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Hello and welcome to this second session in data mining. In the previous session we saw 
what this concept of data mining was all about and we saw some very fundamental 
concepts of item sets and association rules and how do you discover particular patterns in 
an item set. That is how do you discover something that you don’t know from a data set 
using the concept of support and confidence and so on. 
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So, essentially you give a particular interestingness criteria and then you start distilling 
out certain patterns from the data set. Let us move on further in this session where we 
will briefly look into some fundamental algorithms or some very simple algorithms on 
different kinds of data mining activities namely in discovering classification trees or 
discovering clusters of properties of data and mining sequence data, the data of different 
sequences or stream data mining and so on. Let us briefly summarize what data mining 
was all about. 
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Data mining essentially is the concept of or is the idea of looking for hidden patterns and 
trends in data that’s not immediately apparent by just summarizing the data. So when we 
say hidden patterns, its essentially means that something that we don’t know about. There 
is nothing hidden if you already knew such a pattern existed in the data base. So in a data 
mining setting there is no query but we use the concept of an interestingness criteria. That 
is we use let us say frequency or consistency or rarity or whatever be the interestingness 
criteria and certain parameters define each of these interestingness criteria like 
frequencies is parameterized by support and confidence for association rules and just 
support for item sets and so on. And again there are different kinds of data we can think 
of tabular data, spatial data, temporal data, tree data, graph data and so on and so forth. 
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So today or in this session we shall look at specifically at sequence data mining and 
streaming or mining streaming data and in addition to other mining algorithms. And of 
course type of interestingness itself could be varied that we could talk of frequency as 
frequent patterns as being interesting or rare patterns being interesting and so on. 
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Now let us move further from here and look at the concept of classification and clustering 
that is discovering classification tree and discovering clusters within a given data set. 
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Now what is the difference between classification and clustering? Intuitively they both 
seem do the same thing. That is when you classify a given data set into different classes 
or whether you cluster a given data set into different clusters but essentially few observe 
closely classification maps data elements to one of a different set of pre-determined 
classes based on the differences between data elements. That is if data element a and data 
element b belong to different classes if they are different enough.  
 
On the other hand clustering groups data elements into different groups based on 
similarity between elements within a single group and sometimes it’s also the case that in 
a classification we know the classes apriori. We know what are all the different classes 
into which data can be classified into and sometimes in clustering, we don’t know how 
many clusters we are going to get before the clustering process begins. Let us look at 
mining in relation to classification techniques rather; we are not interested here in the 
idea of classification itself but we are interested in the idea of discovering classification. 
What is it meant by discovering classification? Discovering a decision tree or which 
decides how to classify data sets into different classes. 
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Let us take a small example. Discovering this algorithm is best represented by an 
example. So let us take a small example and see how we can discover a classification 
tree. Let us say that we have data about different cricket matches that have been played 
over the last several years. Now we have a, let us say in a given city. Now the question is 
this city is notorious for it rains for its rains and its unpredictable weather. Now in the 
past several times, play had to be abandoned that is play were to be continued or was 
abandoned and so on.  
 
Now we have data like this from different data sets. When it was sunny and the 
temperature was 30 degrees, play was continued. When it was overcast and the 
temperature was 15 degrees play wasn’t continued, when it was sunny and temperature 
was 16 degrees play was still continued and so on. So in some times play was continued 
and sometimes play was discontinued, its no. Now what is the classification problem is 
can I classify weather conditions which is a combination of the outlook and the 
temperature into one of two classification classes that is whether we are going to play or 
play is going to be discontinued. That is what is the criteria, when play was discontinued 
and what was the weather criteria when play was continued. 
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So there is a well-known algorithm called Hunt’s method for identification of decision 
trees and like before let us first look at an example of how we identify a decision tree 
before looking at the algorithm itself.  
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The way of identifying decision tree is quite simple. First of all because this temperature 
field here (Refer Slide Time: 08:04) is a numeric value, it could take several different 
values and which might be of no interest to us. So let us perform a hand classification of 
this numerical values into different classes.  
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So what we have done here is that temperature is now classified into three different   
classes warm, chilly and pleasant. So whether the temperature was warm whether the 
temperature was chilly or whether the temperature was pleasant based on dividing the set 
of temperatures into different classes. Now first of all because there are two values here 
that is there are two fields here outlook and temperature, both of them both of them will 
affect the decision on whether we are going to play.  
 
