 
of this relation. So let us see what is meant by reflexive closure, symmetric closure and 
transitive closure.  
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Let R be a binary relation on a set A. The reflexive, similarly we will study symmetric 
transitive but first we will see reflexive. The reflexive closure of R is the Relation R dash 
such that R dash is reflexive, R dash contains R, for any reflexive relation R double dash 
if R power 2 dash contains R then 2 dash contains R dash. This is the definition of 
reflexive closure. Similarly, for symmetric closure you have to read like this; if R is 
binary relation on A the symmetric closure of R is the relation R dash such that R dash is 
symmetric R dash contains R for any symmetric relation R power 2 dash if R double dash 
contains R then R double dash contains R dash.  
 
Similarly, for transitive closure you have to read like this; let R be an binary relation on a 
set A the transitive closure of R is the relation R dash such that R dash is transitive, R 
dash contains R, for any transitive relation R double dash if R double dash contains R 
then R double dash contains R dash. So the reflexive closure of relation R is the smallest 
reflexive relation containing R. The symmetric closure of R is the smallest symmetric 
relation containing R. The transitive closure of R is the smallest transitive relation 



containing R. We will denote the reflexive closure by r, R symmetric closure by s, R and 
the transitive closure by t, R. So the reflexive closure is denoted by r, R the symmetric 
closure is denoted by s, R and the transitive closure is denoted by t, R. In a crude way or 
a very naïve way you can define like this; let R be a binary relation and you can represent 
by graph a graph a directed graph R can be represented by a directed graph. Now what is 
that if it may have some self loops? It may not have all self loops but it may have some 
self loops.  
 
Now, the reflexive closure of R is the smallest reflexive relation containing R that means 
you should add self loops wherever it is not there so that it becomes reflexive, it amounts 
to this, finding the reflexive closure amounts to this reflexive, it amounts to this. Now 
what about the symmetric closure? So if there is an arc in one direction between two 
nodes the symmetric closure should also have the other arc in this direction. So when you 
want to find the symmetric closure of R if there are two arcs like this directed in both 
directions between two nodes is okay, if there are no arcs between two nodes then also it 
is okay but if between two nodes if you have one arc pointed like this you must add the 
arcs the direction also to make it symmetric. So try to add minimum number of arcs to 
make it symmetric and that will give you the symmetric closure.  
 
Now, what about the transitive closure? The transitive closure is, if there is a directed 
path between two nodes you must also add this arc, there is a path here you must add this 
arc. So try to add the minimum number of arcs such that you get the transitive closure. 
The transitive property means that if there is a path between two nodes then there should 
also be an arc between the two nodes. So that transitive properties if it does not hold you 
have to make it hold so whenever you have a directed arc between two nodes you must 
also try to add the arc corresponding to that.  
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So putting it in a simple manner let us study some properties. Before that let us consider 
some relation on the set of non negative integers N. Look at the less than relation, what 
can you say about the reflexive closure of the less than relation? Less than relation is not 
reflexive, x is not less than x so there will not be any self loops. So, if you look at the 
natural numbers like this less than relation will have; A is less than B, A is less than 0, 1, 
2 like that you have arcs A, B and so on but there will not be any self loop.  
 
