
Database Management System
Dr. S. Srinath

Department of Computer Science & Engineering
Indian Institute of Technology, Madras

Lecture No. # 31

Introduction to Data Warehousing and OLAP – Part 2

Hello and welcome back. In the previous session, we were looking into specific kind of
databases kind of any sort or any kind of databases mainly meant for managing historical
data or archival data, namely what are called as data warehouses. That is we are looking
at how the database design changes if the application domain is changed from an
operational data management that is operational data management to data management
for strategic purposes that is asking queries that are of a strategic nature.

(Refer Slide Time: 01:41)

And we saw that, we saw the overall architecture for a data warehouse were you have to
populate a data warehouse from different, several different data sources mainly the OLTP
data sources and these data from these sources are routed or source through a data
cleaning and integration engine where we saw what is really meant by data cleaning. That
is there are several different sources of dirty data being creeping in different kinds of
inconsistency, different kinds of missing values, spurious abbreviations and so on. And
we need to clean those data elements before populating it on to the data warehouse and of
course the data elements are to be integrated under a common schematic structure before
the database can be populated.

And we have of course things like back flushing of clean data back in to the OLTP
databases and we have feedback from the data warehouse to the cleaning engine and so
on.

Let us move forward in this exploration of data warehouses to see what forms the core of
the data warehouse. What kinds of data models are used to the core, what kinds of index
structures or what kind of storage structures and such things are actually applied to the
core of the data warehouse.

(Refer Slide Time: 03:56)

So in this session we shall be concentrating on data models and warehouse design. To
begin with let us have a look at some examples OLAP queries like we saw in the
previous session. Have a look at this OLAP queries something like which says how is the
employee attrition scene changing over the years across the company or is it financially
viable to continue our manufacturing unit in Taiwan. Now the thing is a characteristic
nature of these queries is that most of them involve huge amounts of aggregation. That is
we need to span or we need to read huge amount of data elements before we are able to
conclusively answer a query.

Look at the first example. How is the employee attrition scene changing over the years
across the company? See we need to detect the trend here. That is we need to detect the
trend or employees more likely to quit the company now or employees more likely to
stay or they happy or they unhappy or they finding better opportunities away outside and
so on. Now in order to answer this question, we need to take employee data from across
the company that is different data sources how many ever branches I have, we need to
collapse such data from across the company and across the period of time. It’s not
sufficient if I just look 1 year data, 2 years data. We need to collect data over a period of
time may be 5 years 10 years or something like that and aggregate it across employee
behavior across the entire company and then we get a result something which something
of the form which says that employee attrition seen or employee attrition rate is so and so
percent.

That is given whenever an employee joins, there is so much of a probability that he is
going to leave in say 1 year or 2 years or 3 years and so on and so forth. So just to answer
this small query that is just to get the small set of percentages, you see we need to
actually go through the huge amount of data that’s present in the data warehouse. So what
are some of the typical characteristics? One, we saw of course aggregation that is we
have to aggregate over a large set of data and summarize results over a large data set.

We need to also often cluster data based on different parameters, is there a correlation for
example in the previous slide we saw some queries talking about correlation. So suppose
you want to find out correlation then we want to, we may actually want to find out
clusters along a particular dimension and or along a particular set of dimensions to see
whether there is actually some kind of correlation for some values in the dimension to
some kind of behavior that we are searching for.

(Refer Slide Time: 06:03)

There is also trend detection that it is common in OLAP queries where you need to, you
need to in some sense integrate over time. That is you need to start from the earliest
source and start working your way through the through till the latest source of data and
project the temporal behavior of the data elements along certain dimensions and say this
is the trend that the trend is increasing towards this thing, the trend is decreasing, the
trend is fluctuating and so on and so forth.

Then there are what are called as multi-dimensional projections that is a behavior could
be attributed to several different dimensions and we may want to ask how each dimension
contributes to certain behavior. How is the total sales dependent upon say the location of
my branch, let us say I am having several branches, a retail branch across the country and
I want to see how sales are correlated to branches or how sales are correlated to different
events like say some festivals and some kinds of national holidays and so on or the
weather is it, the sales is more in summer or winter or what and so on.

So you may have to actually project these facts, this fact called sales across several
different dimensions and this has to be performed as efficiently as possible no matter
what the dimension is. This slide shows the typical design of data warehouse at the core
of the data warehouse say as you can see in this slide, there is a kind of something typical
about this slide. That is there is a core here and a lot of other surrounding elements here.
The core is what is called as the hyper cube of or also called as the data cube and several
other names which maintain facts that are sorted across several different dimensions.

