
Database Management System
Dr. S. Srinath

Department of Computer Science & Engineering
Indian Institute of Technology, Madras

Lecture No. # 3

Relational Model

Hello everyone, we have been looking into the process of database design and let us
continue with this in this session as well. As we saw in the previous sessions, a database
design goes through several different phases and we have been mainly looking into the
conceptual design of a database. A conceptual design essentially means a high-level
design of the database or the database system which is mainly meant for targeting the end
users that is trying to explain your database model to the end users. Today we are going
to look at another model of data which is called the relational model.

(Refer Slide Time: 00:02:04)

And how do we place relational model with respect to the entity relationship model that
we have been considering until now. In order to answer this question, let us revisit our
typical database design process that we saw in one of the previous sessions.

(Refer Slide Time: 00:02:10)

As we had seen that a database design process is contained with in a universe of
discourse that is a universe essentially is the information system context within which a
database is designed whether it is a bank or whether it is railway reservation, whether it is
even your mobile phones. In many of these different application context databases are
usually embedded. So it is this application context that makes up the universe of
discourse.

Now once we analyze the universe of discourse, we essentially get two kinds of
requirements one was what was called as the database requirements as shown in the slide
here and the other is what is called as the functional requirements. So the database
requirements essentially meant, what are the data elements that makeup the system and
how are they interrelated and how should we make sense out of the data elements and
functionality requirement or functional requirements or the application programming
requirements which say what kinds of processes have to run on this databases and what
are the semantics of these processing’s.

So these requirements in turn gave rise to two kinds of parallel processes. The database
requirements gave rise to the conceptual design of the database and from the conceptual
design came the conceptual schema and we saw in the previous class that the conceptual
schema is usually build using the ER model that is an entity relationship diagram.

(Refer Slide Time: 00:03:24)

Now let us follow this upper stream that you see in the slide here a little bit further and
see what happens to the conceptual schema.

(Refer Slide Time: 00:3:57)

Now the conceptual schema which is typically meant for are essentially meant for
communication with the end user is in turn going to give rise to the physical schema.
What is a physical schema? The physical schema is essentially the schema that is actually
build on the database system on the computer and as you might have imagined, while the
conceptual schema is oriented towards human understanding that is communicating your
schema or communicating your design with the end user, the physical schema is oriented

towards machine understanding or essentially efficiency in terms of storage and retrieval
of data elements. So the physical schema is optimized towards quick updates, quick
inserts, easy searches and so on.

So it is one of this physical schema or the building blocks of such a physical schema is
what we are going to see today and the model that we are going to see today the relational
data model is the most widely used data model in most databases today whether it is any
kinds of application context, whether it is banks or railways or telephone exchanges or
whatever. Any of these application context typically used relational model to store data as
part of the internal schema structure.

(Refer Slide Time: 00:05:22)

So what is the background of the relational data model? The relational data model was
introduced in the 1970’s, the early 70’s by Ted Codd from IBM research and in fact there
is you can do a web search for Ted Codd today and many of his seminar papers that
where the database or the relational model was proposed are actually available over the
internet and you can actually have a look at them to see why it was so influential.

Before the relational model was proposed there where another models like hierarchical
and network model and so on which were not very amenable to internal storage which are
not very efficient in terms of storage and retrieval complexity and so on. And the
relational model was extremely elegant in terms of storage and updates and retrieval
searches and all these. The main concept behind the relational model is the notion of a
mathematical relation. You might have studied in course on discrete mathematics and
mathematical relation is just a mapping between two or more sets, so where each set
constitutes a domain and a mapping between each of these domains forms a mathematical
relation. In intuitive terms a mathematical relation is no different from what we
understand as a relationship in normal English.

A relationship is similar, is essentially some kind of an association or some kind of
linkage between two or more different data elements. An employee is associated with a
department, an employee has a name associated with him, an employee has a id
associated with him, an employee has a salary that’s associated with him and so on and
so forth. So it’s this mathematical relation let us say the set of all employees versus a set
of all salaries, you can establish a mathematical relation between these two sets. It is this
set that forms the underlying basis for the relational model. So this is the standard
database model for most transactional databases today.

