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So we were considering traversal algorithms for binary trees. There are three traversal 

algorithms. In the preorder one you process the root vertex first then the left subtree then 

the right subtree. And in the inorder one the left subtree is traversed first in the inorder 

manner then the root then the right subtree is traversed in the inorder manner.   

 

In the postorder traversal first the left subtree is traversed in the postorder manner then 

the right subtree is traverse in the postorder manner then the root. Now, given a preorder 

sequence of the vertices visited and the inorder sequence you can construct the tree in a 

unique manner. Similarly, given the inorder sequence and the postorder sequence you can 

construct the tree in a unique manner. But given preorder and postorder you cannot 

construct the tree in a unique manner.  
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So let us see how to construct the tree given a preorder and inorder sequence. Let us take 

this example, you have vertices a, b, c, d, e, f, g, h, i, j, k, i, j, k, l. Now, let us see how to 

construct the tree from this preorder and inorder sequences. The preorder sequence is 

given like that and the inorder sequence is given like that. Now what do you understand 

by this? 

In the preorder sequence the root is visited first so a is the root of the tree so this is the 

root. So these vertices will constitute the left subtree and these nodes will constitute the 

right subtree. And here you can see that this is the different order but that constitutes the 



left subtree. Now, if you look at this way this left subtree is again traversed in the 

preorder manner  so b will be the root, so b is the root here. So if you look here b is the 

root, so d is the left subtree of that and h, k, e occur on the right subtree. So d will be here 

and h, k, e should occur on the right subtree.   

 

How do you arrange these vertices e, h, k? They are in the different order here in the 

preorder. Now again the root will come first in the preorder so e will be the root and h, k 

should occur on the left subtree or the right subtree. So here e is the root and h, k occur 

on the left subtree so both h and k should come in this side.  

 

Now, again h should be the root in the preorder so h will come like this and then because 

k occurs on the right side k will occur like this. This is the way the left subtree is belt. 

Now look at the right subtree these are the 6 vertices occurring in the right subtree. Again 

in the preorder manner you can see that the first node is c so c is the root, here c is the 

root so f, i should occur on the left subtree of c and g, l, j should occur on the right 

subtree. Again, if you look at this one f comes first so f should be the root of the left 

subtree and here you see that i occurs on the right next to f so it should occur on the right 

subtree so it will be like this.   

 

Now g, l, j should occur on the right subtree of this and because g occurs first it will be 

the root so g will be the root of this tree and l, j will occur on the left or the right subtree. 

But here again you find that both l and j occur on the right side next to g. So they will 

occur on the right subtree and j occurs first here so j will be the root and l occurs to the 

left of j so l will occur like this. So this tree can be built in a unique manner from the 

preorder and the inorder sequence of the vertices visited.   

 

Now we have also seen that these trees binary trees can be use to represent arithmetic 

expressions and for evaluating arithmetic expressions. 
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And if you traverse such a tree in a preorder or in a postorder manner what you get. So let 

us take this example, this is a binary tree where the internal nodes are operators and the 

leaf nodes are some operands. If you traverse this tree in a postorder manner what is the 

sequence of vertices visited and how do you write that sequence? 

You see that in a postorder left subtree, right subtree, root that is the order in which you 

go so you will see that the order in which you traverse will be given by a b c plus star d e 

minus plus a then the right subtree is b c plus then star and then this right subtree is d e 

minus then the whole thing is plus. This is called a post fix notation for arithmetic 

expressions.   

 

Now the expression will be evaluated like this; you will have a stack in which operands 

will be transferred one by one. So a will be transferred, b then c then when plus an 

operator is transformed it operates, it is a binary operator it operates on these two and the 

result of this b plus c is kept here. Then the next operator is transferred and it operates on 

these two so you get a in the stack you get a star b plus c. Then you transfer d to the stack 

transfer e then the operator comes minus it operates on these two and you get a star b plus 

c then you get d minus e this operator operated on this. When this plus is transferred it 

will operate on this and you will get the expression a plus a star b plus c this is one plus d 

minus e. This is what you get. This is the arithmetic expression and this is represented by 

this.  Similarly, you can also have the preorder way of representing that. So in the 

preorder way if you represent visit the nodes it will be plus star a plus b c minus d e this 

is the order in which the nodes will be visited and this is called the prefix notation. These 

are the ways in which an arithmetic expression is represented internally in the computer 

by the compiler as an intermediate code then the machine code will be generated.   

