
Database Management System
Dr. S. Srinath

Department of Computer Science & Engineering
Indian Institute of Technology, Madras

Lecture No. # 8

Functional Dependencies and Normal Forms

Two different kinds of database models now, when we are talking about how to design a
database system. The first data model that we saw was the entity relationship model
which is especially used for building conceptual schema.

(Refer Slide Time: 00:01:31)

So as we have defined a conceptual schema is something that is meant for human
consumption that is it is meant for communication with end users so that they can
understand what the database designers have really understood about their domain, what
kinds of entities exist, what kinds of relationship exist and so on. But an entity
relationship schema is not really the best data model for storing data in a computer. And
for storing data that is the internal schema or the physical schema it is usually the
relational model that is used and the relational model in some sense has some kind of
common terms with the entity schema like we have seen the concept of keys, foreign
keys and referential integrity and so on which hold both for entity schema and the
relational schema.

However the relational schema is mainly meant for the physical schema or the internal
schema while the conceptual schema is meant for human consumption, while the physical
schema is meant for the computer.

Now usually what happens in a database design process is that we use some kind of tools
or some kind of case tools to build an ER model or of the information system that we are
trying to design and there are number of automated techniques by which or number of
automated tools which can take a ER representation of a schema and then convert it into a
relational schema. However while this is automatic, this need not always result in the
most optimal form of the relational schema. And what do we mean by optimal? We are
going to try to formulize this notion today and try to see which kinds of relational schema
or schemas are better than which other kinds and are there some kind of techniques,
formal techniques that I can use by which without trying to understand the semantics, just
given a relational schema doesn’t matter in what context can I try to optimize it into a
fashion that can help in efficient storage and retrieval of data.

So today in this session we are going to look at an important concept of relational
database design namely the idea of functional dependencies. The notion of functional
dependencies is fundamental to the design of different normal forms which we are going
to see in a relational database schema. So what are functional dependencies? Functional
dependencies are a frame work for systematic design and optimization of relational
schemas. Of course there are many more nonsystematic options for optimization. For
example if we know something extra about the operational domain or the specific
database in use, we can up always optimize something more than what we can do with
the relational, with functional dependencies.

(Refer Slide Time: 00:04:20)

However functional dependencies are some kinds of techniques that are database
independent and can be used in a formal fashion in order to achieve some level of
optimization or some level of efficiency in terms of database design. We are going to see
how we can define keys. We have looked at the notion of super keys, primary keys and
so on. How we can define the notion of keys using functional dependencies? In fact
functional dependencies are more generalization or is a generalization over the concept of

keys and they are crucial in obtaining the correct normalized schemas when we are trying
to design database systems.

(Refer Slide Time: 00:05:33)

So let us first define the notion of a functional dependency. Let me first take the
definition here, the formal definition here and try to explain it in formal terms. The
definition reads in any relation R, if there exists a set of attributes A1 to An and an
attribute B such that if any tuples in the relation have the same value for A1 to An then
they also have the same value for B. So essentially what it means? This is a formal way
of saying that these set of attributes A1 to An uniquely determine the value of B. That
means if two or more tuples have the same value of A1 to An, it’s not possible essentially
that means to say that is they should have the same value of B. They can't have different
values of B because these sets of attributes A1 to An uniquely determine the value of B.

So this is called a functional dependency and a functional dependences is written as
shown in the slide, here it is written as A1 A2 extra An and there is a right arrow to B. So
an important thing to note here is that functional dependencies define properties of the
schema and not of the tuples in the schema. What is that mean? Essentially this kind of
dependency that exists between A1 to An and this attribute B should be a property of the
entire set of tuples that are there in the schema. For example I might say that the
employee number uniquely determines the name of the employee in any relational
database schema.

However we cannot say that let us say the employee name uniquely determines the age of
an employee because there could be two or more employees having the same name but
different age. But it could well be possible that there is certain employee with very rare
name and there is nobody else who has that name and therefore for this particular
employee, the name uniquely determines the age, uniquely determines his or her age. But
this is not a property of the schema in itself, this is a property of that particular tuple of

this particular employee who has this rare name so that there is nobody else with that
name therefore we can uniquely identify the person and the age of that person. So when
we are talking about functional dependencies, we are talking about properties of the
schema which holds for all relations or all tuples in the schema.

