
Database Management System
Dr. S. Srinath

Department of Computer Science & Engineering
Indian Institute of Technology, Madras

Lecture No. # 5

Structured Query Language

Hello and greetings. In the ongoing saga of management of data, we have covered the
aspects of high level schema design using entity relationship modeling and one kind of a
data model called the relational model which is mainly used for designing of low level
schemas. Today we are going to look at something more concrete that is something
which you are likely to be using on a day today basis, if ever you are going to be working
in databases. Especially if you are a database user or database administrator, this is the
SQL language or the structured query language.

(Refer Slide Time: 00:01:54)

The structured query language is the standard query language that is used by most
database management systems that are available today and this is a language that is
definitely required to be known by anybody who is going to be using a database
management system. So let us move into structured query language today.

(Refer Slide Time: 00:2:19)

Now what is meant by a standard for query languages? Why do we need a standard for
query languages? I just mentioned that the structured query language is the de facto
standard or it’s rather these standard for relational databases that all databases or most of
the database users today use SQL in some form or the other. Why do we a standard query
language for database management? Now today at this point in time, in the database
arena there are large number of database management systems that are currently
available.

Some of them are commercially available, some of them are freely available and some of
them have been implemented in academic institution, some of them have been
implemented in companies, industries and so on. We have oracle, we have IBM db two,
we have Sybase, Microsoft sequel server, MySQL, Postgres and what not. There are so
many different varieties of databases.

Now suppose we were to have a different query language being adopted by each different
database management system, it becomes extremely difficult if not impossible to be able
to port application program from one database to the other. We will have to write
software that specifically uses let us say MySQL or software that specifically uses oracle
and so on. However with a common query language like SQL, all that the application
programs need to know is SQL. They should be able to speak SQL and using SQL we
should be able to connect or use any database management system. So this is what is
depicted in this in this slide here.

Suppose you have several different database systems, in fact in some application context
you may have several DBMS within the same application context. A huge company for
example may use several different kinds of DBMS systems in their different branches,
while all of them have to deal with the same application, same work flow procedures or
same business logic or business processes and so on. So suppose we have several

different databases or DBMS as shown in the slide here and suppose all of them are able
to speak a query language like SQL, all that the applications need to do when there are
different application says that they should be able to speak SQL.

And they should, it doesn’t matter which DBMS they are going to be working. But reality
obviously is much more complex than these and while this was the reason why a standard
for database query was introduced, it is nowhere near to achieving its objectives. that is in
reality however we still see applications that say this application is meant for MySQL,
this is meant for oracle database, this is meant for db two and so on because there are
number of additions, there are number of other features in addition to SQL that are
unique to each different applications and so federating or working across different,
connecting different database system is a completely different question all together now.

And data integration is a completely different question which we would be exploring in
much more detail in a later session. So coming back to SQL, SQL stands for structured
query language and this was introduced the genesis of SQL was at IBM research for
database system that they had built called system R. Just like seminal paper for cord, you
can give an internet search for a system R and there are of course some very good papers
that are been, that are available on the net that talks about earlier days of SQL.

As you will see today, SQL contains a lot of constructs like select and set operators and
Cartesian products which are quite similar to relational algebra that we saw in an earlier
session and SQL also works on a relational data model very similar to relational algebra.

(Refer Slide Time: 00:05:57)

However SQL has no relation to relational algebra or very little relation to relational
algebra in itself. The mathematical foundations for SQL is another data model called the
tuple relational calculus which is also another data model based on the relational data
modal that is the notion of mathematical relations. But there are some similarities in

terms of terminology between what we have seen in relational algebra and SQL. And
SQL is a database independent language and in this session, we would be looking at
construct from the SQL two standard and SQL three standard has some more facilities
that are provided. And SQL is both a data definition language and a data manipulation
language. What is it mean? A data definition language or a DDL essentially defines data
elements. That means what are the data elements in a relational model? Of course a
relation that is relation, attributes, domains, values, constraints, keys and so on.