(Refer Slide Time: 08:29)

For example I may want to store sales data across several different dimensions like say
the branch dimension, the year dimension, the event dimension, the product dimension,
which product has the most sales or which branch has the most sales or which year has
the most sales or which event brings in the most sales or which, whatever I mean product
or the category of products and so on and so forth. So we will look shortly in to how this
hypercube itself looks like or how we can design such hyper cubes and that basically
stores facts that are contained in the data warehouse.

However maintaining purely just the hypercube would make the data warehouse pretty
inefficient. This is because again the good old as aggregation problem that is even if there
are facts that are stored efficiently in a hypercube. We still require to access let us say
tens or thousands or probably millions of different facts before we are able to answer a
query, before we are able to answer a query like is it financially viable to continue this
branch or whatever. We need to look at several different facts before we will be able to
come out with the response.

So in order to speed up such processing, there are number of what are called as
materialized views. Remember the notion of views from traditional data base. What is a
view? View is basically a logical substructure of the overall schematic structure. That is
all of these materialized views are in some sense sub cubes of this hypercube but in

traditional databases, views are essentially virtual tables. That is you store the view as a
query not as a base table that is not physically in the database. So whenever you’re
querying a view, you first have to execute the view that is generate the view first on the
fly and then query the view. But, here that completely defeats the purpose of what we are
looking at essentially speed up in performance that is query response times.

So these kinds of materialized views are actually physical views that is views which are
physically computed from the core, from the hypercube core and stored on to disc. These
could be something like, some kind of partial aggregate information, something like let
us say I have sales data across all branches. Now I might want to store sales data for a
particular product. Suppose I have a retail store, I may want to store sales data for let us
say some kind of vanaspati oil or whatever across all different branches. I may want to
store partial aggregate information like sales data across quarters, across different
quarters in a year and so on and so forth. So such kinds of such kinds of data which are
queried often are materialized from the hypercube core and stored as materialized piece.

Now I am sure you might be wondering, why this would make sense, why don’t we do
that in traditional databases. Because, we cannot do that in traditional databases because
it hampers the concept of normalization. That is materialized view is essentially creating
extra functional dependencies which over and above whatever is present in the core itself.
Now what happens if there are extra functional dependencies? Maintenance is a big
problem, that is whenever an update happens because there is redundant information or
derivable information or maintaining all those derivatives of information becomes a huge
problem.

For example if I have a particular amount of sales data for a particular product in a
particular branch and let us say tomorrow I update this data element with a new number
and this automatically affects all aggregate information that I am storing here. What is the
aggregate information for all products in this branch or for this product in all branches
and so on and so forth. So maintenance of materialized views is a problem. That is
whenever the databases or data warehouse is updated the materialized view should also
be updated.

However this is not too much of an issue in data warehouses mainly because I am sure
you would have got, what is the reason because the number of updates is far less frequent
than in a typical OLTP set up. In an OLTP set up that is in an operational database there
are frequent updates and queries. The number of updates is comparable to the number of
queries but here the number of queries is far more than the number of updates. The
number of updates is very infrequent, possibly of the order of once a month or once in 6
months sometimes and so on where you can actually afford to bring down the warehouse
system, the OLAP system, update the OLAP engine with the new data it has come in and
then compute all the materialized views.

(Refer Slide Time: 14:32)

So this cube, this slide essentially summarizes what we have just talked about that is there
is a hypercube core that makes of the core of the data warehouse. And the core manages
what are called as atomic data elements that is data elements which cannot be sub divided
into other kinds of data elements. And it’s the global schematic structure for the entire
warehouse. Remember this global schematic structure is what we have derived from the
different OLTP sources. And this is based on the multidimensional data model and we
will see mechanisms by which we can actually implement it in practice.

And materialized views are physical views for faster aggregate query answering and it is,
it essentially amongst to de normalization of the core. And this de normalization is
performed to increase performance, is done to increase performance rather than updation
and updation is an issue which but because updation is relatively infrequent, it’s not too
much of a problem. So let us look at the hypercube core again in a little more detail. This
slide here shows a particular hypercube having three different dimensions. Of course the
reason why we are calling it as a hypercube is that it can have any n different dimensions
need not just be 3, it could be 5, 10, 25 whatever. So it could be any different dimensions.

