
Database Management System 
Dr. S. Srinath  

Department of Computer Science & Engineering 
Indian Institute of Technology, Madras 

Lecture No. # 9 
 

ER Model to Relational 
Model Mapping 

 
Entity relationship model are what is called as the ER model and the second was the 
relational data model. We also saw a typical database design process and placed these 
models into appropriate positions in the process. The entity relationship model or the ER 
model is essentially meant for human comprehension. It basically is meant for creating a 
conceptual database or conceptual schema or what is termed as a logical schema of the 
database system and the relational data model is used for the physical schema or 
something that is implemented in the DBMS. And both the DBMS independent models 
that is no matter which companies database that you are going to use, you can still use the 
same ER model for representing your data and even the same relational model for 
representing the schema that goes on to your DBMS.  
 
Now in this session we are going to address one important issue. Now we are going to 
ask the question, are these two different data models ER and relational model completely 
independent of each other or are they the same or is there some way I can map between 
the ER schema and the relational schema without having to break my head too much 
essentially.  
 
That means to say or to take it to its logical extreme, can I design some tools or can I 
design some kinds of software that takes an ER diagram of a given system and generates 
appropriate relational schemata for the system. And we have also seen in the session on 
functional dependencies, we have seen how we can optimize a given relational schema up 
to a certain extent using some kinds of automated techniques. We have seen how to take 
a relation to BCNF or third normal form or the forth normal form and so on.  
 
So suppose we want to build a tool to automate this process. We need to be able to first 
map between an ER data database schema and a relational schema and then use 
techniques from functional dependencies to optimize this relational schema so that we 
can build a database application around it. So what we are going to study today form the 
underpinnings of what are called as lifecycle tools or database life cycle tools. There are 
several different lifecycle tools which provide support for the entire life cycle of a 
database systems starting from the conceptualization of the problem to the actual 
implementation of the application and maintenance of the database and so on.  
 
So before we begin, let us briefly summarize what we have learned about ER models and 
relational models. The ER models as you already know is used for conceptual modeling 
of the database schema, conceptual modeling or to create the logical database schema. 
This is meant for human comprehension this is essentially used to show end users what 



you have understood about their problem domain. This is a high level database design 
and there are no implementation details about, that are included as part of the ER model. 
  
(Refer Slide Time: 00:04:11) 
 

 
 
And of course the ER model is a DBMS independent and it is made of building blocks 
like entities, relationships and attributes which can be attributed to both entities and 
relationships.  
 
(Refer Slide Time: 00:04:56) 
 

 
 
In contrast a relational data model is the data model that is most popularly used for 
physical schema design. A physical schema is the schema that is actually implemented on 



the computer, therefore the relational data model is meant for or optimized towards 
machine consumption that is how do we efficiently store data in my database, how do I 
efficiently search for a given data element, how do I efficiently update a given data 
element so that it does not create anomalies, how do I efficiently delete data elements 
again without creating any anomalies and so on.  
 
And of course the relational data model is also DBMS independent that is no matter what 
kind of database that you use, you can still use the same data model as far as the database 
that you are using is a relational database. You can use the same data model to represent 
your data on the DBMS. Of course reality is quiet different from the concept of DBMS 
independent and some DBMS systems may include more features than traditionally what 
is supported by the relational model.  
 
The relational model also supports some kinds of automated optimization techniques 
which we have seen in the session on functional dependencies where you can optimize a 
given relational schema, you can reason whether a given relational schema is optimal or 
not whether its going to create a redundant data in its DBMS or whether its going to 
create some kind of anomalies during updation and deletion or so on. And how we can 
systematically change the database schema without changing the correctness but 
increasing the overall efficiency in terms of retrieval and updates.  
 
What are the building blocks of the relational model? We have relations which comprises 
of several different attributes and the notion of keys forms a very crucial role or place a 
very crucial role in the relational database model.  
 
(Refer Slide Time: 00:07:09) 
 

 
 
Let us come back to the ER model and look at some of the notations which will require if 
I have to study translation into ER models. The entities are represented using rectangles 
and a strong entity type that is an entity type which has its own key attribute and which 



represents a physical or which represents some kind of logical entity of the real life is 
represented by a rectangle with solid line surrounded. For example the slide shows this 
entity type called employee which depicts all objects of type employee which are present 
in the current system.  
 