(Refer Slide Time: 00:08:21)

In any given schema there could be many functional dependencies, let us say the set of
attributes A1 to An can uniquely define, it’s also called uniquely determine B or defines
B or so on. So A1 to An can uniquely determine B1 or B2 or B3 until Bm so this is written
as shown in the slide here that is A1 to An and right arrow B1 to Bm. Now why is this
called a functional dependencies, what is so functional about functional dependency? If
you are familiar with the mathematical notion of a function which is a special kind of
mapping or a special kind of relation between sets, you can see here that the notation that
is used for example A1 to An or uniquely determining some attribute B is precisely the
notation used for a function.

It basically determines because A1 to An uniquely determines a particular attribute B, it
acts as a mapping or it act as a function which maps this set of attributes A1 to An
uniquely to each B that it defines. This precisely acts as the mathematical notion of a
function. However there need not be any computation that determines this unique
definition. For example the employee number may uniquely determine name, however
just given the employee number I mean I won't be able to compute, I won't be able to
determine what is the name. It’s just that each employee number has a different or
identifies an employee with a different name or identifies uniquely each employee.
However, it is not possible to determine what is the name of the employee given just the
employee number, we still have to access a database to do that.

(Refer Slide Time: 00:10:24)

So let us revisit the notion of keys now when we say functional dependencies. As you
might have noticed the notion of functional dependency is actually a generalization over
the notion of keys. That is in the previous slide here if A1 to An uniquely determine the
set of all attributes which form the relation let us say A1 to An combined with B1 to Bm
forms the entire relation. Then we see that A1 to An is nothing but a key for this relation
that is for the entire relation comprising of A1 to An and B1 to Bm and similarly minimal
super keys or candidate keys can be defined analogously.

Let us take some examples now. Consider a relation of the form that is shown in the slide
here. The slide shows a relation called movies which has the following set of attributes, it
has title, year, length, film type, studio and star. So, going by the standard definitions of
what is a movie and what is title and what is the year of its release, the length of the
movie and so on. We can from common sense reasoning, identify some kinds of
functional dependencies.

(Refer Slide Time: 00:11:11)

For example given the title of a movie and the year in which it was released, I can
probably uniquely determine what is the length of that movie and similarly given there is
a bug in the second slide here, second functional dependency here. Given a title and the
year of release of a particular movie, I can probably determine what is the film type.
Given a movie of a particular type, of a particular name and the year in which it was
released, I can probably say well this is an art movie, this is a commercial movie, this is
social documentary, this is a comedy tragedy whatever.

Similarly I can probably also say title, year uniquely determines say film studio. However
title, year may not uniquely determine the star that is the actors who star in that movie
because there could be more than one actor who have stared in that movie and you cannot
uniquely determine given the title and the year you cannot uniquely say well this is the
movie star who acted in that movie because it need not be complete, there could be other
stars as well.

(Refer Slide Time: 00:13:03)

So let us see what kinds of properties we can identify about functional dependencies and
what we can do with these properties. Note that if in any given relation R, if I have a
functional dependency of the form A to B where A is a set of attributes. Now I am using
the term A that is without a subscript to determine actually a set of attributes. So if the set
of attributes A defines a set of attributes B and the set of attributes B uniquely define
another set of attribute C then we can easily identify the functional dependency saying A
also defines C. So there is an example here, if the employee number is given in such a
way that it also defines the job of the employee.

Let us say all employees who do supplies work are given numbers between 100 to 200
and all employees who do administrative works or a clerical job is given numbers
between 201 to 300 and so on. So employee number suppose uniquely defines job and let
us say job also uniquely define salary that is every employee of a particular job has the
same salary. Then we can easily say that the employee number actually defines salary
that is given just the employee number, I will be able to determine what is the salary for
that employee.

Some more definitions. Suppose we have two sets of functional dependencies A and B.
Now again A and B are sets here and we have two sets of functional dependencies A and
B and that is A defining B and C defining D. Now these functional dependencies are said
to be equivalent, if the set of all relations that satisfy the first functional dependency is
the same as the set of all relations satisfying the second functional dependencies.
Similarly a small generalization over this definition, we say that a functional dependency
S follows another FD called T, if the set of all relation instances satisfying T also satisfies
S.