(Refer Slide Time: 15:27)

Now as you can see here each dimension talks about specific aspect of the data that we
are storing. Let us say this is the sales hyper cube, the amount of sales that has happened.
Now this dimension stores the amount of sales across each product and this is across each
week and this is for each branch. Therefore each cell in this hyper cube refers to sales of
a particular product in a particular branch in a particular week. So in this hyper cube, the
constituent of the cells that is the sales data is what is called as the fact that is stored by
the hyper cube.

(Refer Slide Time: 16:21)

So the hyper cube manages the fact called sales and branch, product and week, along
which the sales are projected, are what are called as dimensions. So the sales fact is
projected across three different dimensions. In addition to normal relational database
operators or rather in lieu of usual relational databases operators, there are several other
operators that are defined on the hyper cube itself. Here are some of the operators that are
commonly used for data warehouses.

Pivoting: pivoting essentially means, what do you understand by the terms pivoting?
Essentially it is rotating the cube given a pivot that is suppose you want to see the sales
data projected across some 3 different dimensions or some 4 different dimensions or
whatever. We choose this set of dimensions so that these can be displayed on the
visualization engine. Data warehouses or OLAP engines usually come with a, usually
have a huge visualization counterpart which helps the user to visualize the inherent
knowledge contained in the database or in the data warehouse in different ways. That is
one way is that of pivoting the warehouse across different dimension.

Then there are slicing and dicing operators that is selection of some sub set of the cube.
You can think of it as slicing the cube across different dimensions or dicing that is
forming a sub cube out of the larger hyper cube and so on.

(Refer Slide Time: 17:16)

Usually data cubes also supports this role up operator were you can aggregate
information on one or more dimension. For example we may want to roll up the weeks
data into months data that is in the previous example (Refer Slide Time: 18:28) we have
data per week. Now instead of data per week, we might want to collapse certain sets of
dimensions like this in order to form month wise data. So that means we have rolled up in
the week dimension across one aggregate level so that the week has now become months
and so on.

Similarly the opposite operation of roll up is a drill down operation were given an
aggregated dimension, you open it up in order to reveal more details. That is open up
months to reveal week by week information or open up weeks to reveal day by day
information and so on and so forth provided that exists in the database, in the data
warehouse.

How are these hyper cubes implemented in practice? In practice there are two major
approaches towards implementation of hyper cubes, what are called as ROLAP and
MOLAP approaches. ROLAP essentially means the relational OLAP that is where the
multi-dimensional hyper cube is transformed by certain set of transformation rules to the
relational model and vice versa. That is the relational model is transformed back in to
hyper cubes for answering questions. So every hyper cube queries are mapped on to
relational database queries and vice versa.

(Refer Slide Time: 19:23)

And the other kind of implementation strategy is called MOLAP or naive or native
multidimensional model where the storage structures and index structures are redesigned
for storage of multi-dimensional data itself and which has got nothing to do with the
relational model in itself. So when you provide a data warehouse query, a MOLAP query
it is directly translated on to disc accesses and further such low level query primitives and
answer directly.

So there are, this slide also shows some examples like say true relational OLAP, it’s from
micro strategy which is an example of a ROLAP and Arbor Essbase which is an example
of a MOLAP system. Let us look at ROLAP systems in a little bit more detail that is how
are ROLAP is actually implemented, how is a hyper cube implemented, how is a
collection of hyper cubes implemented and so on.

The most fundamental form of implementing a hyper cube using a set of tables is what is
called as the star schema structure or the star schema architecture. The star schema
architecture is shown in this slide here. As you can see the name star schema comes from
the way that the schema is organized. That is the schema has the central fact table and the
fact table obviously stores facts. That is their sales data for which is the fact which is
stored for all possible combinations of branches, branch products and weeks.

(Refer Slide Time: 22:16)

That is branch one, product one, week one sales so and so. Branch one, product two,
week one sales and so on. And each of these columns here that is branch, product and
week contain ids which are foreign keys in to the respective dimension tables. That is
there is a branch dimension table which contains information about branches. So if
branch number one is stated here, this would be a foreign key here which would give
details about what is branch number one that is the name of the branch, the address, the
manager, whatever and so forth. And similarly product, each product is a foreign key
here which gives details about each of this product and so on. So this is the most simplest
form of representing multi-dimensional hyper cube in a relational data model.