On the other hand we also have what are called as weak entities. Weak entities are those 
which do not have an existence of their own or without being associated with a strong 
entity type. The slide shows the example of an insurance record. An insurance record 
doesn’t mean anything unless it is associated with some person. In a company for 
example an employee, therefore when we talk about insurance record, we have to say 
whose insurance record and so on. So that is the general idea, more specifically the 
insurance record entity type does not have any key attribute, it has to be associated with a 
strong entity type called employee which in turn has the key attribute. Therefore such 
weak entity types are depicted using dashed lines or dotted lines for the rectangle.  
 
We then have the relationship type for example a relationship called handles, so 
employee handles project or something like that which is represented by a diamond and 
or normal relation type is represented by a diamond using solid lines whereas what are 
called as identifying relationship types. That is the relationship types that identify a weak 
entity or provide an identity for weak entities by associating them with strong entities 
they are shown with double lines in the diamond. 
 
Entities and attributes are associated or entities and relationships are associated with 
attributes which are some values in a given domain. Attributes are depicted using ovals 
and a normal attribute or a simple attribute is depicted by a oval with a solid line and key 
attributes, in this example an attribute called pan or pan number which uniquely identifies 
each income tax payer is shown as a key attribute and it is shown underlined saying that 
this attribute is a key attribute for this entity type. 
  
(Refer Slide Time: 00:09:22) 
 

 



And then there are multi-valued attributes which can have several values for the same 
attributes. We took an example of the color of a peacock. Now the color of a peacock is 
actually given by several different colors and all of which in combination, form the color 
of the bird. Such kinds of attributes are depicted using double lines as shown in the slide 
here and then there are derived attributes that is attributes who’s values can be derived 
from other attributes and these are shown using dotted lines.  
 
We took an example of the age of an employee that is if you know the date of birth of an 
employee and the current date, we can derive the age of an employee. Let us also look at 
some definitions from the relational model. The relational model is based around the 
notion of a mathematical relation. Now a mathematical relation is said to comprise of 
atomic values or atomic data values. And what is atomic data value? A data value is 
called atomic if it cannot be subdivided into smaller values, for example the age of a 
person.  
 
Similarly each data value is said to reside in a domain. In the ER model, a domain is also 
called a value set which is a term that is generally used by several people and in the 
relational model usually the term domain is used which is going to specify the range of 
values that a particular attribute can take. 
 
(Refer Slide Time: 00:10:44) 
 

 
 
Similarly a relation schema or a relational schema is denoted by a schema name that is in 
this example shown by the name R and a set of attributes in this example shown by A1 
A2 until An and each attribute has a specific value that lies within the domain specified as 
domain of Ai. We have also defined what is known as the degree of a particular 
relationship.  
 
 
 



(Refer Slide Time: 00:12:07) 
 

 
 
The degree of the relationship is simply the number of attributes in its relation schema. If 
you remember the same definition of the degree of a relationship also apply to the ER 
model. That is a relationship diamond can be a binary relationship or a ternary 
relationship, unary relationship or a N-ary relationship that is it can be associated with 1 2 
3 or any number of entity types. And the slide shows that the relation is actually a subset 
of the Cartesian product of all of the domains that form the attributes.  
 
In the relational model, the notion of keys play a very crucial role, especially we saw in 
the notion, in the process of decomposing relational schema in order to make them 
normalized or conform into let us say BCNF or third normal form or forth normal form 
and so on. So let us revisit the notion of keys in a little more detail and keys are again 
very important when we translate from an ER model to a relational model. We have to be 
aware which attributes are the key and which attributes are the foreign key and so on.  
 
So a key constraint in the relational model essentially defines the notion of a superkey 
which is a set of attributes of a relation which can uniquely identify each tuple in the 
relation that is each instance of the relation. And a key or a minimal superkey is 
something which is minimal in a sense that if you remove any element of the minimal 
superkey, it seizes to be a superkey anymore. 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 00:12:44) 
 

 
 
And there is also the well known entity integrity constraint in the relational model which 
says that the primary key of a given tuple may never be null. The primary key is the 
minimal superkey that is going to be used to uniquely identify a given tuple in the 
relation. And we also saw the notion of referential integrity which is again an important 
issue in the relational data model. And the referential integrity constraint says that if a 
tuple of one relation refers to another tuple of another relation, it should refer to an 
existing tuple that means foreign keys that is keys of, primary keys of another relation 
embedded into the tuple of yet another relation should refer to tuples that already exist in 
the first relation.  
 