So how do we know what is the best or how do each how do each parameter affects the 
decision whether to play or not. Let us start by looking at one parameter after another. 
First let us look at sunny. Now if you see here that whenever the outlook was sunny, the 
cricket match was played it was not abandoned. It is sunny only twice here and in both 
cases cricket matches played. Therefore we can directly conclude that if the weather is 
sunny regardless of whether the temperature is warm or whether the temperature whether 
the temperature is chilly or whatever, we can conclude that play will continue, the play is 
not going to be stop.  
 
On the other hand let us look at cloudy here. Now when it is cloudy here play was 
continued in one case or rather in two cases and when it was cloudy here, play was 
discontinued in one case. So from cloudy we are still in a what is called as a bivalent state 
that is it is still yes or no may be or whatever, may be yes may be no, we still don’t know. 
Similarly when the outlook was overcast, let us say here it was overcast and they didn’t 
play. Here once when it was overcast they actually played and once more, when it was 
overcast then they didn’t played. So, from overcast we still say yes or no, we don’t know 
whether they are going to continue play or not. 
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So what we can do now is we can safely remove the first rule from our process that is this 
is a rule that we have already discovered that is when it is sunny they are going to play. 
So now let us remove this rule from our from consideration and take these two rules. 
Now because from cloudy and over cast, we are still in a bivalence state we have to 
ultimately reach to a state where we can remove this bivalence that is we can either 
conclude yes or no conclusively. So we will try to we will try to now introduce the 
second parameter temperature into this state here to see whether we can remove this 
uncertainty about yes or no. The first case the uncertainty is already removed, so there is 
nothing we need to do any more.  
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So we have introduced let us say here (Refer Slide Time: 11:41) for cloudy, we have 
introduced all three possible cases warm, chilly and pleasant, similarly for overcast 
warm, chilly and pleasant. So let us take cloudy and warm. So, whenever it was cloudy 
and warm there is only one case here play was continued, yes. So basically we have 
removed the bivalency that is we have conclusively stated that whenever it is cloudy but 
the temperature is warm, play is going to continue, we are not going to abandon play. 
 
On the other hand whenever it was cloudy and chilly, there is only one case here where 
play was discontinued. So again there is the bivalency is removed that is cloudy and 
chilly means no. So we can again conclusively state that the play is going to be 
abandoned if the outlook is cloudy and the temperature is chilly.  
 
Similarly when it is cloudy and pleasant, cloudy and pleasant is here and there is only one 
case here, cloudy and pleasant is yes. So when the outlook is cloudy but the temperature 
is pleasant, we can still conclude that they are going to continue play. Similarly overcast 
and warm there is no entry at all, so we don’t know there we can’t decide anything. So 
overcast and warm remains as it is and overcast and chilly gives us no, that is play is 
going to be abandon. Similarly, overcast and pleasant gives us yes. 
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So effectively we have removed this bivalency that existed here (Refer Slide Time:  
13:20) when it was cloudy and overcast and decided or came to know when, under what 
conditions play is going to be continued when it is cloudy and under what conditions play 
is going to be discontinued when it is cloudy and the same thing for overcast. So 
therefore what we have actually done is we have discovered this decision tree. So initially 
we were in a bivalent state that is we don’t know play is going to be continued or 
discontinued. Now in this bivalent state we were told that the outlook is sunny then we 
can immediately conclude yes we are going to play today.  
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On the other hand if you are in this bivalent state here, if you are told that the outlook is 
cloudy, we will still be in a bivalent state we still don’t know whether they are going to, 
whether the play is going to be continued or not. So we ask for more information and 
then when you find out that the temperature is pleasant, let us say for example then we 
say that yes the play is going to continue. On the other hand if the temperature is chilly 
then we have reasons to believe that play is not continued that is the data set tells us that 
play is going to be abandon and so on. 
 
