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Hello and greetings. In today's session we shall be exploring relational algebra into some 
more depth. We started with relational algebra in the previous session with the definition 
that relational algebra is a data model that is based around the mathematical concept of a 
relation. Let us briefly review what we have learned about relational algebra before going 
further on into some more concepts in the relational algebra. So just to revise what we 
have already seen, the relational algebra is based up upon the notion of a mathematical 
relation. 
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A mathematical relation as we saw before represents a mapping between two or more 
domains. Essentially one relation represents a mapping between two domains that relates 
each element of particular domain to some other element of another domain. So for 
example I might have the set of all student names being related to the set of all roll 
numbers and a mathematical relation is a subset of this mapping that is the set of all valid 
assignments between students and roll numbers. So this forms underpinnings or 
mathematical underpinnings behind which relational model is based upon and as we also 
saw yesterday, the relational model is mainly meant for the design of the internal schema 
of a database. An internal schema is meant or is meant or optimized towards machine 
consumption that is its optimized towards efficient storage, retrieval and queries of the 
data rather that human consumption that is trying to look at the data model and trying to 
understand what the data modal does or what the schema is all about.  



So the building block of a relational model as we saw yesterday and it’s also shown in the 
slide here is a set of relations that contains a set of attributes and each attributes belongs 
in a certain domain. For example the set of all students belongs to the domain of the set 
of all valid student names. Similarly the set of all age attributes belongs to the set of all 
valid age for a given employee or student or whatever. So we also saw the notion of a 
relational schema which describes how this relation looks like that is what are all the 
attributes that makes up these relation and what are the domains of the attributes that 
make up these relation. 
 
An each relation is dereferenced by a relation name and every instance of a relation that 
is every data element that conforms to this relation is called a tuple and each tuple in a 
relation is independent of every other tuple in the relation. Hence for example if I have 
one record of a student compressing of the roll number, name, date of registration, date of 
birth and so on that constitutes a tuple in the relation called the student relation and each 
tuple that is each record about student is independent of the other records of other 
students. And a relation by itself is a combination of tuples plus schema that is given a 
particular schema and a set of tuples that conform to this particular schema is what is 
called as a relation. 
 
As you saw in the previous class, a relation is the input and the output for most of the 
relational algebra expressions like select and project which we had seen. And what are 
the properties of relations? The first property is about the ordering or the lack of it that is 
tuples in a relational schema or in a relation need not have any order, they need not be 
placed in any particular order. There relation is just a set of tuples that conform to a 
particular schema and the second property was about duplicates. Traditionally or the pure 
relational model does not allow for duplicates of a tuple which means to say that the each 
tuple is unique when you take a tuple in its entirety. 
 
So we also made a statement that by default the entire tuples forms the super key for a 
tuple that is using the contents of a tuple, you can identify each tuple uniquely in the 
relation. We are going to actually generalized on this concept today to see how things 
would change, if you can allow for duplicates of the tuples and whether it is required or 
whether it is desirable to allow for duplicates to exist in a relation. We also saw that the 
relational model is defined by certain kinds of constraints and one of the first of which is 
the key constraint. So we defined a super key as something which can identify a tuple 
uniquely and we also defined a minimal super key or a key which says that no subset of 
which is also a super key in itself. And we also saw the notion of a candidate key where 
two or more sets of minimal super keys can be used as keys and the notion of the primary 
key and a foreign key when it comes to referential integrity constraints. 
 
We also looked at entity constraints which says that the primary key of a relation may 
never be null. So you cannot have a tuple in which the primary key is null because null is 
not a valid value for an attribute. It basically says that the attribute is not applicable that 
there is no value associated with null. And we also saw basic retrieval operators select 
and project operators represented by the Greek letter sigma and pi and select is an 
operator which selects a subset of tuples from a given relation without changing the 



schema of the relation that is the input relation and the output relation from a select 
operator have the same schema while a project operator selects in a sense, specific 
columns of the input relation that is it changes the schema of the relation without 
changing the data in the tuple. It does it or it may change the number of tuples, if we 
mandate the fact that the output of the project relation has to be a set that is it cannot be a 
bag or a multi-set that is each tuple from the output relation has to be unique. So, in 
which case the number of tuples that are returned would be less than the number of tuples 
that already exists in the relation. 
 