So the foreign key constraints are shown in the slide here. That is first of all the attribute 
of the foreign key or the domain of the foreign key should be the same as the domain of 
the primary key of the other relation and they have to refer to existing tuples in the other 
relation. And we also saw that relations can be or popularly viewed as tables and which is 
what is a notion used in SQL that is a relation of the form student with three attributes 
roll number, name and lab can be specified in the form of a table with the name student 
and three kinds of columns called roll number, name and lab. 
  
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 00:14:54) 
 

 
 

(Refer Slide Time: 00:15:13) 
 

 
 
So let us not come to the issue of mapping between given ER model and a relational 
database model. Now I had said in the beginning of this session why such a mapping is 
important. 
 
 
 
 
 
 



(Refer Slide Time: 00:15:39) 
 

 
 
There are several different commercial tools that are available which are called as 
lifecycle tools of a DBMS design. A lifecycle tool provides support in several or in most 
of the phases of a typical database lifecycle. That means the tool should be able to or 
using the tool you should be able to create a logical schema, talk to your end user saying 
this is what I have understood by your requirements of your systems, these are the 
different data elements, these are the different functionality requirements that form ER 
system and so on.  
 
And then using the same tool, you should be able to create physical schemata from the 
logical schema by automatically translating them to whatever extent possible. In practice 
it’s not possible to completely automate this process that is automatically generate a 
relational model and optimize it. Sometimes some kind of human intervention is 
necessary, when the human knows some domain knowledge that cannot be captured into 
the ER model. But there are several such tools an example is the tool called ERWin from 
computer associates which provide such a support for automatically translating between 
ER and the relational model.  
 
So let us see how we can go about such a translation. The first case that we are going to 
take is the case of a simple relation or a simple entity. So the slide here shows a simple 
entity type called department and it has three different attributes department name, 
department id and manager and the department id obviously is the key or the key attribute 
of this department. 
 
 
 
 
 
  



(Refer Slide Time: 00:17:20) 
 

 
 
Now given such a relation it is fairly obvious to see, given such an entity type it is fairly 
obvious to see that it can be translated into a relation of the type department that is also 
shown in the slide here just below the figure. So this ER model can be translated into 
such a relation where the name is called department and which has three different 
attributes department id, department name and manager. And also note that the key 
attribute is retained that is the department id which is the key attribute of this entity here 
becomes the primary key of the relation that’s formed.  
 
So this is straight forward that is as long as we have a simple entity type with simple 
attributes, note that the attributes are also simple, there no multi-valued attributes or 
composite attributes and so on. And it can be translated in a straight forward fashion to 
the relational model. What happens if we have a composite attribute? Remember that a 
composite attribute is something that is made up of sub attributes. A composite attribute 
is different from a multi-valued attribute that is a multi-valued attribute is something 
which can have many values for the same attribute, the color of a bird can have several 
different colors. 
 
 
 
 
 
 
 
 
 
 
  
 



(Refer Slide Time: 00:18:41) 
 

 
 
On the other hand a composite attribute is made up of two or more other attributes each 
having its own domain. For example the slide shows a composite attribute called 
department id for the same example of a department entity type, so the department id is 
the attribute here which is a composite attribute which in turn is made up of two other 
attributes called location id and region number, so on.  
 
Now a location id could have a different domain let us say location ids are given 
alphabets like a b c d and so on and region number are given numbers 1 2 3 4 and so on. 
So both of them may have different domains and they combine to form the attribute 
called department id which in turn is also the primary key of this department. Therefore 
we are considering two different aspects here, one is how to deal with composite 
attributes and the second is what happens if the composite attribute is the key attribute of 
the entity type.  
 
So the slide here shows the example of and shows how we can translate this into 
relational model. Firstly, the name department of the entity type becomes the name of the 
relation called department and all the other simple attributes are retained. Department 
name is retained as department name, manager is retained as manager and only here for 
the composite attribute, the department id never appears here. It’s just that all the simple 
components of the composite attribute are straight away loaded into this relation.  
 
That is location id comes here and region number comes here and in fact if either of these 
two, let us say location id or region number is again a composite attribute and it has some 
more attributes. Just take all the simple components of the composite attributes. So don't 
take region number and just take whatever is the simple component of this region number 
and add it to the relation here.  
 