So what we have got here is a tree data structure where from a bivalent state, we 
eventually go into a univalent state that is a state were the uncertainty is removed and 
then we have concluded or we have classified his this play into two different classes that 
is yes or no that is play is going to be continued or play is going to be abandon. So let us 
look back (Refer Slide Time: 15:11) at the algorithm little bit as how to go about this. 
Suppose we are given n different elements.  
 
In our case in the example that we right now saw, n was equal to 2 that is outlook and 
temperature. so suppose we are given n different element types and m different decision 
classes, in this case again m was two that is yes and no. so what we do in this loop here, 
for each of the different element types we keep progressively adding element i to the i 
minus oneth element item sets from the previous iteration. And then whenever and then 
we see whether we can decide, identify the set of all decision classes for each such item 
set. 
 
If the item set has only one decision class that means we have already decided. so this is 
done, removed that item set from subsequent iterations otherwise keep continuing until 
you finish all your element types.  
 



And of course it could well be the case that even after finishing all my n different item 
sets, I may not be able to reach a conclusive decision. 
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So it might well be the case that when it is over cast and chilly. Sometimes they actually 
play and sometimes they didn’t play and so on. so that again, there are several methods to 
deal with such kinds of indecisiveness for example to use probabilities that is this is 
going to or some kind of fuzzy classification where we say that outlook is overcast and 
temperature is pleasant then they are going to play with a probability of 90% or 
something like that.  
 
So let us look further into what are some clustering techniques (Refer Slide Time: 17:03). 
Now what is meant by clustering or how does it differ from classification? We saw 
earlier that there is a philosophical difference between classification and clustering, 
probably not in the n result but philosophically there is a difference. Of course even in the 
end result there are differences but the most marked difference is philosophically. That is   
classification is based on amplifying the differences between different elements so as to 
make them belong to different classes.  
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On the other hand clustering is based on amplifying the similarities between elements so 
as to form them into different clusters. So clustering essentially partitions the data sets 
into several clusters one or more clusters or equivalence classes. And what is the property 
of a cluster or an equivalence class? Essentially the property here is that the similarity 
among members of a given class in a cluster is much more than similarity among 
members across clusters.  
 
So members belonging to the same cluster are much more similar to one another than 
they are to some members belonging to some other clusters. And there are several 
measures of similarities and most of which are reduced to geometric similarity by 
projecting these data sets into hyper cubes or n dimensional spaces and then use some 
kind of Euclidian distance or other kinds of distance measures like Manhattan distance 
and so on and several distance measures to compute the similarity.  
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Let us look at the first kind of clustering algorithm which is called the nearest neighbor 
clustering algorithm. This is quite simple that is this clustering algorithm takes a 
parameter called threshold or the minimum distance or the maximum distance t between 
members of a given cluster. So given n elements that is x1, x2 to xn and given a threshold 
t which is a maximum distance that can exist between elements of a cluster, we can find 
clusters in a very simple process. Initially the set of clusters is a null set. Then for each 
element let us say j equal to 1 here and j goes to, until j plus one here for each element 
find the nearest neighbor of xj.  
 
Now let the nearest neighbor be in some cluster if it is already in a cluster, if it is not in a 
cluster then fine you can just create another cluster by yourself. So suppose the nearest 
neighbor is in cluster m. now if the distance to nearest neighbor is greater than t that is if 
it is greater than threshold then we know that there is no other element that is nearer to 
me with a distance less than t. therefore I should belong to a new cluster so then create a 
new cluster and increment the number of clusters else assign it to the cluster m were the 
nearest neighbor of it existed. So, as simple as that. That is given a small threshold, you 
basically start partitioning your set of elements into different clusters based on which is 
the nearest neighbor to a given element. If the nearest neighbor is within this threshold 
distance then I join the cluster, otherwise I belong to a new cluster.  
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There is another kind of clustering techniques which is again quite popular which is 
called as the iterative partitional clustering. This is another clustering technique where 
this differs from the nearest neighbor technique in the sense that here the number of 
clusters are fixed apriori. In the nearest neighbor technique or in the nearest neighbor 
clustering techniques, the number of clusters are not fixed apriori that means you don’t 
know how many clusters you are going to get, given a particular threshold and a data set.  
 