(Refer Slide Time: 00:14:44)

So we will take up examples here, the follows property of a functional dependency is
extremely important by which we will be able to compute what is called as the closure of
a functional dependencies. That is suppose I give some kind of functional dependencies
saying A defines B. What else can I say about that? What else can I infer from this
functional dependencies is what we are going to take up. Before we move on to inferring
functional dependencies, we need to complete a few more definitions. The next definition
that we are going to take up is the notion of a trivial functional dependency. Now a trivial
functional dependency may look of course trivial but it is quiet important when we are
trying to define let us say normal forms.

(Refer Slide Time: 00:16:07)

Now have a look at the example in the slide here. This slide shows a functional
dependency of the form title, year defines title which is obviously true. Every attributes
defines itself that is every attribute uniquely identifies itself, therefore any functional
dependency in which the right hand side is contained within the left hand side. That is the
antecedent or the right hand side of a rule is a subset of the left hand side of a rule then it
is said to be a trivial functional dependency.

If there is at least one element in the right hand side which is not part of the left hand side
then it is called a non-trivial functional dependency and usually we are interested in what
are called as completely non-trivial functional dependencies which says that none of the
elements in the right hand side belong to the left hand side. We will see that this notion of
triviality is not so simple because essentially when there are circular dependencies, it
becomes quiet tricky to handle functional dependencies which are removed triviality
from functional dependencies.

We now come to an important aspect of functional dependencies, the notion of closure of
FDs. What do we intuitively understand by the term closure? If we are familiar with the
notion of closure and say discrete mathematics, you would probably recall the definition
that the closure we say that a particular algebra is closed when I say, when I take certain
elements from or certain operands from a set that defines the universe and then perform
an operator that performs some kind of a function on these operands and the result of this
function also goes back into this set.

(Refer Slide Time: 00:17:42)

For example if I take two integers and add them, the result is again an integer. If I take
two integers and subtract them, the result is again an integer. Now this is what is called as
closure that is I take certain operands or take certain elements from a universe, perform a
function on them and the result of that function also belongs to the same universe. So let
us define the function, the notion of closure on functional dependencies in an analogies

fashion. The closure of functional dependencies defined by A that is A is a set of
attributes in any given relation R is the set of all attributes that are eventually defined by
A. That is how we can eventually define or uniquely determine what all attributes can be
uniquely determined eventually by A.

For example let in a given relation, let the set of attributes A uniquely define a set of
attributes B. Similarly let the set of attributes B uniquely define two other sets of
attributes C and D. Now let the combined sets of attributes B and D uniquely determine
another set of attributes called C. Then we say that the closure of A contains all of these
attributes that is A union B union C union D union E that is all of that and actually
because all of these attributes can be eventually defined from A. From A we can
eventually define B, from B we can uniquely define D and combining B and D we can
uniquely define E. So all of these attributes contained in all of these sets can be
eventually uniquely defined by A.

What about elements that lie within A, can they be uniquely define by A? The answer is
yes. This is because of the trivial property of functional dependencies that is every
attribute in A uniquely defines itself which is a triviality rule. however closure also just A
union B union C union D union E that is shown in the slide does not complete the closure
of A.

(Refer Slide Time: 00:20:52)

If for example there is a subset of A or subset of any element of closure of A and if that
subset of attributes defines some other sets of attributes F such that F is not part of the
closure of A then we also add F to the closure of A.

(Refer Slide Time: 00:21:13)

So, let us first see look at an algorithm by which we can compute the closure of a
functional dependencies then we look at a few examples of closures. So given a relation
R and a set of attributes A, how do we compute closure of A? So initially we start with
the set saying the closure of A equal to A that is equal to all elements of A. This is true
because of the trivial functional dependencies, every element of A trivially defines itself.
Now for every A prime that is a subset of A, if there exists a functional dependency of
the form A prime defines B and B does not belong to A that is B is a set of attributes
which does not belong to A as of now then just add B to the set of elements in the closure
of A and repeat step two until no more attributes can be added to closure of A.