We also saw that both select and project operators require specific relation that is exactly 
one relation has input and provide exactly one relation as output. Now whatever it do 
when we have more than one relations on which we have to answer a query. So we saw 
one possible solution to this that is to use the Cartesian join or the Cartesian product. 
Now how do we define the Cartesian product over relations? Remember what is meant by 
the Cartesian product over sets. If you have two sets A and B, a Cartesian product A 
times B or A cross B is the set of all mappings from all elements of A to all elements. 
This is the same definition for a Cartesian product for relations as well when we consider 
relations as simply set of tuples. 
 
So a Cartesian join between two or more relations is the combination of set of all tuples 
from every relation to every other relation. So, a Cartesian join as we saw yesterday is 
unnecessarily expensive in the sense that if I have m tuples in the first relation and n 
tuples in the second relation it needs to first compute m times n or m n number of tuples 
to generate a table which in turn goes as input to the select and project operators and from 
where selection has to be made. Clearly this is very inefficient for most operations on 
involving two or more tables. So let us move on today to look at other forms of join 
operators which generate for lesser number of tuples than the canonical join that is 
represented by the Cartesian join.  
 
The first join operator that we are going to see today is what is called as theta join 
operator. This as shown in the slide here, a theta join operator shows a join symbol which 
has essentially something like Cartesian product symbol with two parallel lines and 
which has a subscript called theta which is again shown in the title here. 
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So a theta join combines two or more relations or combines the tuples of two or more 
relations in a way that is specified by a join condition and the join condition is specified 
by the operator theta. So the slide here shows a specific example where the same relation 
that we took yesterday the student and lab relation is computed using a theta join 
operator. That is the slide shows student in a join operations with the lab condition that is 
the student relation theta join lab such that student . lab equal to lab . name. 
 
So student . lab equal to lab . name is the joint condition and the theta join operator is the 
operator that is going to combine student and lab relations. So this is the relation that is 
shown here and as you can see the output of this relation is the same as the select operator 
that we saw in the previous session. That is select student . lab equal to lab . name from 
student time’s lab that is the Cartesian join between student and lab. The only difference 
here is that the condition for this Cartesian join is specified as part of the join operator 
itself. Now how many tuples does this generate? 
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Let us have a look at the student and lab tables from the previous example. The student 
table has four different tuples and the lab table has three different tuples. Now the 
Cartesian join operator initially generated 4 times 3 that is 12 different tuples as input to 
the select operator. 
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On the other hand, the theta join operator starts with the condition that student . lab equal 
to lab . name is a prerequisite for computing the join between the two tables. So in this 
slide here such tuples where student . lab equal to lab . name is shown in a different color, 
are shown in pink. So, as you can see there are only 4 such tuples that match this 



condition. Hence the number of tuples that are generated as input to this select condition 
is just 4 instead of 12. 
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So how is the theta join computed? Well, the general answer is it depends. It would be 
note that in this case, it would be most efficient to compute this theta join operator. If lab 
dot name were to be a primary key of lab that is the lab is being referenced by the name 
and student . lab is a foreign key in to the lab relation and of course referential integrity is 
maintained. So because we have to compute the equality student . lab equal to lab . name, 
all I need to do is take up each student . lab attribute and search for the corresponding 
tuple in the lab relation because it is a foreign key and lab . name is a primary key this 
search can be uniquely done efficiently using several techniques which we are going to 
see later like indexing or hashing and then you compute the join between the two 
relations.    
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So the general form of the theta join relation is shown in this table or is shown in this 
slide. It’s simply two relations with the join operator with a subscript join conditions, so 
the join condition is simply a logical expression over the attributes of R and S, which in 
the previous case we saw was the equality condition that is student . lab equal to lab . 
name. It need not necessarily be equality condition, it could actually be any other logical 
condition like less than or greater than or so on. Now it may so happen that in some cases 
the join attributes may be null which is also true even if there is referential integrity that 
is there may be a lab . name which is missing from a student record.  
 