So all of these can be defined using SQL. Using SQL you can define a relation, you can
define its attributes, you can define its domains, you can define constraints across
attribute, relationships, key constraints and entity constraints and so on. And it’s also data
manipulation language in the sense that you should be able to add more data into a
database, you should be search for some data, you should be able to retrieve some data,
you should be able to modify data elements and so on. So it’s both DDL and a DML.

(Refer Slide Time: 00:8:30)

So, in terms of terminology while we use the terms relation, tuple and attribute in
relational algebra usually the terms table, rows and columns are used for the
corresponding terms. We shall be using either of these terms interchangeably as they
mean the same thing whether it is a relation or a table, we saw in the session on relational
algebra that relation can be represented in the form of a table where each attribute of the
relation is a column which is what is returned by the project operator. And each tuple in
the relation is actually a row which is what is returned by the select operator.

The SQL two standard defines methodologies for introducing schematic structures into
our databases. A schema is created by what is shown here as the create schema
command. So the slide here shows a small example which says create schema univ
authorization dean, so it creates a schema called univ which is owned by the user with a
user id called dean.

(Refer Slide Time: 09:21)

We shall be looking into this authorization in much more detail when we are talking
about security and authorization in databases where different users of database
management system are usually given certain privileges and certain authorizations which
authorizes them to do certain kinds of data manipulation operations on the database. So
hence if the owner of this schema is this user id called dean then a dean is given certain
kinds of authorization that is defined by some default values which can also change here,
which would typically include adding a table, deleting a table, adding rows deleting and
so on. I mean any kind of activities that a typical owner of a database would do.

A catalog in SQL terminology is a named collection of schemas. So suppose I have a
collection of different relations and combine them within particular name, this is called a
catalog. And a catalog is required or it is required for different tables or different relations
to be within the same catalog if I have to be able to enforce referential integrity on my
schema. So using a scale you are able to enforce referential integrity only within tables
that lie within the same catalog.

(Refer Slide Time: 00:11:19)

Creation of a table: As you know table is another term for relation and a table can be
created with the command create table command, just like create schema for schema. So
the slide here shows an example create table command of the form create table name and
some kind of column descriptions. The parts of the syntax enclosed within box braces are
optional structures that means you can refer to the table name when the context is clear or
otherwise you need to identify the schema within which the table belongs. You can say
something like create table univ.department that means create table called department
under the schema called univ.

There are also certain column descriptions which we are going to see shortly which can
say what are the different attributes that form the table and what are the domains of each
of these attributes and what kinds of constraints that each of these attributes have. So
before we look into column descriptions, let us say what kinds of data types are also
domains that SQL two supports. There are several different kinds of domains that SQL
two supports and some of the most commonly used domains are as shown here. There is
the numeric domain which is identified by different data types called int, small int, float,
real and double precision.

(Refer Slide Time: 00:12:30)

Each of these refer to different sizes that are of the data word that is being stored as part
of this domain. There are formatted numbers like decimal I, j which basically means that
this number has i number of digits of which j number of digits occur after the decimal
point. Hence if I say a decimal 8, 2 it means that there are a total of 8 digit in this decimal
of which two digits, the last two digits occur after the decimal point. You can also define
character strings of either fixed length which is shown by char of n or of varying length
which is defined by varchar of n.

So I can say that this attribute name is a varchar of say 60, so that means that this
attribute can store a string whose length can vary anywhere up to a maximum of 60
characters. Then there are also big strings that you can store either a fixed length or
varying length and similarly a special data types like date, time and time stamp and text
and several other data types like binary objects and so on. But typically we would
generally be working with numeric or character string in a typical transactional database
system like employee records or railway reservation or whatever the standard
transactional databases that we would be considering here.

(Refer Slide Time: 00:14:34)

You can also create your own domain, name domain by using the create domain
construct. The slide here shows an example which says create domain roll number type as
int of 6. If I know that the roll numbers that I give to students in our institute would be an
integer having 6 digits, I can as well use roll number type instead of int of 6 wherever I
need to store student roll numbers.