So the closure of a set of attributes A is also denoted by A with a superscript of plus that
is A plus and also note that suppose we run this algorithm and A plus contains the set of
all attributes of R, what can we say about the set of elements in A? A is of course a super
key of R because using A, we can eventually uniquely define all elements of R. So we
now come to the next property of functional dependencies, the notion of inferring
functional dependencies or following that is how do we find out functional dependencies
which follow from one another.

(Refer Slide Time: 00:22:53)

Given a set of functional dependencies and given no more knowledge about the domain
in which a relation exists, what can we infer about any more functional dependencies that
exist in R. So, we have already seen one rule for inferring which is a transitivity rule
which we will revisit again now and before that note another rule that is shown here.

Suppose A B C and D are sets of attributes of R such that the following functional
dependencies exist that is A uniquely defines B, B defines C and C defines D. Now
based on the closure property and transitivity, we can easily say that A defines D.
However there could be some elements of D which are actually contained in A that is D
need not be completely disjoined from A. So let D subscript A that is D A be the set of all
attributes in D such that they belong to A that is they are actually a subset of A.

Now take away these attributes that is let D prime be defined as D minus D A that is
shown in the slide here. Once we do this, we see that we have actually inferred a non-
trivial functional dependency. That is A defines D prime that is we started by saying that
because of the transitivity rule A defines D. However there is some triviality that is there
in this definition and once we remove that triviality, we have actually encountered or we
have actually inferred a new functional dependencies which is non-trivial that is which is
of the form A defines D prime. So functional dependencies which are specified or which
are given to begin with are called stated functional dependencies and FDs which are
derived are called inferred functional dependencies.

(Refer Slide Time: 00:25:18)

Now, given a set of relation, suppose we have a set of functional dependencies that are
stated. This set of functional dependencies is called the bases of the relation. For example
in the movie relation that we saw where a movie is defined by title, year, film type, star
and so on. The functional dependency is the title and year define the length of a movie
was given. Similarly the title and year define the film type was also given, so all these
functional dependencies that are given are called the basis of the relation. Now if the
basis of functional dependencies are such that no subset of this basis is also a basis. That
is none of these functional dependencies that form the basis can be derived from one
another then it is said to be a minimal basis for the relation.

(Refer Slide Time: 00:26:18)

So how do we go about inferring functional dependencies that is computing the closure or
getting inferred functional dependencies and so on. How do we go about inferring
functional dependencies, given a basis that is given a set of functional dependencies. For
this, there are set of axioms or set of rules that define how functional dependencies
behave. These are called Armstrong's axiom which are quiet useful when we are talking
about properties of functional dependencies.

The first property is the notion of reflexivity which is like saying, which is easily obvious
based on the triviality rule that is if set of attributes B is a subset of the attributes A then
A functionally defines B. For example, theater and year or rather the title and year of a
movie functionally defines title. That is if I have a set of attributes, these sets of attributes
functionally define every possible subset of this attributes.

Similarly, the second role is that of argumentation that is if I know that there exists a
functional dependency of the form A defines B that is theatre, year defines length. Then I
can add a set of attributes to both sides of the functional dependencies without violating
the dependency. For example I can say that if title and year of a movie determines the
length of the movie then I can add an attribute called star or studio to both sides of the
functional dependencies without altering the semantics. That is I can say title, year and
studio of a movie uniquely determines the studio and the length of the movie.

Also note that I need not add studio to the right hand side because it forms a triviality rule
that is there is some triviality that entails from adding the same attribute in both sides. I
can as well add, I can just add a new attribute just to the left hand side and still the
functional dependency holds. Take the same example again. Suppose I say title and year
uniquely determines the length of a movie. Then I can as well say that the title of the
movie, the year of the movie and the studio in which the movie was shot uniquely
determines the length of the movie which is fine because adding new information to some
set of attributes that uniquely determine something does not alter the dependency.

Similarly the last rule is that of transitivity which we have already seen that is if A
uniquely defines B and B uniquely defines C then we can infer that A defines C. The next
concept that we learn here is the notion of projecting functional dependencies. What
happens if I compute a project operation on a relation. You know what a project
operation is in standard relational algebra.