 

We have seen some facts about search trees and trees as data structures. In undirected 

graph also you can talk about trees.  
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So now let us take some undirected graph and what do you mean by a tree. Take 

undirected graphs, a tree has no cycle, something like this is called a tree in an undirected 

graph. Look at this, there is no cycle in this graph such a thing is called a tree. A tree with 

n nodes has n minus 1 edges, this also you can very easily see. There are several 

properties about trees which can be considered from any book on graph theory. We will 

not go into the details of that. But for any graph also not necessarily a tree but any graph 

you can define what is known as a spanning tree. Let us see what a spanning tree is. A 

tree T is said to be a spanning tree of a connected graph if T is a sub graph of G and T 

contains all vertices of G.  
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These spanning trees are very very important in several practical applications like 

computer networks and so on.  You would basically require as spanning tree and 

sometimes it is also very necessary to calculate the minimal spanning tree. In a moment 

let us see what is meant by that. Look at this graph, it is a graph and a subgraph of that 

some of the edges are labeled by b and some of the edges are labeled by cs. Look at this, 

how many vertices are there? There are seven vertices; 1 2 3 4 5 6 7. Look at the edges b1 

b2 b3 b4 b5 b6. These six edges b1 b2 b3 b4 b5 b6 form a subgraph of this, a connected 

subgraph of this and it has a structure of a tree, there is no cycle in that.   

 

Obviously you can see that the graph has seven vertices and there are six b edges they are 

called branch edges. The subgraph consisting of the b edges b1 b2 b3 b4 b5 b6 is called a 

spanning tree of this graph because it is a tree, it is a subgraph of g and also it contains all 

the vertices of g. The other vertices are c1, c2 etc, there are eight more edges.  
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Now you can see that when you have a spanning tree consisting of the branches just add 

one c edge then you get b1 b3 b5 c1 that forms a cycle. Even if you add one more edge 

from the graph to the spanning tree you will get a cycle or a circuit and that is called a 

fundamental cycle, fundamental circuit or cycle. This is obtained by just adding one edge 

of the graph which is not a branch to the spanning tree. The spanning tree of a graph is 

not unique you can have several spanning trees for a graph.  

 

For example, take this graph it has got four vertices, this can form a spanning tree, this 

can form a spanning tree and so on. There can be several spanning trees. Now sometimes 

it is of use and very interesting to find out what is a minimal spanning tree. 

 

For example, if the edges have weight say 1, 2, 3, 5, 7 and something like that there are 

five edges in the graph and the spanning tree will have only three edges. If you choose 

this spanning tree the weight of the tree will be 1, 7, 5 which will add up to 13. If you 

choose this tree it is 1, 2 and 3 the weight will add up to 6. So this is the minimal 

spanning tree in this example. You are interested in finding the minimal spanning tree 

because if you want to have telephone connection and all that sometimes tariff is 

calculated based on the minimal spanning tree. There are several important and 

interesting algorithms for calculating the minimal spanning tree. One is Prim ‘s algorithm 

and another is Kruskal’s algorithm. They are well known algorithms for finding so much 

about spanning trees.   
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Next we shall see what are meant by cut-sets and cut vertices. In a connected graph G a 

cut-set is a set of edges whose removal from G leaves G disconnected provided removal 

of no proper subset of these edges disconnects G. This is the definition of a cut-set. I will 

read it again, in a connected graph G, a cut-set is a set of edges whose removal from G 

leaves G disconnected, provided removal of no proper subset of these edges disconnects 

G.   
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Now look at this graph, in this graph if you remove this edge, this edge, this edge and this 

edge these four edges if you remove you get two components which are not connected.   
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So let us consider this, I will draw it again on the board. Now these four edges if you 

remove mark the nodes, if you remove these four edges you get two disconnected 

components. But even if you leave one of them it will be connected. If you have even one 

edge present here it will be connected even if this is present it will be connected, if this is 

present it will be connected and if this is present it will be connected. So you have to 

remove all the four edges to get to disconnected components. If you remove any sub set 

of this any three or two or one of this still the graph will remain connected. So such a set 

is called a cut-set. 
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Now look at this graph again. If you remove these three edges then also the graph 

becomes disconnected like this but now the cut-set consists of these three edges. So you 

may have several cut-sets for a graph some of them have two edges, three edges like this. 