Now let us briefly summarize what a star schema is about. There is a central fact table
and there are set of supporting dimension tables that is in the previous slide, the green
table is the fact table and the other three brown tables are the dimension tables. And the
advantages of a star schema, it’s pretty simple to comprehend and also to design and
there’s very small amount of meta data that’s required, small numbers of foreign key
relationships that have to be maintained and its very quick for query responses as long as
the queries are on the facts that are stored in the database.

(Refer Slide Time: 23:38)

However there are certain limitations as well. That is its not robust towards changes
especially in the dimension tables. Suppose if I want to add something to the dimension
table, it’s quite difficult and there is an enormous amount of redundancy in dimension
table data because dimension tables need not be normalized and we may just be repeating
information in the dimension table.

The next kind of relational model that is used is what is called as the snowflake schema.
The slide here shows an example of the snowflake schema. Well, it doesn’t look like a
snowflake in the slide but you can imagine why it is called as snowflake schema. That is
it is a star schema that is augmented with something more. That is the branch dimension
here itself consists of 3 different tables. The product dimension here consists of 3
different tables and the week dimension remains as it is.

What are these three different tables? These are basically normalized data structures or
normalized versions of the branch dimension table. So if the branch contains several
information the manger information, the location information, the turnover information
and so on and so forth, you may want to essentially break it up into different table so that
accessing data about branches becomes more efficient, similarly for other products.

(Refer Slide Time: 24:14)

And the result is that each such dimension here has sub dimensions which kind of gives
the gives an overall structure like a snowflake where there is a central fact table and
branching out dimensions and so on. So the features of a snowflake schema detail here
that is like always there is a central fact table as in the star schema. And however rather
than just dimension tables, in storing de normalized or un normalized data it’s not of de
normalized it’s more of un normalized data.

In each of these dimension tables, its actually dime normalized data that is stored in the
dimension tables. And what are the advantages of this thing? The query responses are
faster, especially on the dimension tables. We don’t have to work search through the
dimension tables for searching on a specific queries because it’s normalized and you have
several foreign key relationships and index structures and so on. And it’s more easier to
update especially on the dimension table but there are certain limitations as well. That is
there is large amount of meta data in fact the because we are talking about aggregated
data that is archival data, we might very well end up with a large amount of tables
especially when we try to normalize the dimension tables.

(Refer Slide Time: 25:27)

So a given branch information may create possibly hundreds of different normalize
tables, if we have to normalize it to say let us say fourth normal form and it becomes as a
result it becomes much harder to comprehend when we are looking at it manually, when
we are looking at the overall schema manually.

The third kind of ROLAP model or the relational schema model for implementing multi-
dimensional structures is what is called as the constellation and this is perhaps the most
used model, most practical model because it contains multiple fact table not just one fact
table.

(Refer Slide Time: 26:40)

And in a data warehouse, we usually require to have multiple fact tables that is let us say
each fact table corresponds to one data mart. So one data mart stores information about
sales, the another stores information about salaries, the other stores information or facts
about procurements and so on and so forth or cause and so on. So when we have several
such fact tables, we may want to actually, we may want to actually have several stars
schemata intermingling among one another. And in addition, suppose whenever we have
some kind of materialized view for example let us say this is a sales data and this is some
kind of a materialized view that talks about aggregated sales data across different or it
just talks about the discounted sales that is sales which have been made whenever
discounts were offered and so on.

So it is some kind of a materialized view that has been materialized from the main fact
table. So as a result what happens here is this fact table here shares some of the
dimension tables from the main fact table, from the sales fact table. So as a result you
have a dimension table actually having foreign keys in 2 or more fact tables and 2 or
more fact tables having foreign keys in to this dimension tables.

(Refer Slide Time: 28:47)

So the result looks like a constellation of different stars that is the different stars and they
are staying together so that it forms a kind of a constellation. So the constellation is the
most commonly used architecture and used when multiple fact tables are required. And
usually not and that is even when multiple fact tables are not necessary or constellation
schema is used in order to maintain materialized views in addition to the central fact
table. That is it usually has a main fact table and several auxiliary fact tables which are
materialized views over the main fact table. It helps in faster query answering for
frequently asked queries, however it is costlier to update than a snowflake schema which
is kind of obvious in this.

What are some of the issues in data cubes? There are certain especially managing data
cubes in a ROLAP architecture that is using a relational data model there are certain
issues which in some sense refuse to go away.