So this is very much unlike classification where we know the classification, where we 
know the classes under which data can be classified into. In iterative partitional 
clustering, the number of clusters are already known apriori and then we are trying to 
rearrange the clusters that is but that is we don’t know how many or what elements 
belong to which clusters. So, given n different elements and k different clusters, each 
with a center. What do we mean by a center here? It’s the centroid in the statistical sense, 
for example it could be the first centroid. That means if a cluster has several features, the 
average of all these features along all different dimensions will form the centroid of a 
given data set.  
 
So let us say we have k clusters each with a center. Now assign for each element, assign 
it to the closest cluster center. So each clusters has a cluster or a centroid. For each 
element, find out which is its closest cluster center and assign it to that cluster. After all 
assignments have been made, compute the cluster centroids for each of the cluster. That 
is compute the average of all the points that made up this cluster and possibly this will 
shift the centroid to a different to a different location. So once this centroid is shifted to a 
different location, the nearest centroid or the nearest cluster center will now differ for 
each element.  
 
Therefore we keep repeating these two steps, until the new centroid I mean with a new 
centroids that are formed until the algorithm converges. That is until the algorithm 



stabilizes so that the centroids will stop shifting and then we know that we have found the 
exact or we have found the best centroids for each of the clusters, each of the k clusters. 
so iterative partitional clustering essentially is a technique were something like saying, 
suppose I have a data set and I say that suppose I want to create 10 different clusters out 
of this data set, where would these clusters lie and so on.  
 
On the other hand, a nearest neighbor clustering technique would say suppose I have this 
data set and suppose I have a maximum distance, a threshold distance of 5 between   
elements that can lie within a data set then how many clusters will I find. whereas in the 
in the iterative clustering algorithm, we are interested in where the clusters are going to 
be, where are the cluster centroids of these 10 different clusters that are going to be 
formed.  
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Let us now move on further and look at different other kinds of data sets. We have been   
looking into, until now we have been looking into let us say the tabular data as in apripri 
or association rule mining or some kind of multi-dimensional data. Tabular data can be 
treated as multi-dimensional data as long as they belong to certain ordinal classes which 
is of course beyond the scope of this session here that is how do we convert a tabular data 
into multi-dimensional data. But any way as long as the data can be converted to multi-
dimensional form, we can use clustering techniques for clustering them into different 
clusters.  
 
Similarly tabular data can be used to also infer classification trees. Let us now move on to 
different kind of data what is called as sequence data. What do we understand by the term 
sequence? Sequence is essentially a collection of data elements wherein it’s not just the 
collection, it’s an ordered collection that is where in the ordering matters.  
 



That is in a sequence each item in a sequence has an index associated with it. That is 
some kind of a subscripted element, each element is a subscripted element. So this is the 
first element, this is the second element and so on. So when we say we have a k 
sequence, it means that we have a sequence of length k that is there are k different 
elements in a particular order in this. 
 
there are different kinds of sequence data like for example any kind of transaction log 
over a period of time or let us say some kind of web browsing logs, http logs or DNA 
sequences or the patient history, the medical history of a patient over time that is how is 
the history changing or what kinds of events happened and so on. So all of these are 
sequence data.  
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So let us look at some definitions in mining sequence data and which help us in 
formulating algorithm for looking at patterns in sequence data. First of all when we talk 
of a sequence, a sequence is essentially a list of item sets of finite length that is each 
element in a sequence need not be atomic, it could actually be a set, it could actually be a 
different set of items. So for example this is the sequence. The first element here is 
pencil, pen, ink or pen, pencil, ink. The second element here is pencil, ink. The third 
element is eraser, ink and so on and the fourth element is ruler, pencil and so on.  
 
So this sequence essentially for example could be denoting the purchases of single 
customer over time in this particular store or whatever. So let us say the customer came 
in the first month and purchase these three things, the second month you purchase these 
two and the third month you purchase these two and so on in some stationary store.  
 