And all of these simple components which form the composite attribute which is the key 
becomes the primary key. That is the primary key here is a composite key made up of 
two or two or more different attributes which combinedly identify or help in identifying a 
tuple of the relation. 
 
(Refer Slide Time: 00:21:37) 
 

 
 
The next example that we are going to see is the example of how to map relationships. 
First of all, let us look at the following relationship that is shown in the slide here. What 
characteristics can we ascribe to the relationship that is shown here? Firstly, we notice 
that the relationship here is a 1:1 relationship that is one employee is associated with one 
insurance record or rather the other way around in this case. That is one insurance record 
is associated with one employee and have a look at the association as well.  
 
The association or the relationship type is an identifying relationship type that means the 
relationship type called insurance details shown in the slide here is used to identify or 
provide an identity for the insurance record by associating it with an employee and also 
the insurance record has a total participation in this relationship that is insurance record 
has no existence without this relationship.  
 
Now how do we translate such entity types? So essentially the idea here is what how do 
we translate insurance record into the relational model? So for weak entity types, the 
translation is shown here in the slide below, just create a relationship or a just create a 
relation of the same name as the entity type but since it does not have a key, because 
weak entity types do not have key attributes. So, since it does not have a key attribute, 
use the key attribute from employee with which it is associated with and take that key 
attribute and make it into the key attribute of insurance record. However note that since 
pan number here is also the primary key for employee, this has to be made as a foreign 
key of insurance record.  
 



That means whenever we are updating or altering the table, we have to use the cascade 
option. Whenever let us say the employee type is updated or deleted that means to say 
that if the employee relation is deleted from the database, this in turn delete all the 
insurance record relations from the database itself because insurance records do not have 
any existence without the employee records.  
 
So the three steps here in order to translate a weak entity type is to first identify or is to 
first to locate the identifying relationship and see which entity type is this weak entity 
type associated with and use the primary key of that entity type as the key for the weak 
entity type or the record of or the relation for the weak entity type and make it into a 
foreign key of this entity type and use cascade options whenever updations or deletions 
are performed on the strong entity type. 
  
(Refer Slide Time: 00:25:05) 
 

 
 
Let us move on with translating relationships. So how do we translate? Let us take the 
simplest form of relationship again the 1:1 relationship. We saw what happens or how do 
we translate 1:1 relationships when weak entity types are considered. Now let us consider 
an entity type which is not weak but still is involved in a total participation that this is 
shown in the figure here. The figure shows a relationship type called managedby which 
relates two different entity types that is department and manager and there are attributes, 
relevant attributes are shown for each of them.  
 
That is the department has a key attribute called department id and a manager has a key 
attribute called employee number and the relationship itself has a key attribute called 
secretary. That is a secretary is assigned for a department that is managed by a manager 
that is the secretary attribute does not have an existence without an existence of this 
relationship. That is if a department is not managed by a manager then there is no 
secretary that is associated with this.  
 



Now how do we translate this? The translation is again shown in the slide below. So first 
create an entity type or create a relationship, create a relation called manager. Let me 
repeat this again. For this relationship, create a relation in the RDBMS model called 
manager with the following attributes. Now you might be wondering why should we 
create a relation called manager, why not department. Now let us think about it a little 
further. See in this slide here that manager is a strong entity type; it is not a weak entity 
type. However it is involved in a total participation in this relationship type.  
 
What is the total participation? The total participation is that the entity type does not have 
any existence without being participating in a relationship type of this kind. So what it 
essentially means here is that a manager has no existence that is a manager would 
probably be just an employee. So a manager would have no existence unless here she is 
associated or is given a department to manage. So it is the entity type that is involved in 
the total participation is taken as the primary entity type or the base entity type, primary 
relation called manager and then employee number becomes the key here that is the key 
for manager and the department id which is the primary key for department becomes a 
foreign key in manager and whatever attributes are associated with the relationship itself 
become attributes of this relation here that is of the manager relation here.  
 
So therefore the manager relation has a primary key called employee number and a 
foreign key called department id. Note that this makes sense when we note that manager 
does not have any existence without this relationship. That is, refer to the problem of 
referential integrity in relational data model. What is the referential integrity stipulate? 
Whenever a foreign key refers to a tuple in another relation, the tuple should exist that is 
it should refer to an existing tuple in the other relation. Now if we had made department 
as the base entity or the base relation here, we cannot use employee number as a foreign 
key because the manager relation won't even exist before this relation that is managedby 
is formed.  
 