(Refer Slide Time: 30:20)

That is they can be sometimes so severe that it may render, it may render the data
warehouse useless. That is it may not able to provide interactive response times which is
the most important factor for a data warehouse. One of, probably the main such challenge
is what is called as the curse of high dimensionality. There is several known index
structures by which we can index on different tables or on different dimensions as
efficiently as possible but most of such known index structures degrade in performance,
degrade to almost linear search in performance when the number of dimensions become
high.

So with a large number of dimensions, searching efficiently for a particular data element
becomes really difficult. Then they are what are called as categorical dimensions. It may
not be possible to order the elements of dimensions across a given scale. For example
week it is easy to order. Let us say I have a week information, so I can say week 1, week
2, week 3, week 4, week 5 and so on and there is an implicit ordering that is we know
that week 3 should come after week 2 and before week 4 and so on. It’s not possible for
week 3 to appear after week 5 and so on.

So there is an implicit ordering information. Now this ordering information is sometimes
exploited for faster retrieval and computation of clusters and so on. But then there are
certain kinds of dimensions which are categorical in nature, not ordinal. For example
products or say branches, products let us say vanaspati oil, rice and ghee and so on and so
forth.

Now which comes first and which comes second? Should oil come before ghee and
should ghee come before rice or the other way around. There is no such ordering that is
given for the elements in this dimension. So, categorical dimensions becomes difficult to
index. We look at some index structures later on where we will see that why it becomes
difficult to index categorical dimensions. We cannot identify a region and say this data
element falls between this and this region because there is no ordinal information about
the dimensions. And even when there is ordinal information about dimensions,
sometimes ordinal classes vary whenever we aggregate. For example this slide shows a
given example here (Refer Slide Time:32:38), let us say at the lowest level, we are
having names about different sets of students that have come through a given university
and passed out and so on.

So we have ordered the set of names, student names according to lexicographical order.
However when the set of students are aggregated into classes, let us say batch 1, batch 2,
batch 3, batch 4 and so on. Then the ordering becomes, the ordering is now based on their
graduation year, the batch 1 graduated in 94, batch 2 graduated in 95 and so on and so
forth. Now it’s no longer lexicographical ordering. So the same index structure that is
used for the lower level dimension cannot be used when the data cube is rolled up. That is
when we have aggregated the set of students to a set of batches and so on.

(Refer Slide Time: 33:56)

When we are designing a data warehouse there is another, there is a very important
dimension called the time dimension which probably needs to be addressed separately
and that’s why there is a separate slide on the time dimension because there is certain
properties about time which other dimensions may not really adhere to, may not really
hold.

The time dimension as you see is usually mandatory in most warehouse applications
otherwise that the whole idea of archival data or historical data becomes meaningless if

there is no time dimension associated with it. And if you are talking about trend detection
and so on, we cannot do it without time dimension. And the time dimension has several
different meanings based and for ROLAP techniques depending on the application
context. that is suppose we rollup weeks into months or months into year, should we
follow the simple calendar based rollup or should we follow the physical calendar, let us
say if it is a company or should we follow the academic calendar if it is a university and
so on.

So it has several different meanings when we are talking about rollup. And we need to
also, in time we need to not only just order based on time, we need to also index some
special events like graduation date or releases or some festivals or so on and so forth
which actually affects the facts like the sales or whatever it is that we are storing. And we
have to we have to timestamp these events with specific whatever time scale that we are
using whenever we are having the time dimension. And lastly the order of traversal of the
time dimension is important.

If we have let us say a set of all students or set of all products and we want to find out
some aggregate information, it does not matter whether we traverse this dimension front
to back or back to front but when we are talking about time and when we are talking
about trends, is the trend changing over time, the order of traversal becomes extremely
important. And let us look back at the materialized views. Coming back to the
materialized views, how do we know when to create a materialized view?

As you know materialized views are summary tables that actually create physical views
of the fact table. And creating a materialized view is a tradeoff between faster query
answering and increased complexity during updates. That is whenever I update the data
warehouse, there is a question of view maintenance, materialized view maintenance. So
how do we know when to materialize? A good measure for making such a decision is
what is called as the RSS ratio or the result to search space ratio. The result to search
space ratio is a simple ratio which is shown in the slide here.

(Refer Slide Time: 36:03)

That is how many number of rows of results are returned divided by the number of rows
that are scanned for a given query. For example if I say what is an average age of what is
the average age of the employee or how was the average age of the employee change
over the years. So let us say every year we have some 4000 employees, employee records
and we have 10 years of data. So the number of rows that are returned are just 10 for each
year the average age.