The reflexive closure should have self loop at every node and so the reflexive closure of 
less than will be the less than or equal to relation including this like this self loop like 
this. What can you say about the reflexive closure of equal to relation? It is already 
reflexive so that it will be equal to the reflexive closure of the not equal to relation. Two 
elements are directed and there is a directed arc between two integers, if they are not the 
same you may also add self loop at every point you must add the equality relation that 
will become equal to the universal relation where every number is connected to every 
other number.  
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So, this is something about the reflexive relation. Let us see more about reflexive closure.  
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Now, this you can very easily see, let R be a binary relation on the set A then R is 
reflexive if and only if the reflexive closure of R is equal to R, R is symmetric if and only 
if the symmetric closure of R is equal to R, R is transitive if and only if the transitive 
closure of R is equal to R. Let us take the first one and prove, let the reflexive closure of 
R be R dash, now, if R is already reflexive R satisfies all the conditions mentioned in the 
definition of the reflexive closure. It is a reflexive, what is a reflexive closure? It is the 
smallest reflexive relation containing R if R itself is reflexive then it is reflexive it 
contains R then any other reflexive relation will contain this and all the three conditions 
are satisfied. So, if R is reflexive the reflexive closure will be R itself. Similarly, if R is 
symmetric the smallest symmetric relation containing R will be R itself so that is why 
these results follow, it is not every difficult to see these results. 
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Let R be a binary relation on a set A then the reflexive closure of R is R union E. This we 
already seen, the reflexive closure of less than is less than R is equal to R and so on. So, 
we want to show that R is a binary relation on A then the reflexive closure of R is R 
union E that is as graph we are adding self loops wherever we want. How do you prove 
that? Let the reflexive closure of R be R dash. Then it has to satisfy the three conditions, 
R dash should contain R dash is reflexive, R dash contains R and if R double dash is any 
other reflexive relation containing R then R double dash contains R dash this is the 
definition. Now you can see that when you take R union E it is reflexive because it 
contains E it is reflexive it contains R that is also satisfied. Now we have to only consider 
only the third portion; if R double dash is any other reflexive relation containing R then R 
double dash should contain this R union E. This can be easily proved suppose x, y 
belongs to R union E there are two possibilities; one is x, y belongs to R or x, y belongs 
to E and in this case it will actually be of the form x, x E means of the form x, x. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time 42:37) 
 

 
 
Now, if x, y belongs to R x, y will belong to R double dash the reason is R double dash 
contains R by the way we have taken R double dash contain R so x, y will belong to R 
double dash. Now, if it belongs to E it is of this form then also it will belong to R double 
dash the reason is R double dash is reflexive. R double dash is reflexive so it will contain 
all pairs of the form x, x. So, whenever x, y belongs to R union E it also belongs to R 
double dash that means R double dash contains R union E so it satisfies all the three 
conditions mentioned in the definition of the reflexive closure. And so we find that the 
reflexive closure of a binary relation R is given by R union E where E is the equality 
relation R is the given relation and E is the equality relation. Next, we shall go to 
symmetric closure.  
 