The cut-set having the minimal number of edges is the minimal cut-set and that is called 

the edge connectivity of the graph. Each cut-set of a connected graph G consists of a 

certain number of edges. The number of edges in the smallest cut-set that is the cut-set 

with fewest numbers of edges is defined as the edge connectivity of G. So the edge 

connectivity is defined as the size of the smallest cut-set.  
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Look at this graph, in this graph if you remove these three edges you may have, this is a 

cut-set, remove these three edges you may get disconnected components. If you remove 

these four edges you may get two components and so on. But if you remove this vertex 

along with the edges connected to that you will get two disconnected components. So by 

removing one vertex you are able to get two disconnected components and that is called 

vertex connectivity. Sometimes by removing one vertex you may not be able to get 

disconnected components you may have to have several vertices removed to get 

disconnected components.  
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For example, if you take some thing like this, say if you remove any one vertex along 

with edges associated with that you will get only a connected component. But if you 

remove two vertices if you remove this vertex and this vertex you will get these two 

vertices they are disconnected components. So here the vertex connectivity is defined to 

be two. In this graph if you remove this vertex then it becomes disconnected, one 

connected component here, one connected component here and the disconnectivity is 

obtained by removing this vertex. So this graph has vertex connectivity one.  
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So let us define vertex connectivity in a proper manner. If you look at the graph we find 

that although removal of no single edge disconnects the graph. Here if you remove any 

one single edge the graph will not be disconnected. If you remove these three edges it 

may become disconnected. Here if you remove these four edges it may become 

disconnected and so on. But removing just one edge will not leave the graph 

disconnected. But if you remove this vertex it will become disconnected.   

 

We find that although removal of no single edge disconnects the graph the removal of 

single vertex v does, it disconnects the graph. We define another analogous term called 

vertex connectivity. The vertex connectivity of a connected graph G is defined as the 

minimum number of vertices whose removal from G leaves the remaining graph 

disconnected. So vertex connectivity is defined as the minimum number of vertices 

whose removal from G leaves the graph disconnected. If the vertex connectivity is equal 

to 1 it is called a separable graph, the graph is called a separable graph. The graph which 

we have seen earlier is a separable graph.   

 

We have seen that this separable graph has 8 nodes and how many edges are there?  It is 

3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, so 16 edges are there. Now this also has similar 

structure eight nodes but you see that the vertex connectivity here is 4. If you remove any 

three of them still the graph will be connected.   

 

Similarly, edge connectivity also here is 4. If you want to have connection between eight 

nodes which represents some stations or something like that you would rather like to have 

a structure like this than this because if some fault occurs here in this network if this node 

fails there will not be any connection from this portion to this portion. So you would like 

to ensure as much of connectivity as possible. If you take such a structure then even if 

one node fails or even if two nodes fail there will be some connection between the other 



nodes so you will not have any problems. So this sort of an idea, definition of vertex 

connectivity plays an important part in practical applications.  
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Now we have also seen about trees in undirective graph. Let us see one or two more 

definitions about trees. The eccentricity e (v) of a vertex v in a graph g is the distance 

from v to the vertex farthest from v in g. So, if u take a graph like this take a vertex the 

eccentricity of the vertex is the distance or length of the path simple path from this node 

to the node which is farthest away from that. And the vertex with minimum eccentricity 

in a graph is called the center of the graph g. Now, in the particular case of trees let us see 

what the eccentricities are and what are the sentences.  

 

Look at this graph, this is a tree you know that this is a tree it has got 6 vertices. The 

distance between this node a and this node b is 2, length is 2. The distance between this 

node and this node is 3, the distance between this node and this node is 3, so the distance 

of the farthest node is 3 so the eccentricity of this vertex is 3.  