However the number of rows that are scanned are 4000 times 10, about 40000. So that
gives us the RSS ratio. So, we decide to summarize if the RSS ratio is too small and the
query is too frequent. That is if 10 by 40000 is considered too small given the frequency
of the query, we say we have to materialize this. That is we have to physically create a
separate table for this.

(Refer Slide Time: 38:11)

There is also an other kind of table in ROLAP structures which are again useful, which
are called as revision history tables and which are again quite crucial when answering
different queries. Remember in data warehouses, we are storing archival data that is data
over a period of history. Now archival data essentially means that there is more of a
probability that some kinds of data elements are revised over time. For example turnover
per employee as shown in the slide here that is what is the turnover that the company is
getting per employee, that is the total turnover divided by the number of employees. Now
it keeps changing every year.

Now let us say, suppose we just have to, we don’t have to, we don’t want to store it as
historical data that is we don’t want to store it as how turnover is changing over time but
rather what is the turnover per employee. So the revision history table essentially stores
the different values that this turnover per employee has taken up over each different
updation. That is the first updation, the turnover per employee was this and the updation
was on this date. Whenever this value was updated the second time, the value is this and
the updation date is this and so on. So this information is used based on what time frame
is the query addressing, when it is asking a question. For example I might say what was
the turnover per employee in the last decade, then I might want to take up some value that
was updated in the last decade rather than this decade and so on. So that’s where revision
history tables become important.

So let us quickly look at what are the different steps that it takes while designing a data
warehouse. See when we are designing a data warehouse, we are looking at a warehouse
from a managerial perspective. That is we are essentially starting out with an enterprise
model that is we have an enterprise model of how our enterprise works like whether it is
a company or whether it is a large organization or university or whatever. There is certain
kind of enterprise model, a university is divided into departments and labs and faculties
and so on and so forth and so on.

(Refer Slide Time: 40:00)

Now based on the enterprise logical model, we built the logical data warehouse model or
the data warehouse logical model and from the data warehouse logical model, we come
down to the data warehouse physical model which is the star schema and snowflake
schema or constellation and so on and so forth.

Now this part is handled by the data warehouse administrator or the database
administrator along with the end user. The database administrator has to clearly
understand the end user requirements before building the logical model. And here it’s
usually a question of the database administrator using one or more automated tools that
can translate are given logical model on to a physical model. There are some design for
the most pattern art where how to get good designer, how to calibrate design is actually
quite a tough problem to answer.

However there are some thumb rules that can help the designer in designing good data
warehouse models. And this slide summarizes some of the thumb rules, things like the
warehouse logical model should closely resemble the enterprise model and not let say the
operational model. The enterprise model is the overall strategic model of the enterprise
while the operational model is the model of let us say given particular operation. Let us
say withdrawal from an ATM has a particular operational model. But this operational
model rarely figures in the overall enterprise model of the bank itself.

(Refer Slide Time: 41:49)

So the warehouse logical model should resemble the enterprise model rather than the
different operational models. And note that the OLTP sources are based around the
operational models rather than the enterprise model. And there are some transformation
rules which are usually necessary from enterprise to warehouse models.

(Refer Slide Time: 42:44)

And special planning is required for managing time dimensions and revision history
which we saw a special tables that we saw in the previous slides. So how do we, let us
say how do we design this data integration that is from OLTP sources to data warehouses.
What it is entitled for creating or integrating schemata from OLTP sources to data

warehouses. So OLTP to OLAP or OLTP to warehouse models are also based around
certain sets of design principles which again have certain kinds of thumb rules again like
there is no simple way of or there is no algorithmic procedure for designing schema.

However this thumb rules help in creating a good design or evaluating different designs.
For example several OLTP schemata has a number of operational data fields like counter
sales table that is the cash register number or the cashier identifier and so on. Such
operational data fields are usually not useful for strategic decisions something that talks
about what is the trend in sales and so on. We usually don’t care which cashier did what
and so on. So we have to remove all such operational data fields, it’s important to identify
which data fields are purely operational and which data fields have some kind of strategic
importance.

(Refer Slide Time: 43:20)

And of course we have to add a time element. Time element may be implicit in the
operational model but here we have to add them explicitly for the data warehouse model
and also of course version elements if necessary. And we have to decide on the derived
data or the materialized views as early as possible and usually commonly used
materialized view is what is called as the ALL view. That is for example if I have product
wise information let us say product is a dimension, so we have product 1, product 2,
product 3 as different values in the dimension and the last value will be ALL.