The advantage with this is that tomorrow if this domain definition is changed, I need to
change it at only one place where I am defining the domain called roll number type.
There are also certain constraints and default values that you can specify using the create
table command which you can specify on an attributes. for example the not null
constraint, the first constraint is that we are going to take up is a not null constraint which
says that this attribute name for which I am placing this constraint can never have a value
called null.

So it disallows null as a valid value for this constraint. For example I can specify that the
age of an employee may never be null that means I need to always have a valid age for an
employee record that is entered in this data value, if I have to insert a particular row into
the database.

(Refer Slide Time: 00:15:17)

Similarly I can use the default construct, the default construct shows what would be the
default value for a particular data item. so if the not null is specified and I also specify a
default value, whenever let us say I specify that age of an employee not null and default
18. So whenever the age of an employee is not known, the default value namely 18 in this
example is put in its place. Then there is the primary key constructs, the third constraint
in this slide which specifies one or more attributes of this tables as the primary key of this
record. Similarly there is the constraint called unique, I can say for one or more attributes
I can say unique which essentially says that this attribute has to have unique values or
distinct values for each row of this table.

In other words it means that it is an alternate key or a secondary key. Note that a key is
something which can uniquely identify every tuple. Hence the key has to have a unique
value for each tuple in the relation similarly I can also specify a foreign key construct that
ensures referential integrity especially when some part of a table is actually referring to
some other parts of another table, I can specify them as foreign key in order to ensure that
they refer to existing aspects of the other table.

So just to brush up what is referential integrity, if I have some aspects of my table
referring to another table it should either refer to an existing tuple or existing row in the
other table or it should be null that is I should not refer to any row in the other table or I
should refer to an existing row in formal terms this is what is meant by referential
integrity.

(Refer Slide Time: 00:18:16)

So here is an example of table creation. This slide shows an example table which says a
create table employee, the name of the table or the name of the relation is called
employee and then there is a set of attribute descriptions. The first attribute called pan
number, the permanent account number of an employee is given a varchar that is variable
character string of 16 letters and it is shown as not null and it is shown as unique. That is
this pan number may never be null and it has to be unique across each employee that is
each employee has to have a distinct pan number. If you go down the slide you can see
that there is another construct called primary key and emp number that is the second
attribute employee number which is also shown as not null is termed as a primary key.

Hence the pan number in this case because it’s unique can form a secondary key or an
alternate key of this relation. Then there are other attributes like name, gender, date of
birth, address, salary and reports to which basically shows the employee number of the
manager or the person to which those employee reports to. So you also say another
constraint called foreign key which says that reports to, the field called reports to is
actually a reference to another record belonging to the same relation called employee and
referring to the employee number in this record.

Therefore whenever I enter a table and I enter a particular employee number for reports
to, suppose I enter details of an employee and enter the details of the manager by
specifying the employee number of the manager to whom these employee reports to then
because of the foreign key constraint that is specified here the database management
system will verify whether a record for the manager already exists. If the manager record
does not exist that is the employee with that reports to employee number does not exist
then addition of this employee record will fail as part of the database management.

Deletion of tables: Tables can be deleted, the terminology used for table deletion is called
drop. So tables can be dropped using the drop table command, this is shown in this slide
here.

(Refer Slide Time: 00:21:05)

You can use, the syntax is something like this drop table and name of the table and there
are certain optional attributes which says dependent cascade or restrict. So the first three
terms are obvious, drop table name that is the table name by the given name should be
drop. What is the dependent clause or what is it do? So if dependent is termed as cascade
if I say drop table employee dependent cascade, then any foreign key constraints that the
table holds or views that reference the table, well we have not come to views as yet but
for the moment let us just not consider that. But when I drop a table let us say employee,
any foreign key constrains will also be dropped.

So the dropping is in some way a cascading process because of table employee, any
foreign keys that the table references to or all going to be dropped in a cascading fashion.
on the other hand if the restrict option is specified then a table is dropped only if it does
not have any references, incoming references that is only if nobody references the table
only then will a table be allowed to drop. Just like table deletion, you can also delete an
entire schema using the drop schema command. This is shown in the slide here. The drop
schema command also has a very similar syntax, it is like drop schema name and either
cascade or restrict.