Again let us consider some examples. As I mentioned earlier in a symmetric closure if 
you represent it as a graph if you have an arc in one direction you must also add the arc in 
the other direction. So let us consider the set of natural numbers or non negative integers 
0, 1, 2, 3, 4 etc. What is the symmetric closure of the less than relation? A is less than B 
then you must also add the arc the other way round so the symmetric closure of less than 
relation will be the not equal to relation. And the symmetric closure of equal to relation is 
equal to and the symmetric closure of less than or equal to relation is the universal 
relation because equal to means no arcs between any two nodes you will not add anymore 
arcs. In the less than or equal to again if there are self loops at every node and also when 
there is an arc like this you will also add the other way around so that will give you the 
universal relation on the set of natural numbers. 
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Now, how we go about the finding the symmetric closure of a binary relation R. for that 
we have to know that what is meant by the converse of a relation.  
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Let R be a binary relation from A to B. the converse of the relation R denoted by R, c is 
the binary relation from B to A defined as follows: R, c is y, c while R, c consists of 
ordered pairs y, x such that x, y belongs to R. So, suppose I have a relation R consists of 
three pairs x1, y2 x2, y2 x3, y3 R, c will consist of y1, x1 y2, x2 and y3, x3 all the order 
reversed.  
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If D is the diagraph of the relation R the diagraph of R, c can be considered like this; it 
can be constructed from D by reversing the direction of all the arcs of D. So if you 
represent a binary relation here we have not even taken the same thing, a binary relation 
from A to B there are some elements here so the binary relation can be represented like 
this, the converse if R is this what can you say about R, c? The arc should be reversed the 
direction should be reversed so it will be on B cross A.  
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Let R be a binary relation so R, c is the set of ordered pairs y, x where x, y belongs to R. 
And if D is a diagraph the R, c can be constructed by D by reversing the direction of all 
the arcs of D.  
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We have some results about converse, R R1 R2 are all binary relations from A to B then 
each of the following holds: R power c is equal to R that is if you take the converse you 
have to reverse the direction of the arcs. Then to take the converse again you have to 
again reverse the arcs so you get back the original relation. R1 union R2 power c the 
converse of R1 union R2 is the converse of R1 union converse of R2. And similarly these 
etc, we shall prove the B part it says R1 union R2 power c is equal to R1 power c union 
R2 power c what does that mean? if x, y belongs to R1 union R2 power c this is 
equivalent to saying y, x belongs to R1 union R2 and that is equivalent to saying y, x 
belongs to R1 or y, x belongs to R2 that is equivalent to saying x, y belongs to R1 power c 
as y, x belongs to R1 and x, y belongs to R1 power c or here y, x belongs to R2 means x, 
y will belong to R2 power c and that is equivalent to saying x, y belongs to R1 power c 
union R2 power c. So we get R1 union R2 power c is equal to R1 power c union R2 power 
c the converse is denoted like this.  
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The other results can be proved in a similar manner. For intersection also you can prove 
in a similar manner. this A cross B denotes the whole Cartesian product from A to B 
taking the converse it will be the whole Cartesian product from B to A. And empty 
relation means there is no arc at all representing the graph that means you need not have 
to change the direction of the any arc so the converse of the empty relation is empty 
relation itself. And similarly, the other results follow R b, a R power c is equal to R 
power c bar and so on where R denotes the complement. And R1 minus R2 power c is R1 
power c minus R2 power c.  
 
If A is equal to B then R1 R2 power c is equal to R2 power c R1 power c. This you can see 
like this A is equal to B so R1 R2 are binary relations on A so R1 R2 is represented like 
this if there is an arc representing this is R1 this is an arc from R2 this is b to c; a, b 
belongs to R1; b, c belongs to R2. Then by our definition a, c will belong to R1 R2. Now 
b, a will belong to R1 power c; c, a will belong to R2 power c. If you reverse the 
directions c, b will belong to R2 power c; b, a belong to R1 power c.  

r c.  

 
Now what about an element belonging to R1 R2 power c? c, a belongs to R1 R2 power c 
and this you can get by combining c, b and b, a then c, b and b, a you can get. That is, if 
you combine c, b and b, a you get c, a and this belongs to R2 power c and this belongs to 
R1 power c. So you get that R1 R2 power c you can get by combining or by a applying 
the composition of operation on R2c and R1 power c that is if you have these two arcs R1 
R2 will contain this arc and when you see the converse there will be an arc from here to 
here and that you can obtain like this that is R2 first R2 power c and then R1 power c. The 
last one is if R1 is contained in R2 then R1 power c is contained in R2 powe
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It is also not very difficult to say that R is a binary relation on A then R is symmetric if 
and only if R is equal to R power c. So whenever you have the ordered pair A, B if you 
have also have the ordered paired B, A that is symmetric that means if it is symmetric 
means when you have the ordered pair A, B if it is symmetric if you have a, b you will 
also have b, a belonging to R. if a, b belongs to R  b, a also belongs to R if it is a 
symmetric relation in that case the converse of R will have b, a it is also in R so R power 
c becomes is equal to R. It is not very difficult to see this result. If R is a binary relation 
then it is symmetric then if and only if R is equal to R power c.  
 
Of course you can very easily see that if R is equal to R power c whenever it contains a, b 
it also contains b, a so it has to be symmetric. Then we have to also consider what a 
symmetric closure is and we find that if R is a relation on a set A then the symmetric 
closure is given by R union R power c. We have to look into the proof of this and we 
have to also consider what is meant by a transitive closure and some properties of the 
transitive closure. We shall consider this in the next lecture. 
 