Now in such cases those tuples do not appear in the result that is whenever I cannot 
combine two or more relations or whenever a particular tuple cannot be combined with a 
corresponding tuple from the other relation, such tuples do not appear in the final result. 
So some more properties of the theta join operator. We saw a join condition now which 
sets student . lab equal to lab . name. Now the condition here or the logical operator here 
is the equality condition or the equal to condition.  
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Now theta join operators in which the only comparison operator that is used is equality 
condition is called an equijoin operator or an equijoin condition. So what we saw actually 
was an equijoin and theta join is more general in the sense that it could mean any other 
kind of attributes. Now a special kind of equijoin is of particular interest and this is what 
is called as natural join between two or more relations. So, natural join is denoted by star 
as shown in the slide here. It is an equijoin where some of the attribute names between 
the relations that are participating in this join are the same. 
 
Now consider this example, consider again the student and lab example. Now let the 
student relation be modified like this that is the student relation has attributes name roll 
number, name and lab name instead of saying just lab. Similarly we have modified the 
lab relation as lab name faculty and department instead of just name. Now as you can see 
here, the lab name attribute or the name of this attribute is the same between the student 
and lab relations.  
 
Now if I say student star lab which denotes a natural join between student and lab 
relations, it returns me a relation which is of this structure. That is the first three are the 
attributes of student and the last three are the attributes of lab and the middle attribute 
here lab name is the common attribute between student and lab. Now it is going to join 
only those tuples which where this common attributes match. So, this is a special kind of 
equijoin operator where not only equality condition is assumed but its also assumed 
which are the attributes on which the equality condition is operated upon. So the natural 
join simply takes attribute names which are the same in the two relations and then 
computes an equijoin over them.   
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So the next operator that we are going to be looking at is what is called as a renaming 
operator. We just saw here now that suppose we modify student as so and so or suppose 
we modify lab as so and so, we can just use natural join. Now can we formalize this 
notion of modification into the relational algebra itself? Can we introduce a notion into 
relational algebra by which we can say this relation is modified as this relation and then 
used in this expression and so on.  
 
Now one way to achieve modification is by assignment. Yesterday we saw that the input 
and output of select and project operators are both relations therefore the output of these 
operators can be assigned to a new relation name and then this becomes a relation by 
itself. Now this assignment can be further generalized such that we not only assign to a 
new relation name, we also assign the attribute names of the new relation. So this slide 
shows the idea here, the first expression here projects the following statements that is it 
takes the student relation and then projects roll number and lab attributes of the relation. 
 
Now once you get a relation as an output, it is in turn assign to another relation called TA 
or may be teaching assistant with the roll number attribute name replaced by id and lab 
replaced by lab name. So the output of this relation is another relation with its own name 
in this case TA and with its own attribute name that are different from the attributes 
names of the incoming relation.  
 
Now this renaming operator or this kind of renaming can be implicitly achieved without 
an assignment statement by using the rename operator which is identified by the Greek 
symbol row which is shown below in the slide here. So the statement here, the relational 
expression here shows that the same thing that as the assignment statement above that is 
it projects roll number and lab from the student relation and then computes a rename or 
gives them as part of a rename expression that says rename it as TA id and lab name. 
 



So how does the rename operator work in general? In general the rename operator 
contains or may be defined by the following properties. This is shown in this slide here. 
The first form of the rename operator shows that the entire relation, the input for the 
rename operator is of course a relation and of course the output is also a relation. So the 
entire relation is being renamed that is it is given a name S and the attributes are given 
names B1 B2 extra until Bn.  
 