A project operation takes certain columns or certain attributes of a relation and produces
a new relation out of these attributes that means it actually throws away certain attributes
from the original relation. Now suppose let R be a relation and F of R be the set of all
functional dependencies in R. Now suppose I project another relation S from this new
relation R by throwing away certain attributes. Now what can we say about F of S? What
kinds of functional dependencies exist in F of S?

(Refer Slide Time: 00:29:23)

Obviously for example if I say that from the movie relation, if I throw away the year
attribute of this relation then obviously I cannot have the functional dependencies which
says title, year uniquely determines length because the year doesn’t exist in the new
relation at all. Therefore at this point, at the first step we can say that functional
dependencies in the new relation S should satisfy the following properties. What are these
properties?

Firstly they should follow from the functional dependencies in R that is we should be
able to infer them from the functional dependencies that existed in the earlier relation.
Secondly and, which is also quite obvious that they should involve only attributes of S.
Obviously they cannot involve attributes of R which don't exist in S. A functional
dependency only has to involve attributes that exist in the current relation.

So how do we compute the functional dependencies on a projection? Now consider this
example rather than going through a formal set of rules. Let me explain it by an example.
Now given a relation R containing the following attributes A B C and D and let us say the
following functional dependencies that is A defines B, B defines C and C defines D.

(Refer Slide Time: 00:31:24)

Now suppose S is projected from R and B is thrown away from R in getting S. So S has
just three attributes A C and D. Now what should be F of S? That is what should be the
set of functional dependencies that lie in S. Obviously we cannot have A defines B
because B doesn’t exist at all in this relation and we also cannot have B define C because
again B doesn’t exists in this relation. So but can we say anything else about these
dependencies.

Now going back to R, let us see what happens when we compute the closure of A. Let us
compute the closures of each attributes. So, I have not included the trivial functional
dependencies in computing the closures that is firstly we start from A defines A
obviously then we have a given rule which says A define B, a basis rule from which we
can infer that A define C because there is another basis rule which says B define C and
from which we can still infer A defines D because there is another basis rule called C
defines D.

So in R, the closure of A is A defines B, A defines C and A defines D. In S, all we need
to do is take away all these or throw away all this functional dependencies that contain
attributes which do not exist in S. So here A defines B is one such attribute, is one such
functional dependencies. It contains B which does not which is not part of S. Therefore
the set of, the closure of A in S is essentially A defines C and A defines D or A C D.

Similarly the closure of C in S is C defines D that is C, D in this case and the closure of D
is just D. Now since the closure of A contains all attributes of S that is A C and D, we
don't need to compute anymore closures that is we don't need to compute the closures of
A C or A D or A C D because we already have all attributes of A, we already know how
to uniquely determine each attributes of A.

Therefore the functional dependencies that exist in S are A defines C, A defines D and C
defines D and of course there are trivial functional dependencies like D defines D and C
C defines C and A defines A which are not shown as part of this set here. So a simple
way to compute the closure or compute functional dependencies in a projection is to first
compute the closure of the set of all functional dependencies in the original relation and
then throw away everything which contains attributes that do not belong to the new
relation.

(Refer Slide Time: 00:35:10)

So what is a use of all this functional dependencies and closure and transitivity and
axioms and so on. These sets of underpinnings are used for normalizing or optimizing
relational schemas for better performance. What do we mean by optimizing or what are
we optimizing against, what is the property that we are trying to remove, what is the
undesirable property that we are trying to remove. This undesirable property is the
property of redundancies in relational schemas. If a relational schema is badly designed
then it is going to contain several redundant information which results in a number of
anomalies.

What are these kinds of anomalies and what kinds of redundancies are these? Let us have
a look at them. Redundancy of course means that some kind of information is repeated
across different tuples. The same information saying the title is this one or the year is this
one or the star is that one and so on.

So if the same information is repeated across several different tuples then we encounter
two kinds of anomalies. What are these anomalies? The first anomaly is that of updation.
Suppose I need to update a data element using let us say the update clause of SQL. I
cannot update in just one tuple, especially if this particular information is repeated across
several different tuples. If the title of a movie is repeated across several different tuples in
the database and later on I see that the title of the movie is entered incorrectly, there is a

spelling mistake. So I need to change the title of the movie in every tuple there in which
it occurs.