Now the order of items within an item set here does not matter but the order of item sets 
itself matters. That is this is the first month, this is the second month, this is the third 
month, so the position of this item set matters but the position of items within an item set 



doesn’t matters. So whether I read this as pencil, ink or ink, pencil it doesn’t matter. And 
we define the term sub sequence, as any sequence with some item sets deleted from it. 
So, some more definitions. Suppose I take a sequence a1, a2 until am, this is actually a 
sequence it’s not a set, so this curly braces should actually be a, it should not be there. 
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So suppose I take a sequence s prime a1 a2 until am. we say that s prime is set to be 
contained within another sequence s, if s contains a sub sequence of the form b1 b2 etc bm 
that is m different elements such that each corresponding element is a subset, a1 subset of 
b1 subset equal to rather and a2 subset equal to b2 and so on. So, hence for example this 
sequence pen, pencil and ruler pencil is contained in this sequence. That is pen is a subset 
of this, pencil is a subset of this and suppose you take this out and create this sub 
sequence pen, these three as a subsequence then ruler pencil is a subset of this one.  
 
So, let us look at the apriori algorithm. I think called the apriori gen algorithm or 
whatever apriori all algorithm where it is applied for sequence data rather than item sets 
or association rules. 
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The apriori algorithm for sequences looks very similar to the apriori algorithm for item 
sets as well. How does the apriori algorithm look? First of all we set, we generate L1 that 
is the set of all interesting one sequences. What is the one sequence? A sequence 
containing just one element. And then when Lk is not empty when k equal to 1, we 
generate all candidate k plus 1 sequences and out of these, we take only the set of all 
interesting k plus 1 sequences.  
 
What is interesting k plus 1 sequence here? It is simply the set of all k plus 1 sequence 
which have at least the minimum support that we have specified and so on. Now the main 
question here lies in this statement here 3.1, that is how do we generate or what is the 
candidate generation algorithm? How do we generate all candidate k plus 1 sequences?  
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So how do we generate all candidate algorithms? Now given let us say different 
interesting sequences that is L1 L2 until Lk, candidate sequences of Lk+1 are generated 
simply by concatenating all sequences in Lk with all new one sequences found while 
generating Lk-1. What is this mean? Let us illustrate this with an example.  
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Let us say this is my data set and this data set let us say denotes, let us say I have a 
website and this data set denotes which are all the different pages that have been visited 
by users in different usage sessions. So one user a went from, one user went from page a 



to b to c to d to e and so on. Another user came from b and went to d and a and e and so 
on like this.  
 
So we have different sequences and of course as you can see here that an element can 
repeat in a sequence that is this user has requested for the page a 4 times one after the 
other and same thing here (Refer Slide Time:  32:55) that is after b, a is requested three 
times and so on for whatever reason. Now from here in order to look at, in order to mind 
for all interesting sub sequences that is what will be visited before what in this data set, 
let us start with the set of all interesting one sequences. Now we have set a minsub as 0.5 
that is at least 50% of support. Now let us look at the set of all interesting one sequences. 
What is it mean to say interesting one sequences? Essentially it means that which all 
sequence of length one have appeared at least 5 times or more. So a has appeared 1 2 3 4 
5 6 7 8 times in 8 different sequences, b has appeared 1 2 3 4 5 6 7 8 9 different times and 
so on. So a b d and e are interesting one sequences, c for example has appeared just once 
here, so therefore it is not interesting at all as a one sequence.  
 
Now we generate all possible candidate two sequences that is it is now rather than a 
combination, it’s a permutation that is where the order matters. So aa and rather it’s not a 
permutation, it is a concatenation rather that is concatenation of all possible 
concatenations that are possible between elements of this one. So ab is different from ba 
and ad is different from da and so on. So these are the set of all candidate two sequences. 
Now we just see which of these candidate two sequences have minimum support.  
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Now among these you see that only ab and bd have a minimum support of 0.5. That is all 
others aa for example has the minimum support of 1 2 3 that’s it, not 0.5. That is one is 
here rather 4, 1 2 3 and 4, ab also has minimum support less than 5 and so on.  
 



So the only set of interesting two sequences are ab and bd in this case. So we have got the 
set of all interesting two sequences. Now how do we generate the set of all interesting 
three sequences that is candidate three sequences? We concatenate ab and bd with all the 
interesting one sequences found in the previous iteration. So the previous iteration here is 
still the one sequence here ab d and e. therefore we concatenate both of this with a b d 
and e like this and then we see that there are no interesting three sequences at all and then 
the process stops.  
 