The second kind of rename expression that is row subscript S operated upon relation R, 
we will rename only the name of the relation that is the output relation is called S in this 
case and in the third case where row has the subscript of B1 to Bn within braces or rather 
within parenthesis and the input is the same relation R, the renaming happens only on the 
attribute names and not on the table name itself. 
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That is the name of the table or the name of the relation remains the same and the 
attributes are renamed to be called as B1 to Bn in this case.    
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The next set of operators that we will be looking here are the set theoretic operators. 
Again the set theoretic operators here operate on relations rather than specific sets as 
such. Now a relation is also a set but it could be multi-set or it could have certain 
differences when we are talking about joins and so on and so far. So the set theoretic 
operations like unions, intersection, set difference they can be applied in the relational 
model as well. 
 
Now this set theoretic operation can be applied only to what are called compatible 
relations. Now what is meant by compatible relation between when we are considering 
two or more relations? That is can I compute a union operator between let us say a 
student relation and an employee relation or a student relation and a project relation. Now 
some of these union operators may make sense and some of these may not make sense.  
 
Now that is why we formally define the notion of compatibility or union compatibility 
between two or more relations. Now what do we mean by compatibility? The formal 
definition is shown in this slide here. Suppose we consider two relations A and B or in 
this case R and S and suppose they have a set of attributes let us say A1 to An and B1 to 
Bn, they are compatible if and only if first of all you might have already noticed that the 
number of attributes are the same. That is the R has set of attributes A1 to An and S has a 
set of attributes B1 to Bn. So firstly the number of attributes are the same, if they have to 
be compatible and the domain of every corresponding attribute is also the same. That is 
the domain of A1 is the same as the domain of B1. If A1 can span the set of all valid roll 
numbers, B1 should also span the set of all valid roll numbers and so on. Similarly for A2 
to until An, B2 until Bn. 
 
So the set of all corresponding domains are the same. Note that there is nothing here 
about the names of each operators. Roll number could be called roll number in relation A 
and could be called id in relation B, it doesn’t matter as long as the domains of each of 



these attributes are the same, we should be able to compute the set theoretic operations 
like union intersection and set difference. 
 
Now assuming that we have two or more relations which are compatible, how do we 
compute set theoretic expressions? The union operator R union S which is shown in the 
slide here it simply returns the set of all tuples that are present in either R or S or both and 
of course without any duplicates that is any tuple. Note here that entire tuples are 
compared between R and S, the entire tuples where the corresponding elements have to 
be same or compared. That is suppose I have one student relation or one record about a 
student in R and another record about a student in S, it just combines both of them that is 
the output of R union S is the set of tuples that lie either in R or in S or both and of course 
without duplicates.  
 
Similarly the intersection operator returns the set of all tuples that are present in both R 
and S which is same as this intersection operator on sets. And similarly the set difference 
operator R minus S returns a set of all tuples that are in R but not in S. So the set of all 
tuples that are unique to R but and not present in S would be the output of R minus S. So 
we can note that this standard properties of set theoretic operations also apply here that is 
union and intersection are commutative R union S equal to S union R and R intersection 
S equal to S intersection R. However the set difference is not commutative, S minus R is 
not the same as R minus S.  
 
So we shall be coming back to these set theoretic operators again when we relax the fact 
that a relation may not contain duplicates, now what happens if you allow for duplicates 
in the tuples. The next operator that we are going to be looking at is the division operator. 
The division is a slightly unintuitive operator in the sense that it needs a little bit of 
explanation to understand what or where a division is going to be used. A division 
operator is essentially used in cases where we may have to identify data elements that are 
associated with some other data element whenever the other data elements occur that is 
for all properties of the other data elements.   
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Have a look at this slide here which shows a particular example. Now firstly there is the 
definition here the division operator is used to denote conditions where a given relation R 
is to be split based on its association with every tuple in another relation S. Let me go 
straight to the example here and then go back to the explanation of division. The example 
shows two relations R and S. The R relation has two attributes A and B and the S relation 
has just one attribute A. Firstly the division of R and S is going to return the attribute B  
that is the R divided by S is the set of all attributes B such that there is some relation 
between the attributes in A. So what is that relation? The set of all attributes B contained 
in R that are associated with all values of attribute A of S. That is suppose let us take the 
example of b1. Is b1 associated with a1 in R? Yes it is, a1 b1 is here. Is b1 associated with 
a2? Yes it is, a2 b1 is also here and these are the only two values in S. 
 