Similarly, the notion of deletion anomalies. Suppose I delete a tuple which suppose I
need to delete a tuple about a particular movie, given a particular title. I need to delete all
tuples which contain this title as its attributes. So I need to essentially search the entire
database and delete it in several different places, otherwise it again creates anomalies. So
how do we design relational schema, so that we can remove redundancies and remove
these kinds of anomalies.

(Refer Slide Time: 00:37:37)

Now have a look at the movie relation once again. The movie relation has the following
attributes that is title, year, length, studio and star and we also have the functional
dependencies which says title and year uniquely determine length and title and year of a
movie uniquely determine the studio in which the movie was shot. However title and year
does not uniquely determines star because there could be more than one actor who have
stared in the movie.

Therefore for every actor who has stared in this particular movie, you have to repeat the
information of length and studio across these tuples. Let us say some movie has two or
three different actor say Shahrukh Khan, Hrithik Roshan or whatever. Now in a given
movie let us say some movie X Y Z that is shot in the same year in the same studio and
has the same length, it’s only the last field the star which changes from say Shahrukh
Khan to Hrithik Roshan and whatever.

So for each actor who was stared in the movie, I need to repeat all the other information
that forms part of this tuple which is what is the notion of redundancy. And suppose after
doing all this, I find that I have entered the length of this movie incorrectly and I need to

change the length of the movie, I need to change it in all of these different tuples where
this is stored and similarly the problem of deletion.

(Refer Slide Time: 00:39:22)

So anomalies are removed from a relation by the process of decomposition. Now what is
meant by decomposition? Given a relation R containing a set of attributes A, you
decompose the set of relations into two different relations S and T such that the sets of
attributes in of S and T are a subsets of the attributes of A and there are no anomalies in S
and T. Now a decomposition that does not contain any anomalies is said to be in what is
called as Boyce-Codd Normal Form or it’s also abbreviated as BCNF, so a BCNF has the
following property.

Suppose given a relation R with the set of attributes A, it is said to be in BCNF if there is
a non-trivial. Note the emphasis on the word non-trivial here, if there is any non-trivial
functional dependency of the form A prime defines A double prime that means A double
prime is not a subset of A prime. So if such a non-trivial functional dependency exists
then it means that A prime is a super key of R. That is there is no functional dependency
of the form A prime defines A double prime in which A prime is not the key. If that is the
case then the relation is not said to be in BCNF. So we will take up examples of this once
we complete the notion of decomposition into BCNF and when it becomes more clearer.

(Refer Slide Time: 00:40:51)

Now how do we decompose a relation such that it forms or it becomes comply into
BCNF. Now suppose in a given relation R, let there be a functional dependency of the
form A prime defines A double prime which violates BCNF. What do we meant by
violating BCNF? It means that A prime defines A double prime is firstly non-trivial that
is A double prime is not a subset of A prime and A prime is not the super key of R that is
it is some other sets of attribute.

In order to bring R into BCNF, we decompose R as follows. First take the set of all
attributes that are defined by A prime. Now A prime defines A double prime, it may
define something else and so on. now let B be the set of all attributes that lie in the right
hand side of any functional dependencies that are defined by A prime. Now remove the
set of all attributes A prime along with B and form a separate relation and retain the
remaining set of attributes along with A prime to form the other part of the decomposed
relation R. Let us have an example which makes this very clear.

(Refer Slide Time: 00:42:22)

Consider the movies example once again. Let us have a look at this relation movies
having the following attributes title, year, length, studio and star. Now here the following
functional dependency holds that is title and year uniquely determines length. Title and
year uniquely determines studio and title and year uniquely determines, it does not
determine star actually. So this is actually a BCNF violating functional dependency
because title and year obviously cannot be the key for this relation because it does not
uniquely determine star. So title and year is not a super key as the star attribute is not in
the closure of title and year.

So to decompose this relation, just remove title and year along with length and studio. So
there is no star here, just remove title and year along with length and studio that it define
and put them in a separate relation and retain title and year along with star to form the
other relation. Therefore we get two kinds of relations that is movies is divided into title,
year, length and studio because title and year define length and title and year define
studio. So we have separated them from movies and whatever is left out that is star is
combined with A prime which is title and year and retained as it is.