Otherwise we would have filtered out few more elements here and then out of these, 
again we would have concatenated with all possible interesting one sequences that we 
found in the previous iteration. So here the interesting one sequences that we have found 
in the second iterations are a b and d. So for level 4 there is no need to concatenate it with 
let us say e, so it’s enough if we just concatenate with a b and d.  
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With sequence data there is an other kind of interesting mining problem that occurs, 
when we look at a sequence data as a behavioral pattern. See for example when we say 
this is the way that users behave in a data, user behave in a website. The user here comes 
to page a then goes to page b then goes to page c, d and e and so on. Now we are 
encountered with a question as to can we model the behavior of the user. What would be 
a model that would explain me how users behave on my website? 
 
So what this means is that we have to find out, suppose these are all the different strings   
of a given hypothetical machine, we have to find out some machine which can generate 
all of these strings and possibly other strings that belong to the same class in whatever 
sense that is. So the question here is that given different sequences, treat this different 
sequences as strings that are generated by a particular machine. The simplest kind of 
machine that we can generate is the state machine or the deterministic finite automate or 
the finite state machine or whatever. 



Now but that doesn’t mean that everything can be modeled by a finite state machine but 
it’s purely because of complexity considerations or practical considerations that we 
assume that the model representing user behavior is given by a finite state machine. So 
given a set of input sequences, we have to find out what is the finite state machine that 
recognizes this class of input sequences. This also called as language inference that is 
given the strings of a language, you are trying to infer the grammar of the language or 
you are trying to infer the structure of the language. Now what is the problem in language 
inference? What is the big, where is the trickiest problem that occurs in language 
inference? 
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Take a look at these strings. Let us say I have these four strings abc, aabc, aabbc, abbc so 
on. Now if I want to give you these four strings and tell you that create a state machine 
that will recognize these four strings. It is quite obvious that one would come out with the 
state machine like this which says which accepts these fours strings and exactly these 
four strings, so abbc, abc and aabbc and so on. So which accepts exactly these four 
strings. 
 
On the other hand, one can also write a machine like this comprising of a single state 
which leads on to itself and accepts all strings like this. So this is a most general state 
machine that is this state machine is also correct in a sense that it accepts these four 
strings but it also accepts anything else made of a b and c in addition to these four strings, 
while this is a most specific state machine. That is this is a state machine that accepts 
these four strings and these four strings only and nothing else. 
 
Now the challenge or now the trickiest problem in language inference is to find the right 
kind of generalization. That is if we make something into a most specific state machine, it 
will be of no use, while we make something into a most general state machine, it will be 
useless as well. 



So when we discover or when we try to discover a model of user behavior, we should 
discover a model which is not too specific and is neither too general, it has to have the 
right kind of generalization. How do we do that? There are several different algorithms 
that try to generalize a little bit and not too much and not be too specific and so on. 
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We will just look at one specific algorithm which might be termed as the shortest run 
generalization that is generalize based on behaviors by using what is called as a shortest 
run technique of this thing. Now as we did for the previous algorithms, let us first look at 
the example and then come back to the algorithm.  
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Now the way shortest run generalization works is shown in this state machine here. Now 
let us say that we encountered different strings. Now let us say this is the first string that 
we encounter aabcb. Now there is no other string therefore we just build a state machine 
like this which accepts only aabcb and we haven’t seen anything else, so we can’t 
generalize anything else. Now second we encounter the string aac. So what this means is 
this state machine should accept not only aabcb but also accept aac. What does this 
mean? This means that start from aa and after aa if I get a c I can go directly to the end 
state, so it has to accept not just aabcb but also aac.  
 
Now let us say that I get the third string, even here i won’t be able to generalize anything. 
This is the state machine that accepts aabcb or aac, so we still haven’t generalize 
anything. Now let us say I encounter one more string of the form aabc. Now what is this 
mean? This means that aabc that is this string, that is this is a prefix of this thing. That is 
this is the substring of this thing, this is the prefix of string of the first one. So aabc this 
state itself should be a end state. So basically we come like this here and abc this 
becomes the end state. 
 