Hence b1 is a valid result in T equal to R divide by S that is every data element here that 
is associated with every other data element in the other relation is what is going to be 
returned as part of this relation. Consider an example something like which employee has 
worked with some other employee on all projects that he has worked. Let us say which 
employee has worked with some employee named Arun or something on all projects that 
Arun has worked. So suppose these were all the project that Arun has worked and there is 
this employee b1 who has also worked in all these projects, you are going to get b1 as an 
output.  
 
Consider the case of b2 here, now b2 is associated with a1 but it is not associated with a2 
there is some a3 with which it is associated. Hence b2 is not part of the result but b3 
which is again associated with a1 and a2 it is part of the result. So the division operator in 
some sense divides the first relation based on which data elements in the second relation 
in some way completely divides that, that is associated with all data elements of the first 
relation. We are going to look at an example later on where division operator is going to 
be used and what is the power of the division operator. 
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There are also other relational operators which are also called additional relational 
operators which we shall briefly mention and have a look at their properties. We are 
going to mainly look at two such operators namely the outer join and the outer union 
operator. Now, going back to the notion of join, recall that join or a theta join operator 
takes a join condition as one of its input. Now suppose any of the attributes which match 
condition is null then such tuples are not further processed at all that is they are just 
thrown away from the relation. However in some cases it may be required to compute all 
possible joints even when the join attributes are null and this is what is called as outer 
join. So consider two relations R and S, now suppose let us say for the sake of simplicity 
we have defined a natural join between R and S. 
 
Now every attribute in R which is participating in the joint should point to or should refer 
to an existing attribute in S that is it should not be null and the attribute that it refers to 
should exist in S, only then the natural join can be processed. However there can be two 
possible scenarios, the left outer join that is suppose the attributes that are participating in 
join the attributes of R that are participating in join are null. The left outer join includes 
such tuples even when the attributes that are or the referencing attributes are null. 
Similarly the right outer join includes tuples even when the referenced attributes does not 
exist. 
 
So it basically replaces them with nulls and then just includes that part of the tuples that 
is that part of the tuple from R which has data in it and the rest of the data elements 
would be null. So it is some kind of a union or a canonical, well I shouldn’t say canonical 
but some kind of a union operator where you include every tuples any way, its some kind 
of an inclusive operator or inclusive join operator where it includes tuples any way even 
when the corresponding attributes are null. On the lines of outer join we can also define 
outer union operator.  
 



Now we saw that the union operator that is union between or union or intersection or any 
set theoretic operators between two or more relations can be performed only when they 
are compatible. Now what did we define as compatibility as? The compatibility was that 
both of these relations should have the same number of attributes and the domains of the 
corresponding attributes should be the same in both these relations. Now the outer union 
is basically a relaxation of this constraint and the example shows two relations R X and S 
Z that is X is a set of all or the list of all attributes of R and Z is the list of all attributes of  
S.   
 
Now suppose X and Z are not compatible, however a subset of X and Z are compatible 
that is W a subset of X and Y are subset of Z are compatible. Now a union or an outer 
union operator computes the union based on this compatible subset of these relations and 
then simply includes all other relations or all other attributes as they are in the relation. 
So similarly the outer union operator is simply some kind of an inclusive union operator 
that includes tuples or works on relations even when they are not union compatible or 
even when they are not perfectly compatible between them. So theoretically speaking 
there are, do we need all these operators or can we express one operators from other or 
has a basis of using other operators. This slide shows what is called as the complete set of 
relational operators.  
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Now as you can see in the slide here, there are the following operators select, project, 
union, set difference and the Cartesian product. Now this set of operators is called the 
complete set of relational operators because every other kind of relational operator can be 
expressed as a sequence of the above operators. I am just giving two examples here but 
you can verify that for yourself taking each operator and trying to express it as a sequence 
of the other, one of the complete set of relational operators.  
 