So drop schema and name is obvious that is you have to drop a schema by the given
name and if the cascade option is provided then all tables that are there in the schema will
be automatically dropped. On the other hand if restrict option is specified, then a schema
is dropped only if it does not have any table or if it does not have any elements. How do
we modify tables? How do we alter an existing table definition? So table definitions can
be modified using what is called as a alter table command. Note that alter table or

modification of a table is modification of the schema of the table not the data in the table.
That is we are not modifying existing data elements or adding or deleting data elements
from and to the table, we are actually modifying the table definition or the table schema.

(Refer Slide Time: 00:23:04)

(Refer Slide Time: 00:23:12)

The table schema is simply a definition of the set of all attributes that form the table and
their domains. so the slide here shows an example which says alter table company dot
employee add job varchar 20, so it essentially adds a new column to the employee table
with the name called job and domain varchar that is a variable character string with a
maximum size of 20 characters.

Now suppose the table that I am altering has already containing is already containing
some data that is I have created a table, I have added certain data elements and I have
used the database for sometime and then suddenly I give an alter table command and say
add a new column like job. Now what happens to, what value should job get in all of
these tables? Because I have not specified any value as part of the alter table command.

You might have guessed it that it is going to be given a default value of null. So a new
column called job is going to be created with a value of null but what happens if I specify
a constraint called not null? Suppose the slide here reads alter table company dot
employee add job varchar of 20 not null. Now what should be the, what should be the
value that has to be filled in for this new column?

(Refer Slide Time: 00:25:28)

The answer to this is in the next slide here. Now unless a default condition is specified,
unless a default value is specified you cannot use the not null constraint, as simple as that.
That is if I don't use a not null constraint and the query is just like this that is which says
alter table company dot employee add job varchar 20, it just adds this new column with
all null attributes. On the other hand if I wanted to specify not null then I should also use
a default value which is what is going to be filled for all the data elements in this new
column.

So I can say default employee or default shop floor or something like this. So the default
value called the shop floor is going to be filled for all of the elements in this new column
which should later be change for specific rows using some other command which we are
going to see later on.

(Refer Slide Time: 00:26:31)

Now we just saw how to modify a table by adding a column. What if we need to delete a
specific column? The syntax is again quiet similar to that of deleting tables. We use the
key word called drop, so this table here shows an example alter table company dot
employee and as it to drop the column called pan number and there is an option called
cascade.

Now drop pan number is obvious that is the column called pan number is going to be
dropped. If the cascade option is used then all constraints that refer to this column are
also dropped automatically. That is if some other column refers to this column as in the
form of a foreign key or a view or so on then they are all going to be dropped
automatically, it’s a cascading process. Similarly if restrict is used then a column is
dropped only if there is no incoming references to this particular column.

(Refer Slide Time: 00:27:41)

It is also possible to alter a column definition rather than just adding and deleting new
columns. Column also has a particular domain and a particular constraint set of
constraints that are associated with it. Now it is also possible to add and drop these
domains or constraints that refer to a column and this slide here gives certain examples.
The first example shows alter table company dot employee and in turn says alter reports
to that is alter the column called reports to set default as 007. So what is this do? This
basically says that wherever the reports to, wherever the reports to column is null set it
with the default value called 07.

So whoever whichever employee does not have any manager, assign him to the manager
called 007 which is what is being set by this command. The second command shows alter
table company dot employee, alter reports to drop default which is basically the other
way around. That is suppose it already has a default value then all those rows where this
column has the default value are set to null and the default value is going to be dropped
for this column.

(Refer Slide Time: 00:29:11)

We now come to the main operation in SQL, the most frequently used operation for
retrieval of data elements from um from tables which is called the select operation. We
have not really seen how to add data into a table as yet but let us first see how to retrieve
data from a table and then we are going to consider how to add or modify data elements
to and from a table.