 

Similarly, you can see that the eccentricity of this vertex is 3 while the eccentricity of this 

vertex is 2 because these two nodes are at distance 1 from this and this node is at distance 

1 and these two nodes are at distance 2. So the eccentricity of this vertex is 2, the 

eccentricity of this vertex is also 2 in a similar manner and the eccentricity of these three 

vertices are 3 because the distance of the farthest point is 3. And similarly if you look at 

this graph the distance for this node is this, this or this and the length of the path or the 

distance is 4 so the eccentricity is 4 here, the eccentricity is 4 here in a similar manner, 

the eccentricities are 4 in these cases. The eccentricity will be 3 here because there is a 

node which is at distance 3 from here the eccentricity of this node is 2. The center of a 

graph is defined as the vertex with minimum eccentricity.   
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So if you look at this, this vertex has the minimum eccentricity therefore it is the center. 

Here these two vertices have minimum eccentricity so they are centers. And you can very 

easily prove that every tree has one or two centers. How can you do that?  

You can just see that in this case if you remove the pendent vertices, pendent vertices will 

definitely have more eccentricity, you end of with an edge and both these vertices have 

eccentricity 2 and they form the centers.  

 

Now do the same thing here, remove the pendent vertices then you end up with a graph  

like this, these two are pendent vertices now remove them also then you end up with the 

single vertex and you end up with the single vertex that becomes the center. So either you 

have two centers or one center in a graph in a tree and this can be easily proved. So these 

are some facts about trees, cut-sets and cut vertices and so on. Now let us see what is 

mean by a planar graph. A planar graph is defined like this: A graph g is said to be planar 

if there exists some geometric representation of g which can be drawn on a plane such 

that no two of its edges intersect.  
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Take for example this graph. Consider this graph with four vertices, the edges intersect 

like this. But the same graph you can draw like this.  
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You can also draw in a different way. Instead of drawing this edge this way you can draw 

it this way in which case no two edges intersect. And if there is someway of representing 

the edges such that no two edges intersect, if there is someway of drawing the graph on a 

plane such that no two edges intersect it is called as a planar graph, this is the planar 

graph. Is every graph planar? Obviously no. There are examples of graphs which are not 

planar.  
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There are two graphs known as Kuratowski’s two graphs which are known to be 

nonplanar, Kuratowski’s two graphs. What are those graphs?  

Look at this graph, this is a complete graph with 5 vertices, this is denoted as k5. This is 

not a planar graph. Try to draw it in a planar manner, you have 5 vertices so you can 

connect like this, there are 10 edges. You can have one like this, one like this, no 

problem, 7 edges you can draw like this. The edge between this you can draw in this way, 

the edge between this you can draw like this, what is the other edge? The other edge is 

the edge between this and this. 

 

I you try to draw it this way you have to cross this, if you try to draw it this way you have 

to cross this, if you try to cross this either this way also you have to cross this edge or you 

have to cross this edge either way you have to cross one edge. So you can draw 9 edges 

without crossing but the 10th edge you cannot draw without crossing. This is an example 

of a graph which is not planar.  
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Then the other graph which we consider is Kuratowski’s second graph (check 34) which 

is known as k3,3 that is a utilities problem, we had three houses and three utilities gas, 

electricity and water and they have to be connected and so on. So there are three houses 

like this; a b c and they have to be connected to gas, electricity and water and how do you 

do the connection without the lines crossing over.  

 

Here again how many edges are there? There are 6 vertices and 9 edges from each one 

you have 3 so there are 9 edges and 6 vertices but you cannot draw it without cross over. 

Suppose you draw like this you can draw this, you can draw this, five of them you can 

draw like this then a to b you have drawn, a to c you have drawn, e to c you have drawn e 

to a you can draw like this 6, 7 and 8 you can draw like this. But what is the one which is 

remaining? e to c you have drawn, e to a you have drawn. If you want to draw from e to b 

if you draw like this it will cross this edge, if you draw like this it will cross this edge. 