On the other hand department has an independent existence without whether or not a 
manager is associated within. Therefore that forms the rational behind why we choose the 
entity type which is involved in total participation as a base entity type for the translation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 00:29:49) 
 

 
 
So let us summarize this, the previous slide once again. So in any 1:1 binary relationship 
between types S and T, choose one of them as a base relation. In case one of them is 
involved in a total participation, choose that as the base. If neither department nor 
manager where to be involved in total participation, it doesn’t matter which you are going 
to choose as the base relation. Include the primary key of the other entity type as a 
foreign key in the base relation and include any relationship attributes as attributes of the 
base relation. 
  
(Refer Slide Time: 00:30:29) 
 

 
 



Consider the example shown in the slide here. What happens if in a 1:1 relationship both 
entity types that is both entity types that are participating in this 1:1 binary relationship 
are involved in a total participation. Take a look at the slide here. The slide shows two 
entity types, project and consultant and each project is uniquely identified by a project id 
and each consultant is uniquely identified by his or her pan number. And there is a 
relationship called, relationship type called consultation which has its own attribute called 
secretary and it’s a 1:1 relationship and both of them are involved in a total participation. 
That is a project has no existence unless it is being consulted by a consultant and a 
consultant has no existence unless he or she is associated with a project. So, neither of 
them will have independent existence without the other.  
 
In such cases we cannot identify any relation as the base relation. If we identify project as 
a base relation and try to use pan number of the consultant as the foreign key then 
referential integrity could be violated. It’s the same in the other way around as well. If we 
use consultant as the base relation and try to use project id as the foreign key, again there 
is a chance of violating the referential integrity. In such cases the simplest way is to take 
the relationship type. In this case the consultation has the base relation that is form a 
relation called consultation and use project id and pan as the primary key of consultation 
and then all of the attributes from both of them will become attributes of this relation. 
  
(Refer Slide Time: 00:32:27) 
 

 
 
So incase both entities in a 1:1 binary relationship or both in total participation then we 
merge both of the entity types into one, usually in the name of the relationship. That is in 
the name of the relationship called consultation in the previous example. Now let us see 
how do we map 1 to N relationship. What is a 1: N relationship? That is N entities of one 
of the entity types could be associated with one entity of the other entity types. That is it 
forms some kind of a tree relationship that is one entity being associated with N different 
entities of the other type.  
 



So the slide here shows such an example that is employee works in department that is 
employee is an entity type, so N different employees can work in one department. That is 
one department may have several employees but each employee is associated with only 
one department. 
  
(Refer Slide Time: 00:32:48) 
 

 
 
And of course there are keys called employee number for employee and department id for 
department. The slide also shows how we can reduce this to a relation. The simplest way 
is to take the entity type on the N side of a relationship. So in this case the employee, so 
take this as the base that is translate it into a relation called employee and the primary key 
of employee becomes the key of the employee entity type here and the department id 
becomes a foreign key here. So this is as simple as that, that is for each binary 1:N 
relationships identify the relation S that represents the entity type on the N side.  
 
Why is this? So because each entity type on the N side uniquely identifies a department 
that is uniquely identifies the entity type on the other side. Therefore we can use the 
primary key of the entity type on the other side as a foreign key in the base relation. 
Therefore use this as the base relation and create a relation including the key of the other 
entity type as the foreign key. 
 
 
 
 
 
 
 
 
 
  



(Refer Slide Time: 00:34:05) 
 

 
 

(Refer Slide Time: 00:34:36) 
 

 
 
How do we map M N relationships? Now what is an M N relationship? An M N 
relationship essentially says that M different entities of the first type can be associated 
with N different entities of the second type. Therefore there is no unique identification 
that is given an employee in the previous case, one could uniquely identify the 
department with which the employee is working in because each employee can work in at 
most one department. 
 