So the select operation is a most detailed operation in SQL and is the most frequently
used operation and it has the variety of forms which we are going to see in a step by step
fashion. So the SQL operation is the basic retrieval operation, the select operation is the
basic retrieval operation in SQL, it has no relationship with the select operation in
relational algebra. Just to reemphasis the point that SQL is actually based on tuple
relational calculus and we are going to see here that the select operation of SQL can
perform both select and project that are defined in relational algebra.

And SQL select one major difference between SQL select and that of relational algebra is
that it considers relations as a bag. We saw in the session on relational algebra that by
default relational algebra expects relation to be sets and when we convert them to bags
we have to take care of certain algebraic conditions with sets which does not necessarily
hold for bags. But SQL by default considers tables to be bags and not sets. There may be
multiple occurrences of the same tuple.

(Refer Slide Time: 00:31:05)

The basic syntax of a select operation is shown in this slide here. It is very simple, it says
select attribute list from table list where a given condition. so there is an example which
shows here select employee number, name that is the list of attributes emp number, name
from employee which is the name of the table where reports to equal to 007 which
essentially means that show me all employees, that is give me the employee numbers and
names of all the employees who reports to a manager whose employee number is 007.
The select from where is the basic operation that we saw here and it can also act on
multiple tables, it need not act on a single table. Until now we have being considering one
single table called the employee table. Now let us work with two tables just to show that
select can act on multiple tables
(Refer Slide Time: 00:32:03)

Now let us first define a new table called department. so this slide shows the definition of
department that is create table department and which says where the first attribute is
called dnumber which is also the primary key, the department number which is int of 6
and not null and name address and head that is name of the department, address of the
department and the head, the employee number of the person who heads the department.
Now it also retrace the fact that head is a foreign key that refers to employee number
from the employee database or from the employee table.

Consider the following query what is the name of the person who heads the supply
department? If you look back at the definition of department, we have seen that the
department contains department name, address and head which is the employee number.
It does not contain the employee name. But the query here requires the name of the
person who heads the supplies department. So the name of the department is supplies and
we require the name of the person, so this can be specified by small SQL statement like
this, select employee dot name from employee and department where employee number
equal to head and department name equal to supplies.

(Refer Slide Time: 00:32:51)

As you might have imagined this is quiet similar to performing a relational algebra select
on a Cartesian product of two tables. In this case there is a Cartesian product of two
tables employee and department and we are stipulating the fact that employee number
equal to head in this Cartesian product. That is considering only those tuples where the
head of the department corresponds to the employee number of record in an employee
and the department name equal to supplies. And also note the use of that table name in
order to disambiguate attributes having the same name. Now even the employee table, in
the definition of the employee table the name of the employee is specified by an attribute
called name.

But in the same way in the department record as well, in the department table the name of
the department is also de referenced by an attribute called name. Now when we say select
name, which do we mean? Do we mean the employee name or the department name? In
order to disambiguate this we can prepend the name of the attribute with the name of the
table. So the query here says select employee dot name rather than saying just name and
then also in the where condition where department dot name equal to supplies. So for
some strange reason if some employee is called supplies that should not be matched, its
only the department name which should be matched against supplies. However this
disambiguating attributes by prepending them with the table name is not always
sufficient.

(Refer Slide Time: 00:35:40)

Consider the next query here. Now the query here says what is the name of the person to
whom Arvind Kulkarni reports to? Now here is an employee with name called Arvind
Kulkarni and he reports to some person. Now we need to know the name of the person.
Note that in the employee table, we only have the employee number of the person to
whom each employee reports to. So obviously we need to have a join of the employee
table on the employee table itself that is you have to have a self join for the employee
table. So suppose we write a query like this that is suppose we try to write or we try to
disambiguate attribute names by putting the table names before them. So such a query
shown here that is select employee dot name, so we need employee dot name from
employee, employee because both employee and manager are both employees.

So it’s a select employee dot name from employee, employee where employee dot name
equal to Arvind Kulkarni and employee dot reports to equal to employee dot emp
number. Obviously you see that there is something, there is quiet a bit that’s wrong here.
You don't know which employee table are you referring to, is it the first employee table
or the second employee table?