So, ALL basically says what is the sales value for all products. Similarly ALL value in
the branch dimension would say what is the sales value across all branches and so on. So
that was about ROLAP structures and let us briefly look at what kinds of strategies are
used for MOLAP structure that is native multi dimensional databases or hyper cube
maintenance and what kinds of index structures are used for handling such multi-
dimensional retrievals.

(Refer Slide Time: 45:09)

So, just to summarize we have different classes of dimensions, there could be categorical
dimensions, there could be ordinal dimensions. Dimensions could be sparse where there
are small number of data points per value or dimensions could be dense where there are
large number of data points per value.

(Refer Slide Time: 45:45)

Now if we are talking about indexing note that when we are talking about MOLAP, I
directly went into indexing because this is the main indexing in addition to the storage
structures are what constitutes the native support for MOLAP.

So when we are talking about indexing, indexes are usually based around ordinal classes
but there are categorical indexes as well, as we will see and the performance may depend
on the storage structure for any given data set.

(Refer Slide Time: 46:22)

So what kinds of storage structures are used for multi dimensional data or how do we
store multi dimensional data or hyper cubes on to disc.

(Refer Slide Time: 46:44)

Remember discs are just stored in blocks and sectors and so on. So, one way of storing is
simply multi dimensional sorting that is let us say there are 3 dimensions and there is a

fact. So you just sort the table along all 3 dimensions, first along dimension 1 then along
dimension 2 then along dimension 3 and so on, so as simple as this. So, it just becomes a
table one long table, the hyper cube is just one long table and this is very simple to
implement and searching is very fast, if the dominant attribute that is in this case
dimension one is part of the query, else it becomes fragmented and it becomes slower.
Another kind of storage structure that is commonly used are what are called as space
filling curves. Have a look at the slide here carefully. As if you see in the slide, this slide
shows a two dimensional space discrete two dimensional space that is 0 1 2 3 4 like this,
0 1 2 3 4 like this and there is a curve that has gone through the space like this.

(Refer Slide Time: 47:16)

That is it has covered the entire space without revisiting any point again or without
revisiting any point twice. So it is quite simple to calculate the position of a data element
whenever a space filling curve is used like this. That is the first data element 0, 0 is here
and 0, 1 is the second data element and 1, 0 is the third data element and 2, 0 is the fourth
data element and so on. So, it is very easy to compute the location of a data point.

However, it suffers whenever the number of dimensions are high or especially when there
are sparse dimension that is when there are large number of cells which have no data
points associated with them. Then there are, so from these storage structures let us move
on to some kinds of index structures that is how do we index elements based on this
storage structures.

The simplest kind of index is the ordered index on multiple attributes that is instead of
when you have to index based on multiple dimensions, index on each dimension
separately.

(Refer Slide Time: 48:47)

So suppose you want to index on n different dimensions k1 to kn, index on k1 separately
and k2 separately and k3 separately and so on and ordered index files are maintained by
ordering each such key in sequence. But of course ordered dimensions suffer from
several short comings especially when the number of dimensions is high or when the
number of data points is high, you need to compute intersections across these different
dimensions which becomes a lot of overhead. There is also what are called as partitioned
hashing where given a composite key like this that is n different dimensions, a partitioned
hashing returns n different bucket numbers and the hash bucket is simply the
concatenation of the n different bucket numbers.

(Refer Slide Time: 49:42)

And other kinds of multi dimensional indexes include the grid files. We have seen the
grid files when we are talking about index structures for normal databases.

(Refer Slide Time: 50:00)

So, we shall not be covering grid files now in great detail except to state that we can think
of set of buckets forming a grid and a multi dimensional index would in turn map on to a
set of buckets in this grid are what is called as the bucket pool and then we essentially
find out what is the or find out the corresponding data points.

(Refer Slide Time: 50:18)

Then there are what are called as the bit map indexes which are quite again, quite
commonly used and these are used on fields that are sparse that is where fields have only
a small number of values. For example gender has only 2 values or grades in a university
setting may be has 5 values a b c d e f, a b c d e and so on.

(Refer Slide Time: 50:55)

And essentially what we do is we store a corresponding bit vector that enumerates all
possible values and sets the corresponding bit for each data element. And it’s much more
compact than other index structures because we would be able to answer composite
queries like this product and this branch and this week and so on and so forth, quite
efficiently. This slide shows a particular example. Let us say there are 3 subjects
database, artificial intelligence and say parallel distributed systems and 6 different grades
a b c d e f.