For example R intersection S can be or is equivalent to the R union S and the difference 
of R minus S union S minus R. So let us not go into the set theoretic operation to prove 
this equality but I am sure this is quiet obvious that you can express the intersection using 
union and set difference. Similarly joins can be expressed theoretically using a select 
condition over Cartesian products. We already saw that in the example there were student 
. lab equal to lab . name or in this case here R join condition S is the same as select 
condition over R times S. The first one here should be the join symbol and R join 
condition S is equivalent to select condition over R times S. 
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Now we are going to look at making one generalization over or trying to relax particular 
constraint on relational expression or on relations. Now until now we have been saying 
that relational operators should take relations that are sets and not multi-sets and return 
relations that are also sets and not multi-sets. However in some cases it might be 
necessary or even desirable to allow for the existence of duplicate or duplicate tuples in 
in relations both in the input and output relations.  
 
Now first of all such relations or such sets where elements can occur more than once is 
called a bag or it’s also called a multi-set. So bag or a multi-set is a set that may have 
multiple occurrences of a given element. As we can say it’s a generalization over the 
present notion of a set that is every set is a multi-set in which each element occurs exactly 
once. However a multi-set is something where an element can occur more than once.  
 
Now in some cases bags are actually necessary in the relational models not only desirable 
but also necessary. When are these conditions? Consider the case that we are querying 
the database to compute the average marks obtained by all students in a particular 
semester. So we have a student relation in which there is one of the attributes which is 
called as marks. Now we project this attributes saying project marks based on student. 
 



Now based on the set of all marks that it has projected, we compute the average mark by 
computing the sum of all these marks and divided by the total number of entries that are 
there. Now in this case if duplicates were actually to be removed, we cannot compute the 
average in a correct fashion. We will actually be losing information when we change the 
multi-set or when we remove duplicates and make it into a normal set. So when we are 
computing aggregate relations like sum and average, we actually need multi-sets or 
duplicates in the relation, the duplicate should not be removed from the output relation.  
 
Similarly if we can tolerate duplicates in the relations somewhere while evaluating 
relational expressions, it may make things much faster. For example every time I return 
the output of a project operations, I may have to spend considerable amounts of time 
trying to looking for each tuple and seeing whether there are duplicates of this tuple in the 
output relation. So especially when computing projects and unions duplicate removal 
may take a significant amount of time.  
 
Now if I have a relational query that has several project operations and union operations 
and are embedded somewhere deep in the query, it may be terribly inefficient or to be 
computing or to be eliminating duplicates every time we compute project and union 
operator. So, sometimes it may be necessary or it may be desirable to tolerate bags or to 
tolerate multi-sets as part of a relation as part of an intermediate output in a relational 
expression. Now how does this generalization from sets to multi-sets affect relational 
operator?  
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Now consider two bags R and S. Now in the first bag let a tuple t occur n number of 
times and the same tuple t occur m number of times in R in S. So how do we define set-
theoretic operations based on these bags? The first operation that we define is called the 
union of bags or it’s also called the disjoined union of sets and it is denoted by R plus S. 
You can also denote it by R union S when we are sure that R and S are bags and not sets.  



So its simply denoted by R plus S and its simply contains R plus S that is the cardinality 
of R plus the cardinality of S number of tuples that is both bags are simply combined, 
every tuple in S is combined with every tuple in R and that’s it. That is it has m plus n 
occurrences of this tuple t which has been repeating. Now when you are compute the 
intersection of bags, R intersection S what happens to tuples that occur multiple times? 
So tuple t which occurs n number of times in R and m number of times in S occurs only a 
minimum of m and n number of times in R intersection S. So as you can see the 
generalization here that is in sets, a tuple will appear in R intersection S only if it appears 
in both R and S. Here it will appear the minimum number of times it appears in both R 
and S.   
 