(Refer Slide Time: 00:37:14)

So this is still ambiguous. So in order to disambiguate this attributes names in such a
situation, SQL provides as with the opportunity of using what are called as aliasing. So
aliasing can be used as follows. Now consider the same query shown in this slide here. So
this slide for the time being concentrate only on the second line of this slide where it says
from employee, employee as boss.

So the entire query is like select boss dot name from employee and employee as boss. So
essentially what it saying here is that take the first table employee and the second table
employee, however use an alias called boss for the second table. So we know whether we
are talking about an employee or his boss. And then we say employee dot name where
employee dot name equal to Arvind Kulkarni and boss employee number is the same as
the employee reports to number.

(Refer Slide Time: 00:37:36)

So employee dot reports to equal to boss dot employee number. So in this case we will be
able to identify which name are we referring to from which relation.

(Refer Slide Time: 00:38:44)

Suppose we omit the where clause in the select from and where syntax and we just give a
query of the form that is shown here. That is select name, pan number from employee.
What is going to be the output of this? As you might have imagined this, such a select
statement is similar to the project operation in relational logic. So what this statement
does is it returns all rows in the table called employee, however only the columns name
and pan number.

So it is similar to saying project name and pan number from employee. And what
happens when the where clauses omitted and instead of saying just one table name, we
actually specify more than one table name. This is shown in the query here. It says select
employee dot name, department dot name from employee, department that’s it.

(Refer Slide Time: 00:39:43)

Now what happens here in this case of course we get only two columns as output that is
employee dot name and department dot name, however we get all possible combinations
of employee dot name and department dot name. In other words we have computed a
Cartesian join or a Cartesian product between employee and department with this
operation.
(Refer Slide Time: 00:40:07)

Suppose we want to select all columns of particular table that is similar to the select
operation in relational algebra. We want to select all or entire tuples and based on certain
conditions, in such a case you can use the term called star as shown in this query. Here it
says select star from employee where name equal to Bhadriah. So, essentially this query
is similar to the relational algebra expression which says select or sigma name equal to
Bhadriah from employee. That means the entire row or the set of all attributes of relations
where the name attribute is called Bhadriah is going to be returned.

Similarly, if I say select star from employee, department in the second query that is
shown in the slide here, it computes the complete Cartesian product between employee
and department. We now come to the fact that how tables are treated in SQL. In relational
algebra we have seen that by default relations or tables are considered to be sets. On the
other hand in SQL, tables are considered to be multi-sets or bags that is multiple tuples
having the same values are tolerated. We have also seen why this is sometimes not only
desirable but also necessary, it is desirable because it is expensive to remove duplicates.

(Refer Slide Time: 00:41:13)

Suppose I return a query with 10000 records of which there may be hundreds of
duplicates. I need to perform, I need to first sort each of these, this whole set of records
and then remove duplicates and then reorder the records in whatever order that the user
has asked for. Therefore it is very difficult or it’s an unnecessary over head to remove
duplicates, therefore it is desirable in many cases to tolerate duplicates. And in some
cases it’s actually necessary to tolerate duplicates. We have also seen examples of these.
Suppose I want to compute the average marks of all students in a particular course, it is
not only desirable but it is actually necessary that I retain the duplicates because the
duplicates all contribute to the total number of marks which have to divide by the total
number of occurrences to find out the average marks.

So for computing any aggregate properties, I need to have duplicates. However in some
cases if I want to remove duplicates explicitly from the output of a query, in SQL you can
give the clause called distinct. As part of your select statement, the table, the slide here
shows such an example, it says select distinct name from employee so which simply says
that show me the set of all distinct names that the employees have. So if two or more
employees have the same name then they are shown only once as part of this query.

(Refer Slide Time: 00:43:32)

Similarly one can perform several set theoretic operations like union, intersection and set
difference using SQL. So union is operated by using the clause called union and
intersection by the clause called intersection and set difference by the clause called
except as shown in the slide here. Now, by default union, intersection and except assume
that the sets that they are operating upon are actually sets and not multi-sets. So note the
use of distinct in this example. The example here says that select distinct name from
employee where salary is greater than 3 lakhs union select distinct name from employee
where salary is less than 24000.