Anyway you cannot connect e to b without crossing one edge. So this particular graph 

you cannot draw on the plane without cross over there will be at least one cross over 

there and this is known as k3,3 and these two are examples of, generally it is drawn in this 

manner. It is known as a Bipartite graph. 
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The set of vertices are divided into two portions and all edges are such that they have one 

end in one portion and another end in one portion. Such a graph known as a Bipartite 

graph. This is an example of Bipartite graph. It is a complete Bipartite graph on 3 plus 3 

vertices that is why it is denoted as k3,3.  
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Now we have seen this these two graphs are not planar. How can you find out whether 

the graph is planar or not? And also in planar graphs you talk about regions. Take this 

example, this is the planar graph you can see that it is drawn on the plane without any 

intersection, these are called regions, this is one region, this is one region, this is one 



region, this is one region and so on. So if you draw a graph on the plane without cross 

over there is some connection between the number of edges, the number of regions and 

the number of vertices, what is this.  
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Let us see what is the relation? Now, what is the condition that a graph is planar? 

Now you see if you have a graph and if you have a self loop wherever you want have a 

self loop you can draw it in a small vaner and so without ant problem that will not 

constitute any cross over and so on. Similarly, if you have parallel edges, between these 

two if you have parallel edges you can draw them as close as you want without any cross 

over and other cross over will not be affected by this. So without loss of generality you 

can remove loops and parallel edges.  

 

Also, if you have a graph like this, some graph, if you have a vertex with degree 2 instead 

of having this if you draw a single edge that is not going to affect the cross over in 

anyway. So you can remove such vertices and merge the two edges. So what you can do 

is remove vertices of degree 2. That is, if you have vertex of degree 2 like this and merge 

the two edges. If you have a vertex v of degree 3 you can remove this and then merge the 

thing and this will be replaced by an edge like this. This will not affect the planarity or 

non planarity of a graph. Now, if you do that what happens? If G is a graph and G dash is 

obtained from G by these operations then G dash is said to be homeomorphic to G.  
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Now, if a graph does not contain k5 or k3,3 as a subgraph or any graph homeomorphic to it 

then it is planar. It should not contain k5 or k3,3 as subgraph. If G does not contain k5 or 

k3,3 as subgraph or any graph homeomorphic to it then it will be planar. Both these are 

necessary and sufficient conditions you will not go into the details of it let us take the 

result as it is. Like this you can find out whether a graph is planar or not.   

 

Now as I told if you have a planar graph like this, this is a graph with 5 edges and 4 nodes 

how many regions it has got? It has got region 1, region 2, region 3 so 3 regions. And 

what is the connection between them?  

The connection is brought out what is known as Euler’s formula, e minus f is equal to e 

minus n plus 2. So f denotes the number of regions, e is the number of edges and n is the 

number of nodes. Look at this, how many regions are you having? You are having 3 

regions. What is e minus n? e is 5 minus n plus 2 is 3. So you are having 3 regions here, it 

satisfies. Euler’s formula like this brings out the relationship. Suppose I have one more 

edge between this and like this, how many regions I have now? I have 4. Obviously there 

are 6 edges now, so 6 minus 4 plus 2 is 4, 4 regions I have, this is known as Euler’s 

formula.  
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And you might have heard about the famous four color problem, what is that four color 

problem?   

A planar graph is sometimes also called a map planar graph. Look at this, and each region 

I can color with different colors. For example, you can use red here, green here, blue 

here, yellow here, you can color this with blue, you can color this with red and you can 

color this with green and so on. How can I color a map which is a planar graph with 

minimum number of colors? 

People have seen that you require at least four colors.   

 

Take this simple example, this is a planar graph, to color this you require at least four 

colors you cannot do with less than three colors. Suppose I use any other color instead of 

yellow if I use red, green or blue again two of the adjacent regions will be colored with 

the same color. So I want to color this so that no two adjacent regions get the same color. 

But I want to use the minimum number of colors. Long back it has been shown that four 

colors are necessary you cannot do with three colors and five colors are sufficient that 

was also shown quiet early. But whenever people tried they were able to color the graph 

at least up to forty without any problem they were able to color with four colors. So it 

was conjectured that four colors were enough but it was not proved, it remained as a 

conjecture for a long time and it remained as a four color conjecture for a long time. But 

a few years back it has been proved, this conjecture had been proved to be correct, that is 

four colors are sufficient to color a planar graph such that no two adjacent regions get the 

same color. This is the famous four color problem.  
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So we have seen that a necessary and sufficient condition for a graph G to be planar is 

that G does not contain either of Kuratowski’s two graphs k5 or k3,3 or any graph 

homeomorphic to it to either of them. Now, we have also seen that a planar graph can be 

colored with four colors so that adjacent regions do not get the same color. 
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We have also seen Euler’s formula connecting the number of edges, number of nodes and 

number of regions on the number of faces which is denoted by f by this formula. Let us 

derive this formula, how do you get this formula?   