 
  



(Refer Slide Time: 00:34:50) 
 

 
 
On the other hand here let us say a relationship called deputedto. So an employee could 
be deputedto several departments let us say. So M different employees can be deputedto 
N different departments and of course employee has employee number as the key and 
department has department id as the key and so on and deputedto also has an attribute 
called record number which maintains a record of which employee is deputed where and 
so on. So in order to translate such relationships, note the steps that are shown in the slide 
here. There are three different relations that are formed, one is the employee relation that 
is one of the entity types of this relationship type. So the employee relation is formed 
with employee number as the primary key and all the other attributes that form the 
employee entity type.  
 
Similarly a department relation is found with department id as the primary key and all 
other relations and then a separate relation is created for the relationship type itself. So 
deputedto becomes a separate relation by itself and then uses employee number and 
department ids as foreign keys and also as the primary keys of this relation and whatever 
attributes that belong to the relation becomes part of or belong to the relationship type 
becomes part of the relations that is created here. That is the record number attribute 
becomes one of the attributes of deputedto relation.  
 
Note that we cannot move this record number that is the attribute of this relation to either 
the employee or a department because it does not uniquely identify either employee or 
department. Each employee could be associated with N different record numbers because 
they could be associated with N different departments and similarly each department 
could be associated with M different record number because M different employees could 
be working in that department. 
 
  
 



(Refer Slide Time: 00:37:43) 
 

 
 
So this slide shows, summarizes how M is to N relationships are translated. In a M:N 
binary relationship, it is not possible to collapse the relationship into one of the entity 
types because neither of the entity types uniquely identifies the other entity type. 
Therefore a separate relation is required and usually this is in the name of the relationship 
type itself.  
 
So separate relation is required in order to complete the mapping and of course the 
cascade option should be used whenever updates are performed on any of the relations 
pertaining to the entity types. That is whenever the whenever the entity type called 
employee or department is updated or deleted then these changes should be cascaded, so 
that they are reflected in the deputedto relationship as well. That is if employees 
employee entity type is deleted then of course the deputed to relationship should also be 
deleted. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 00:38:53) 
 

 
 
Now one might ask the question is it possible to use the strategy. That is use the 
relationship type as the base relation rather than any of the participating entity types. Can 
we use the strategy for mapping 1:1 and 1:N relations as well because M:N is simply a 
generalization of 1:1 and 1:N relationships. So of course it is possible that is take the 
example of employee works in department that is N different employees working in one 
department.  
 
We can still create a separate relation called works in where it can use the employee 
number and the department id as the foreign keys of this relation. However it just creates 
an extra relationship or extra relation in the database that is totally unnecessary but this is 
sometimes actually attractive to use than collapsing the relationship into one of the 
relations especially where, especially if you have to avoid null values. That is especially 
if we have to, especially if we have cases where there are some employees who do not 
work in any department. If N different, if an employee can be associated with at most one 
department it means that an employee can also be associated with zero department.  
 
So in that case the department id field of employee would be null, it does not violate 
referential integrity because remember that referential integrity says that a foreign key 
should refer to an existing tuples or else should be null. Therefore it does not violate 
referential integrity but creates a lot of null values in the database schema, in the database 
itself. So if we have to avoid null values, it is actually preferable to use the relationship 
type as the base relation when performing the translation. 
  
 
 
 
 
 



(Refer Slide Time: 00:40:57) 
 

 
 
How do we map multi-valued attributes? We have seen how to map composite attributes 
and simple attributes and keys and so on but what happens if there are multi-valued 
attributes. Composite attributes are different from multi-valued attributes in the sense that 
each of them can have several different domains that is it is just a combination of several 
simple attributes. So we just open up the combination, when we are translating a 
composite attribute and then include all the simple attributes that form part of the 
composite attribute.  
 
On the other hand a multi-valued attribute is not a composition of several sub attributes 
instead it is an attribute that can take on several values instead of one value and the 
example, the slide show is that of a bird. So a bird has a multi-valued attribute called 
color, so what is the color of this bird. A bird could have several colors it need not have 
just one color and of course there is a primary key called species which identifies each 
bird uniquely.  
 
So in order to translate multi-valued attributes, take a look at the lower half of the slide 
which shows two different relations which make up this translation. The first relation 
shows a relation called bird with species as a primary key and all other attributes except 
the color attribute, all other attributes of the entity type called bird. And then a separate 
relation is created called bird colors where species and color are both included and are 
both part of the key that is combinedly defined the key of this bird. Therefore we say that 
bird species eggs has color Y, eggs has color Z, eggs has color A and so on.  
 