(Refer Slide Time: 00:43:33)

So movies one and movies two are decomposed forms of movies and it is also easy to
verify that movies one and movies two are BCNF complaint.

(Refer Slide Time: 00:44:08)

There is one property of BCNF relations, the notion of two attribute relations. Suppose I
have any relation that has just two attributes, we don't need to do anything, it is always
BCNF complaint. How do we ensure or how do we prove that a two attribute relation is
always BCNF complaint.

Consider these four cases, let us say there is a relation R which contains just two
attributes A and B. Now there are four possible scenarios. The first one is there is no
functional dependencies between A and B that is there exists no non-trivial functional
dependencies. Only trivial functional dependencies are there, A defines A and B defines
B in which case R is definitely in BCNF. Secondly there is a non-trivial functional
dependency that is A defines B but there is no functional dependency of the form B
defines A which is also no problem because in this case A becomes the key because there
are just two attributes and A is defining B and B is not defining A. So A is the key of the
relation and the relation is in BCNF.

Similarly if B defines A and A does not define B then B becomes the key and suppose A
defines B and B defines A which is also no problem because both A and B are keys and
both A and B are candidate keys and we can use one of them as super key or the primary
keys which is fine and the relation is also in BCNF.

(Refer Slide Time: 00:45:46)

We now come to another form of normalization which is called the third normal form of
a relation. The third normal form is useful because in some cases it is not possible to
decompose the relation such that the decomposed relations are BCNF complaint, it is not
possible to decompose without losing some information. Now let us understand this by an
example. Now consider another relation of the form which is shown in the slide here. Let
us say we have a relation called drama and it has the attributes title, theater and city. That
is there is a particular drama troop that is performing a drama having a particular title in a
particular city and in a particular theater in the city. So therefore we can identify the
following functional dependencies, the first one is title and city.

The title of the drama and the city in which it is being played will probably determine the
theater as well. So we can say that in this drama played in this city is being played in this
theater only. Suppose there exist a functional dependencies of this form and let us also

assume for the sake of argument in this case that given the name of a theater, we can
uniquely identify where the theater is. Given the name of a drama theater, let’s say
something like kalamandira or guru nanak bhavan or whatever, some kind of theater
name we immediately know which city contains the theater.

Now FD2 violates BCNF, as you can see here because theater is uniquely defining city
but theater is not the key, in fact title and city form the key, title and city define theater.
So given a title, drama title and a city we can identify theater therefore this is a BCNF
violation in violating FD. However, based on the decomposition rule if we decompose
drama into two relations title, theater and theater, city base based on this rule here
because theater defines city.

Now based on this rule if we decompose drama like this into drama one and drama two, it
will actually be incorrect. Why? Because once we perform the join, once when we
decompose relations and we join back the relations, we should retain all the properties of
the original relation. Now when we perform the join between drama one and drama two
then the key constraint will no longer hold. Let us look at this by an example.

(Refer Slide Time: 00:48:03)

(Refer Slide Time: 00:48:46)

Let us say drama one contains title and theater entries like this, there is a particular drama
with a title say Yugant and it is in a particular theater. Now there is another drama with a
different title but in the same theater maybe at some other time. Now this theater uniquely
identify city, let us say given a theater name I can uniquely identify city. Now if I join, if
I perform a natural join between theater that is drama one and drama two based on the
attribute theater what are we going to get.

(Refer Slide Time: 00:49:23)

We will get a table like this that is a title, theater, city and title, theater, city. Now if you
see given a title and a theater, there is no unique title and title and city is no longer the

key that is we don't know we can have possibly different, let us say we can possibly have
different sets of attributes that are defined by the same title and city combination. So it
does not uniquely determine the title that is theater and city does not uniquely determine
the title of the drama. Such dependencies or such discrepancies occur because of a
particular property and which is what we are going to see in this slide here. So we are
going to define the notion of third normal form which is essentially relaxation of the
second normal of the rather the BCNF or the Boyce-Codd normal form assumption.