Similarly the set difference between bags, the set difference between R and S, R minus S 
is where the tuple t occurs n minus m times that is n number of times it had occurred in R 
and m number of times it had occurred in S. So the number of tuples that is going to 
occur in R minus S is n minus m, if and only if n is greater than or equal to m. If n is less 
than m then the number of times is going to appear is zero, of course it can't appear 
negative number of times. So tuple appears does not appear, if the number of tuples in R 
does not out number the number of tuples in S. You can think of it has something like 
canceling out tuples from R and S. So for every tuple in R, we cancel out ever tuple in S 
and then see how many tuple are remaining in R after we have cancelled out all tuples in 
S and that is the number of tuples that we are going to take in R minus S.  
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Now what is the other operators on bags? The select operator does not change, the select 
operator operates the same whether it is on sets or bags. You just take a select condition 
and apply it to each tuple in the input relation regardless of whether the relation is a set or 
a bag. Similarly the project operator becomes simpler. It does change but it becomes 
simpler that is a project operator simply takes the requested columns or requested 
attributes and gives them out, there is no need to eliminate duplicates. 



Similarly the Cartesian product of bags, it’s also the same thing. It is if a tuple t occurs m 
times in R and n times in S as before then the tuple t S that is t combined when with S 
occurs mn number of times. That is every tuple in R is combined with every tuple in S 
regardless of how many times they appear in R m, in each of these relations. 
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However there are certain algebraic expressions on bags that do not hold when the 
relations are tuples. Have a look at these algebraic expressions that are shown in the slide 
here. The first algebraic expression is the distributivity over the set difference operator 
that is R union S minus of T is the same as and is equivalent to R minus T union S minus 
T. You can easily verify that this expression is true when R S and T are sets. However 
this expression is not true or does not hold when R S and T are bags and not sets, when 
they are multi-sets.   
 
Now why is it not true? Let us take an example, this is called the 1-1-1 principle. Now 
consider that a tuple t occurs exactly once in R S and T. There are some particular tuple 
or some particular data element that occurs exactly once in R S and T. Now when we 
compute R union S, in the resulting set this tuple occurs twice if it is a multi-set or if it is 
a bag. Now once we consider and then once we compute R union S minus T, this tuple 
which we are considering now would have occurred once that is 2 minus 1 number of 
times, once it could have occurred.  
 
On the other hand look at the right hand side here. When we compute R minus T, this 
common tuple which had occurred exactly once is not going to occur in R minus T, it’s 
going to occur zero number of times. Similarly in S minus T this tuple vanishes, it occurs 
zero number of times. So in the union between R minus T and S minus T, this tuple does 
not exist at all whereas there is one occurrence of this tuple in the left hand side of this 
expression.  
 



So this expression does not work when R S and T are bags and not tuples and not sets. 
Take this second expression. The distributivity over intersection and union that is R 
intersection S union T is equal to R intersection S union R intersection T. This is of 
course easily verified when R S and T are sets. However this does not hold when R S and 
T are bags and this can again be easily verified by considering a specific counter example 
which is called the 2-1-2 principle.  
 
I will not be going into detail into the 2-1-2 principle, you can use the same argument as 
we have used in the first case where we took the 1-1-1 principle that is consider a tuple 
that occurs exactly once in R S and T. Here consider a tuple that occurs exactly twice in 
R, once in S and twice in T and see what happens and see if the left hand side of this 
expression is equal to the right hand side of the expression as far as this tuple is 
concerned. And you can see why this relation does not exist, does not hold or this 
equality does not hold. 
 
The third expression is also significant when we are considering bags and not sets. 
Expression gives a select operator that is select C or D, C and D are some conditions over 
attributes of over R, so I am selecting C or D over R. That is select any tuple where either 
C or D or both holds and give me all those tuples. Now if it were a set that is if R where 
to be a set, I can rewrite this as select C union select D that is select C over R and union it 
with select D over R but the same thing does not work when R is a bag and not tuples.   
 