Take any planar graph, suppose the number of triangles is given by 3, the number of 

quadrilaterals is given by k4, the number of pentagon is given by k5 and so on you may 

have a graph like this and there may be some triangles the number of such triangles is 

given by 3. Now count the edges, the external will be a polygon again internally you may 

get some quadrilaterals, pentagons, etc. If k, r denotes the number of polygons with r 

sides count the edges the number of edges in the triangles will be 3 k3, the number of 

edges in the quadrilateral be 4 k4 and so on, if you count that will sum up to this. But each 

edge will be adjacent to two regions.   

 

So when you count the edges covering a polygon each edge will be counted twice so you 

get 2e so this sums up to 2e. And the number of faces or regions is given by k3 and k4 

plus etc, k, r is equal to f, one of them will be in external region. Now, if you take each 

node the total angle around that is 2pi that we know there are n nodes so if you count all 

the angles it sums up to 2pi m. But how do you get that?  

There are some polygons, if a polygon is p sided the sum of internal angles adds up to pi 

cross p minus 2 sum of the internal angles. Sum of the external angles adds up to pi cross 

p plus 2. Now out of these triangles, quadrilaterals etc one will be an external polygon 

one you have to count as external and the rest of them as internal.  

 

So if you count the number of angles depending upon these polygons, the number of 

internal angles of the triangles will sum into pi cross 3 minus 2 cross k3 and the sum of 

the internal angles of the quadrilaterals will sum up to pi cross 4 minus 2 cross k4 and so 

on and the sum of the internal angles of r sided polygon is given by this.  

 

But you must remember that one of this polygon covers the outside region so for one 

polygon out of this you must use pi cross p plus 2 rather than pi cross p minus 2. So we 

add we do not know which is the outside polygon so whatever it is for one of them you 

have to add 4pi. So if you count like this the angles around each node will sum up to this 

quantity. And you know that, let us simplify this expression, this is equal to 2pi m.  
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This you can write as pi cross 3 k3 plus 4 k4 plus etc plus r k, r twice k3 plus k4 two times 

minus pi cross two times k3 plus k4 plus k, r plus 4pi and this quantity by this we know 

that it is 2e minus pi cross 2 and this quantity by this factor we know is f plus 4pi and all 

this is the sum of the angles around each node. There are n nodes, around each node the 

sum of the angle is 2pi so this will add up to 2pi n. Now, if you divide by 2pi this will 

come to e minus f plus 2 is equal to n. You will get e minus f plus 2 is equal to n or e 

minus n plus 2 is equal to f which is known as Euler’s formula. And by this we get a 

result about regular polyhedron.  
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A regular graph is one in which each node has the same degree. For example, if you take 

this, this is a regular graph because each node has degree 2. A regular polyhedron is one 

which has got all the faces of the polyhedron or regular polygons. For example, if you 

take a cube each face is a square it is the regular polyhedra. If you take a tetrahedron 

consisting of equilateral triangle then that is the regular polyhedron. And by this result 

about Euler’s formula you can show that there can be only five regular polyhedra. 

 

The Greeks in ancient Times realized that there can be only five regular polyhedra and 

that result is proved by Euler by making use of the Euler’s formula. The five regular 

polyhedra are these; tetrahedron, cube, tetrahedron consists of four triangles, Cube 

consists of six squares, Octahedron consists of eight triangles, Icosahedrons consist of 

twenty triangles each face is a triangle, dodecahedron each face is a pentagon. And this 

has been derived from Euler’s formula.  
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So these are some results about a graph theory. The graph theory itself is a very wide 

field. What we have seen is only a glimpse of what is graph theory. This has lot of 

practical applications in electrical switch circuits and computer networks, flow analysis 

and things like that. So, next we can consider some more properties about relations. 