So the color attribute may be repeated in several or several tuples or rather the species 
attribute may be repeated in several tuples, once for each different color that the bird can 
take and both of them that is species and color become the primary key for bird colors.  
 



So for each multi-valued attributes of a given entity type, we have to create a separate 
relation that has a primary key of S paired with all possible values that the multi-valued 
attribute can take. And of course the cascade option should be used for referential 
integrity on the bird relation. That is whenever the bird relation is deleted or updated, the 
corresponding changes has to be made in bird colors as well.  
 
(Refer Slide Time: 00:43:20) 
 

 
 

(Refer Slide Time: 00:43:51) 
 

 
 
How do we map n-ary relationships? Until now we have been looking at binary 
relationships. What happens when there are n-ary relationships and different entities 
forming part of the relationship? 



The slide here shows such an example that is the standard example of supplier supplies 
part to project. So there is a supplier who is uniquely identified by the supplier or the 
sales tax registration number or something STReg number and there is a project that is 
uniquely identified with project id and there is a part that is uniquely identified by part id 
and then the supplies relation which relates all of these three different entity types  
 
So the simple way of translating this is to use a separate relation called supplies as the 
base and of course separate relations each for supplier project and part with their 
corresponding primary keys and the supplies relation which has the primary keys of each 
of these relations has the foreign key of this relation.  
 
(Refer Slide Time: 00:45:02) 
 

 
 
So for each n-ary relationship of any type R where n is greater than 2, we have to create a 
new relation S to represent this relationship type R. And of course the primary keys of the 
participating relations become foreign keys in this new relation. And the cascade option 
should be used for all of the relations that correspond to the entity types that participate in 
this relationship type. 
 
What happens if one of the relations in an n-ary relationship type is a weak entity type? 
That is let us say part is a weak entity type, there is no existence for part unless it is 
associated with a supplier supplying it to some project. In that case we have to first 
identify the entity type which gives an existence to part and the part relation here has only 
foreign keys, it does not have any primary keys but the supplies relationship does not 
change that is it doesn’t have any part id, it just simply has the supplier primary key and 
the project primary key without the part primary key. Therefore we get two different 
relations that have foreign keys and they don't have their own primary keys. 
  
 
 



(Refer Slide Time: 00:46:42) 
 

 
 
So that brings us to the end of this session that talked about how we can map ER models 
into relation relational database models using several different rules. And of course this is 
not a comprehensive set of rules because there are several other sets of rules used for 
example in derived attributes or enhanced ER models like generalization and 
specialization which are not covered here. But all of them in totality are used to create the 
basis for any kind of a tool, software tool that can translate between given ER schema 
and its corresponding relational schema.  
 
So, this slide shows a summary of each of this mappings that is it gives a set of thumb 
rules saying if this is what is given in the ER model then what happens in the relational 
model. So in an ER model if an entity type is given then a corresponding entity relation 
that is a relation in the name of the entity type is created. If a 1:1 or a 1:N binary 
relationship is given then we create corresponding foreign keys from the N side to the 
one side or from the weak entity type to the strong entity type in this relation.  
 
So we create a relation and create appropriate foreign keys from them. If a M:N 
relationship type is given as shown in the slide here then we create a relation with the 
name of the relationship type. So, within quotes which is shown as relationship relation 
with two foreign keys that is one for each entity type that participates in this relation.  
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 00:48:44) 
 

 
 
If an N-ary relationship type is given, it is still the same strategy that is we create a 
relationship relation with N different foreign keys. That is one for each entity type or 
rather N different foreign keys as long as these entity types are strong entity types. If 
there is a simple attribute in a ER model that simply becomes an attribute in one of the 
relations in the relational model. If it is a composite attribute in the ER model then it 
becomes a set of simple attributes that is you take the simple part of all composite 
attributes. That is just go on finding the simple attributes that forms the composite 
attributes and then make all of them as part of the this relation. 
 
(Refer Slide Time: 00:49:33) 
 

 
 



If it is a multi-valued attribute then we need to create a separate relation and a foreign 
key. That is you have to associate the primary key of the base relation with each possible 
value of the multi-valued attribute. If it is a value set, it becomes a domain, value set in 
the ER model it becomes a domain. And a key attribute in the ER model will become 
either a primary or a secondary key in the relational model. So that brings us to the end of 
this session.  