Now again you can take a very simple counter example to show that this is the case. Now 
consider a particular tuple where both C and D are true. Now that tuple is going to be 
return only once in the left hand side of this relation but this tuple is going to occur twice 
in the right hand side of this relation because its going to be returned once from C and 
once from D and when we are taking a union or disjoint union, we are going to just add 
up both of them and its going occur twice in this relation. Hence this does not work when 
R is a bag   
 
So tolerating bags is not only desirable but sometimes also necessary however bags pose 
their own unique problems, unique issues when we are considering set theoretic 
operations and algebraic expressions over bags and which we have to keep in mind when 
we say that when we either decide to tolerate bags or not tolerate bags. In a nut shell we 
have covered quiet a few of quiet a significant part of what constitutes relational algebra 
expressions and what constitutes or how to write queries in relational algebra.  
 
In the next three slides let me give a small example of relational algebra queries and how 
queries can be composed from one another. So this slides shows a very small database 
schema comprising of 5 different relations employee, department, department locations, 
projects and works_on. So employee is a relation that talks about details of an employee, 
it has the first name, middle, initials, last name, the employees pan number, date of birth, 
address, gender, salary, the supervisor of that employee and the department number 
where the employee works. 
 



And the department contains department name, department number which is the key here, 
all primary keys are shown underlined and the pan number of the manager and the start 
date of the manager. 
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Department location only shows each department number and the location where it is 
located and project shows project name, project number, location and the department 
number where the project is working. And similarly works_on talks about this employee 
works on this project for this number of hours and so on. So let us take some typical 
queries very quickly and go through how we can answer these queries.  
 
Query one, the first query which we are going to consider says that retrieve the name and 
address of all employees who work for the research department. So how do we answer 
this query. First of all we take the set of all tuples that form the research department that 
is select DNAME equal to research from department, the set of all tuples which are the 
research department.  
 
Now compute which are the set of all employees who works in the research department? 
How do we compute that? Compute a join between research department and employee 
where the department number is the Dnumber. Recall that in the employee record there 
was a Dnumber here which showed which is the department number where the employee 
work.    
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So compute a join, an equijoin where this is this. Now from this we have got all details of 
employees who work in the research department, from that we need only the first name 
last name and address because that’s what the query asked that is the name and address 
for employees, so project as a last query. Query two: Find the names of all employees 
who work on all projects controlled by department number 5. So have a look at this query 
again. We want the names of employees who work on all projects that are handled by this 
department. So how do we go about answering this? First of all let us find out what are 
all the projects that are being handled by department number 5.  
 
So department 5 project is the name of the relation which says project, the project number 
and select from project where department number equal to 5 and project only the project 
number. Then which are all projects that employees work on? Take the pan number and 
the project number and then work on this. Now what we have to do is that we just have to 
compute a division between employee project and department 5 project which basically 
gives us the set of all pan numbers of employees who work on all projects or who are 
associated with all projects of department 5 which is the result.  
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That is we in turn use that to and combine it with the employee record to return the first 
name and last name of employees. So in this way we can, as you can see here for any 
given query we usually need to perform a series of operation, series of relational algebra 
operations before we get to the final result.  
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So let us summarize what we have learnt today in a brief fashion. So we saw the 
definition of relational schema, the notion of a relation, domains and attributes and the 
characteristics of relations especially with considering duplicates and ordering of tuples 
and so on.   



We also saw the basic relational algebra retrieval operations that is select and project and 
so on and set theoretic operations and relations and also how this set theoretic operations 
change, when we relax the notion of the relation from being a set of tuples to a bag of 
tuples when we can allow for duplicates. We also saw why in some cases, it’s not only 
desirable but also necessary to use bags. We also saw how we can, given a particular user 
requirement how we can go about formulating a relational algebra query in a step by step 
fashion. So that brings us to the end of this session on relational algebra. Thank you.  
 
 