Now what we do is we merge both of these end states, so b comes back like this. When 
we merge these end states, note that we have performed a specific particular 
generalization here. Now what is this machine recognize? This machine recognizes aabc 
b star that means any number of b’s after aabc. So essentially what it sees is that or any 
number of b’s after aac as well. That means it has seen a b appear after aac that is this 
substring aa and c with or without b included, it has seen that b may appear or not appear. 
And it generalized to the fact that any number of b’s may appear, including 0 number of 
b’s which may or may not be right that means to say that there might be an implicit, there 
might be some more hidden variables that says that at most 3 b’s can appear let us say 0 1 
2 or 3 b’s can appear not 4 b’s but we don’t have that information here as such.  



So basically the state machine generalize to the fact that after aabc or after aac zero or 
more b’s can appear and we still lie in the end state but then we also see that when we 
look at the end state here, we look at the tails of all the edges coming into the end state. 
so there is a tail here which says c and there is a tail here which says c. now whenever 
from the end state it finds that there are two or more tails having the same suffix, these 
two the corresponding states are also merged.  
 
So what we finally get is aa b star c b star so that means what the machine generally is 
actually saying is that this language has to have two a’s to begin with, so it has two a’s 
and it can have 0 or more b’s following two a’s and then it should have a c and then it can 
have 0 or more b’s and so on. So because it has found 0 or 1 b’s between a and c and it 
has found 0 or 1 b’s after this c, it has performed this generalization. So this is one way of 
performing or trying to discover the behavior that is exemplified by a set of sequences.  
 
Let us look at the last kind of data set for this session namely streaming data. Streaming 
data has been of relatively newer interest among the data mining community and   
especially since the streaming data or mining on streaming data has several interesting 
applications. 
 
Now what is the characteristic of streaming data, what you understand by streaming data? 
You have let us say streaming audio, streaming video, network traffic and sever several 
other such data sets which are essentially large data sequences possibly infinite data 
sequences. in practice of course there are finite but possibly infinite data sequences and 
there is no or very little storage that is it is not practical to say that I am going to store the 
entire streaming data into a file and then start mining the file. 
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Because this if it is infinite or if it is extremely large, it will be impractical, it could be 
tera bytes or even more bytes of data that could eventually accumulate into the file. So 



some examples are stock market quotes or streaming audio or video or network traffic 
and so on. 
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So in order to mine streaming data or rather even in order to let us say query streaming 
data, there is a notion of what is called as running queries or also what are called as 
standing queries. That means in a traditional database the data is standing, the data is 
there and the query actually slides through the data set in order to return you the answer. 
But in a streaming data set it is the query that is standing and the data streams through the 
query and then the query keeps returning you answers as and when the data streams 
through it. 
 
So how do we write some standing queries or how do we find some aggregate behaviors 
based on some standing queries? Let us look at some simple standing queries, computing 
the running mean of a data stream. That is suppose I am getting a stream of different 
numbers and I have to calculate the average of these numbers as and when I read a new 
numbers, so it’s a running mean. So a simple way to calculate this running mean is like 
this, let us say I just need to maintain two variables here. One is the number of items that 
I have read so far or the number of numbers that I have read so far and the running 
average that I have calculated so far.  
 
So whenever I read the next number, all I need to do is first compute n times average that 
is average times the number of numbers that I have read so far, add number to it and 
divide it by n plus 1 and then increment the number of numbers that you have read or the 
number of items that you have read that is n equal to n plus 1, so as simple as that. That is 
as soon as a new number comes, you generate the sum, see n times average is basically 
the sum of all the numbers that have come so far. So generate the sum here, add the new 
number and divide it by the new that is number plus 1, n plus 1 as the new set of numbers 
that have come and then increment your set of numbers.  