What is a relaxation that we are doing here? If you notice in the BCNF violating
constraint that is theater defines city, the right hand side of the relation that is right hand
side of the functional dependency called city is actually part of the primary key that is
title and city was the primary key.

(Refer Slide Time: 00:50:05)

So in order to accommodate such cases we use a third normal form assumption which
says that any relation R is said to be in third normal form, if there exist any non-trivial
FD of the form A defines B either A is a super key which was all the condition we need
for BCNF. And here we have an extra condition which says or B is a member of some
key. So an attribute that is a member of a key is called a prime attribute. So therefore
either B should be a prime attribute or A should be a super key which is what makes the
relation into a third normal form relation.

We shall not be going into details of how to prove properties of third normal form
relations. However we will suffice it to note that it is a slightly general form of the BCNF
or the Boyce-Codd normal form. Let us quickly visit the last kinds of dependencies and
the next normal form that results from it, which is known as the multi-valued
dependencies. Now even in BCNF, BCNF is a strict form of decomposition so even in
BCNF we have not fully removed all possible redundancies.

Consider this following example here. The slide shows an example relation called drama
which has the following attributes title, theater, director and genre of the drama. And we
note that drama is in BCNF because let us say title is the key, let us say each drama is
played in precisely one theater for the sake of argument. Therefore title uniquely
determines theater and director and the genre of the drama.

(Refer Slide Time: 00:51:33)

However it may well be possible that a given title may be classified into two or more
genres that is a given drama could be classified as comedy and it could also be classified
as a social commentary. Now because it is classified as under two or more categories,
there exists what is called as this one to many relationships between title and genre. So
every time we identify the set of all comedy dramas, the theater and director has to be
repeated.

Similarly every time we identify social commentaries, the theater and director has to be
repeated because it is the same drama. So this is what is called as a multi-valued
dependency. Now what is a multi-valued dependency in a more formal fashion? Now
suppose in a given relation A, there is a non-trivial functional dependency of the form A
prime defines B and suppose A prime is also a key for because it’s in BCNF.

Now suppose if B is completely independent of all other attributes of the relation then we
say that there is a multi-valued dependency. In this case the attribute theater and director
are completely independent of the category or the genre of the drama. It has no
relationship between, a theater may play any kinds of drama and a director may direct
any kinds of drama himself.

(Refer Slide Time: 00:53:37)

So it’s completely independent of that, so we say that there is a multi-valued dependency.

(Refer Slide Time: 00:54:37)

So we defined the notion of a non-trivial multi-valued dependency in order to remove
them. So firstly what is the notion of a non-trivial multi-valued dependency? A multi-
valued dependency of the form A, define A prime defines B is non-trivial if B is not a
subset of A prime which is the non-trivial property for BCNF as well and there exist
certain other attributes in addition to A prime and B. That is A prime union B is a proper
subset of A, the set of all attributes that is there exist some more attributes in addition to
B.

So a relation R of A is said to be in fourth normal form, if for every non-trivial functional
dependency of this form that is A multi-valued dependency B, A prime is the super key.

(Refer Slide Time: 00:55:31)

So we shall not be going into more details of the fourth normal form and for this session
we will suffice it to say that fourth normal form is an even most stringent criterion for
removing duplicates or removing redundancy in relations. So essentially the normal
forms can be categorized like this. Third normal form is the most lenient among the three
and next is BCNF and finally the most stringent is the fourth normal form. So if any
relation that is complaint to fourth normal form is automatically complaint to BCNF
which is in turn automatically complaint to third normal form.
(Refer Slide Time: 00:56:15)

So we now come to the end of this session and let us briefly summarize what all we have
studied here. So we studied the notion of functional dependencies which is a
generalization over keys and properties of functional dependencies like transitivity,
reflexivity and augmentation, extra. We also saw the notions of trivial and non-trivial
functional dependencies and how they affect BCNF and how we can decompose relations
into BCNF so that we can remove redundancies.

However we see that not all relations can be decomposed into BCNF without losing
information because of which we have also, we also need the concept of a third normal
form. And we finally saw the notion of multi-valued dependencies which can remove
redundancies that exist in BCNF and the fourth normal form which remove multi-valued
dependencies. So that brings us to the end of this session.