So essentially what its doing is that it is selecting the set of all names of employees who
are earning more than 3 lakh and combining them with the set of all names of employees
who are earning less than 24000 and duplicates are removed in these sets of name. So the
union operator assumes that duplicates are removed, when it is performed in the union of
these two sets.

(Refer Slide Time: 00:44:55)

On the other hand if I want to tolerate duplicates or if I want to specify that the sets are
actually bags and not pure sets, tTherefore I need to perform a disjoint union or a disjoint
intersection. Remember what is the disjoint intersection of two sets, if a tuple or if the
data item occurs multiple times in an intersection, for an example it has to occur the
minimum of the two number of times. So if I have to specify that I am actually working
on bags and not sets, I need to specify that with the key word called all which is shown in
the slide here. So if I have not specified the distinct construct in my select statements as
in my previous examples, I should use the term union all for disjoint union and
intersection all for bag intersection and except all for difference or set difference between
bags.

We can also perform comparisons over character attributes especially string attributes by
comparing partial strings or comparing wild cards. So this slide here shows two such
examples. The first examples says select star from employee where name like percent,
Arun percent so note the use of firstly the key word like and secondly the use of the
percentage symbol. So a percent symbol matches any number of characters wherever it
occurs, therefore this query here matches employee name where the employee name
contains Arun as a substring, A r u n as a substring and where it may be preceded by any
number of characters and succeeded by any number of characters.

(Refer Slide Time: 00:45:53)

So while the percent symbol matches any number of characters, a single character can be
matched with the underscore symbol. So suppose if I had said where name like
underscore arun underscore underscore, so it essentially looks for one character before
Arun and two characters after Arun. So any kind of character, any kind of name where
Arun occurs as a substring with exactly one character before it and two characters after it.
One can also specify arithmetic operators like addition, subtraction, multiplication and
division. So I can say where salary plus perks not greater than 50000 or so on.

And I can also use these arithmetic operator not only in the where clause but also in the
select clause. So have a look at the example shown in the slide, this slide shows a query
which says select 1.1 times salary that is 1.1 into salary from employee where salary
greater than 3 lakh, so which basically says that show me what would be the figures,
salary figures of employees, if salaries where to be raised by 10 % effectively.

(Refer Slide Time: 00:47:22)

That is I am multiplying existing values of salary by 1.1 and showing that as the result.

(Refer Slide Time: 00:48:21)

So this brings us to the end of the first session on the structured query language where we
have looked in to the basics of what makes up the structured query language. And we
have seen how to create a schema using SQL and what is a catalog that is a collection of
tables and how to specify the structure of a table by specifying the name, the attribute
names, the attribute domains, the constrains on the attributes like not null, unique, default
values and so on and the key constraints like the primary key which identifies what is the

primary key in this and also referential integrity constraints like using the foreign key
constraint.

We have also seen how to alter schemas and table constructs or table structures and what
are the implications of these constraints on these modifications? That is what happens if I
drop a particular column name but that column name is actually referred to as a foreign
key from some other table. Now in such cases I can also specify whether to drop all
foreign key references or to drop this column only if there is no foreign key reference
coming into the table.

So using either the notation of cascade or restrict. We also saw the most widely used
operation in relational algebra namely the select operation. However we have not finished
looking into the different forms of select operators. In the next session we would be
looking at some more features of select as and how to nest select operators and how do
we dereference or how do we disambiguate attribute names in the nested select operators.
However as we have seen because select is the most widely used SQL operator or SQL
statement, it has varied number of forms and several different notations and one of the
main properties that we have to remember about the select operator is that the select
operator treats tables as bags or as multi-sets rather than as sets that is it tolerates
duplicates in the sets unless we specify explicitly that we do not want duplicates and this
is specified by the distinct clause.

So to summarize, the slide here shows the summary of what we have seen today. We
have seen an introduction to the SQL standard tables, attributes and values and we saw
how schemata are created and tables can be created and constraints and essentially the
select operation in its different forms that brings us to the end of this session. Thank you.