Similarly this slide shows how to write a running query that computes the running 
variance. Variance as you know is the square of the standard deviation of a given data set. 
How do you compute standard deviation? That is it is for every element x, compute x 
minus x bar that is number minus average whole square and compute the sigma or 
compute the sum over all of them, all of these differences, so mean square distances 
essentially.  
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So in order to compute the running variance, we look at this formula little more carefully. 
Variance equal to sigma of number minus average whole square where number ranges 
from i equal to 1 to n or whatever. Now, when you expand this, you can expand this into 
number square minus 2 times number times average plus average square. So essentially 
what this means is we have to maintain certain variables, one is sigma of number square. 
So, every time you read a number, square the number and add it to the previous sum that 
you have maintained. Of course you also have to maintain the number of numbers that 
have been read so far. Then you also have to maintain two times number star average of 
all numbers that have been read so far.  
 
So you know how to compute the running average, so every time you get new number 
compute the running average that is we saw how to compute the running average in the 
previous slide and then compute two times number times average and add it to this. So 
essentially you can take out average out of this and sigma of number or two times 
average out of this and you just basically have to maintain sigma of numbers. That is the 
sum of all the numbers that we have calculated until now and multiplied to the new 
average that we have found.  
 
And then we have to maintain, there is no sigma that is necessary here because average is 
a single number and we have to just maintain the square of the average of all the numbers 
that we have read so far and we know how to maintain the average. Now by maintaining 



all this, we can easily calculate the running variance that is you just compute each of 
them, put each of them in their corresponding places and compute the running variance. 
Therefore even if I have a long, let us say stock quotes from the stock market giving me   
how the quotes of, how the stock price of a particular stock is changing I can maintain 
what is the mean stock price that it has recorded so far and what has been the variance 
and I can easily calculate standard deviation at any point in time by computing the square 
root of the variance. So I know how much it has varied over time and what has been the 
mean behavior of this stock over the entire time that I have read so far. 
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So this slide essentially shows how you can calculate the running variance that is 
whenever you read the next number first compute the average, we know how to compute 
the average then each of these is computed like this. That is A equal to A plus n square B 
equal to B plus two times average star n and C equal to C plus average square and 
variance is A plus B plus C. We shall also look at one more algorithm for streaming data 
essentially what is called as a gamma consistency or looking for events that have what 
are called as gamma consistency. 
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What is meant by this gamma consistency? Essentially the idea behind this is as follows. 
Suppose an event happens at some point in time. The interestingness of that event will be 
high in the vicinity of the event that is right after the event happens, let us say stock 
market crashes. The interest in that event will be high in the next few days but over a 
period of time, the interest that event starts going down unless of course the stock market 
crashes again. So that is the essential idea behind gamma consistency. That is first 
consider this streaming data to be in the form of frames where each frame comprises of 
one or more data elements.  
 
Then we look for some interesting events within a frame essentially let us say support 
based interestingness. So by let us say number of occurrences of k divided by number of 
elements in frame and then we see which of these events have sustained support over all 
frames rate so far with a leakage of 1 minus gamma. That means in every frame let us say 
every day or every week or whatever, we look at events that are interesting with a support 
of k. 
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And if this event keeps on occurring with at least this much support then you can 
consider this to be some kind of beaker where you are pouring in the events which are 
coming in with some kind of support and this beaker has a small hole underneath where 
in it leaks at a rate of 1 minus gamma. So over a period of time if you take it over a 
period of time, if and only if this event has a sustained support over time this beaker is 
going to be full or this beaker is going to have a particular level. And if the event does not 
sustain over time eventually, the beaker is going to empty itself. 
 
So the level in this beaker is an indication of two things. One is how sustained is the 
support for this event and second could also be how recent was this event. So the more 
recent the event is the higher the level is going to be, similarly the more sustained the 
support for an event is again the higher the level is going to be. So you can calculate the 
level like this and then you can again put a threshold for this level and look at all events 
which have a particular level or so or level are higher at any given point in time. 
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So we now come to the end of this second session on data mining. We have just crashed 
the surface of what is a vast area of knowledge discovery from databases and we have 
kind of scratched it in a breadth first fashion that is we looked at several representative 
algorithms for different kinds of data mining problems whether it was a apriori or 
whether it was classification or clustering or sequence data or something like language 
inference and streaming data and so on. But this is just still the tip of the iceberg. So   
anyway that brings us to the end of this session. 
 
 
 
 
 
 
 
 
 
 
  