(Refer Slide Time: 51:21)

Now each grade is denoted by a specific bit that is set in a 6 bit vector that is there are 6
vectors in this and each grade has a particular bit set and no values, all zeros. Similarly
there are 3 different subjects, so there is a 3 bit vector here and corresponding bit is set.
Suppose we have to search for all students who have scored a in databases and AI. What
is that we need to do? We just need to compute the logical and between databases and AI
and grade A and that would be the logical intersection of the corresponding buckets or
the corresponding sets that are stored in this values. Another kind of multi dimensional
index is what is called as KD trees which is again used for efficiently answering point
queries in a multi dimensional data space.

(Refer Slide Time: 52:25)

We shall not be looking into KD trees in more detail. Let me just explain KD trees by an
example.

(Refer Slide Time: 52:37)

You might of heard of binary search trees were given a particular data element, all data
elements having a key greater than this particular data element is in the right sub tree and
all keys lesser than this given keys in the left sub tree. The same strategy here is
expanded to k dimensions that’s where the KD trees come from k dimensional tree.

(Refer Slide Time: 53:38)

So let us say this is an example data set we have. There are 2 dimensions x and y, so
representing let’s say salary and age and these are the set of data points we have. The way
we build a KD tree is simply like this. The first element becomes the root, for the second
element we start by comparing the x dimension, the first dimension here now because
5000 is greater than 25000 it comes here. For the third one we start by comparing the x
dimension here the first dimension, so 4500 is greater than 25000 comes here.

Now here we compare the second dimension that is 32 with 28 and because 28 is lesser
than 32, it comes to the left of this tree and so on. So as you can see here, all the odd
number of places corresponds to dimension 1 and all the even number of places
correspond to comparing it dimension 2. So it’s a simple extension of the usual binary
search tree data structure for k different dimensions but of course there is an other way of
looking at KD trees as where each data point here is found to bisect a given space into
two different sub spaces. We shall not go into much more details here because KD trees
in itself is a vast subject by itself.

(Refer Slide Time: 54:15)

(Refer Slide Time: 54:25)

And there are other kinds of data structures which I shall not be going through like quad
trees and R trees which is again a very commonly used data structures where we manage
regions and there are certain user specified regions and there are certain virtual regions.

(Refer Slide Time: 54:30)

(Refer Slide Time: 54:36)

(Refer Slide Time: 54:37)

And so each data point is also represented as a region of zero area and so on. So a region
is supposed to consider, is supposed to contain other regions within it and it is supposed
to have a particular capacity. Whenever a region exceeds its capacity, it is split to form 2
different regions. So the slide here schematically shows an R tree where this is the root
node which is the overall region and which has two children having two virtual regions.

(Refer Slide Time: 55:45)

And each of these two children have two other children that is children that is child 1 and
child 2 and there are to be a virtual region here, so child 1 and child 2 and so on and it is

split correspondingly. And R trees are suitable for range searches, neighborhood
searches, nearness searches and so on.

(Refer Slide Time: 55:47)

But however all of this suffer from the curse of high dimensionality and let’s not try to
prove this here but it’s obvious when we analyze this data structures more closely. Lastly
let us look at one data structure for indexing categorical data. Here as you can see until
now we have been looking mainly at ordinal data whether it is K tree, KD trees or R trees
it is important that there is an ordinal information associated with each dimension.

(Refer Slide Time: 56:08)

That is this is lesser than this and this is lesser than this and so on but here in categorical
data we use what are called as signatures or bit map indexes by which we can say if the
set of all ingredients whichever appear in a particular element is set to 1 here and all other
elements are set to 0.

(Refer Slide Time: 56:38)

(Refer Slide Time: 56:43)

So which basically forms what is called as the signature tree for categorical data. And
there are other kinds of extensible signature hashing and so on and so forth which we are
not going to cover in more detail here.

(Refer Slide Time: 56:56)

(Refer Slide Time: 56:58)

(Refer Slide Time: 57:10)

So let us summarize what we learnt in the data model section of data warehouses. We
saw that a data warehouse contains the OLAP hyper cube at its core and having different
materialized views and then we also saw different kinds of ROLAP and MOLAP
implementations of this materialized views and different kinds of index structures, so that
brings us to the end of this session.