So let us go step by step into the nuances of the relational model. So what exactly are the
building blocks or the essential concepts that makeup the relation? So what is a relation
in turn? A relation intuitively represents a table as you can see in the slide here or it’s also
called a Flatfile of records. This slide shows here a small table which has three different
columns. The first column is named as roll number, the second column is named as name
and the last column is named as date of registration and there are several different rows
and each row corresponds as you might have guessed by now each row corresponds to
one particular record or one particular student in this case.

(Refer Slide Time: 00:07:29)

So the first row has a student by name Adithya and his roll number is 2003-01 and there
is a particular date of registration. Now this is one data element, one set of data elements
that are interrelated, so one schematic data element. Now, this row is independent of the
second row which talks about another student called Ananth Kumar and with his own roll
number and with his own date of registration and this in turn is an independent data
element that is independent of both the first row and the third row.

So each row in a table represents, a collection of such related data values are what is
called as an instance of the relation. The relation in this case is or the schema in this case
is a table comprising of three different columns roll number, name and registration. An

instance of this relation is one of these rows, one which says 2003-01 and name as
Adithya and a date of registration as 12- 8- 2003. So each row in a relation is called a
tuple and each column is called an attribute of the relation.

(Refer Slide Time: 00:09:32)

So let us dwell little bit deeper into the relational model and before we do that we need to
define some certain crucial elements in the relational model. Now the first definition we
are going to comeback to it again, the first definition in the slide talks about the notion of
an atomic data type. Now have a look at the slide once again, a data type is said to be
atomic if it cannot be subdivided into further values.

Remember in one of the previous sessions we talked about attributes in an ER schema
being either a simple attribute or a composite attribute. A composite attribute is a non
atomic attribute that is for example name if the name of a person in turn comprises of
other attributes like first name, middle name, last name, title, initials and so on. This is
not an atomic attribute.

On the other hand the age of a person is an atomic attribute because you cannot sub
divide this attribute into further sub attributes. Now this is important because a relation is
defined only over atomic attributes as we will see in the next slide and the next definition
that we are going to consider is the notion of a domain. We have already seen the notion
of a domain in the ER model and even here the notion of a domain is no different. A
domain is basically a set of atomic values which defines the space within which an
attribute might obtain a value for itself.

For example we had seen the examples of the age of an employee which may not be
lesser than 18 years and greater than 65 years. So the age of an employee is a set of all
numbers maybe even fractions between 18 and 65. So this constitutes the domain for this
attribute called age. Similarly there are domains for names and dates and so on and so far.

This slide actually shows some examples like the set of all integers, the set of all valid
student roll numbers, the set of all Indian cities with population above 6 million or
whatever. Anything that defines a space of possible values is called a domain.

A relation schema or a relational schema, this is a crucial definition. The relational
schema is as you can see in the slide has a very specific notation. A relational schema is
defined by the name of the relation. Here it is shown as R and a list of attributes, here its
shown as A1 A2 extra to until An. So this is the name of the relation R, in the previous
example the name of the relation was called student record and the attributes are roll
number, name and date of registration. So each Ai shown in this definition, here is the
name of certain some attribute or as shown in the slide here is the name of the role played
by some domain which is an other way of putting the same thing, name of an attribute or
the name of a role played by a particular domain.

Now for example in the previous case their roll number, the domain of roll numbers was
the set of all possible valid student roll numbers. Now what is the role that this domain
plays in this relation is the attribute which is the part of the relational schema. So few
more definitions. Just like we had that degree of relationship in the ER model, we define
the degree of a relation in a pretty analogies fashion, it is simply the number of attributes
in the relation schema.

(Refer Slide Time: 00:13:08)

For example in the previous schema that we took, the degree of the relation was three, it
had three attributes roll number, name and date of registration. So a relation R or what is
even called a set of instances of relational schema, a relation this is different from a
relational schema. The relation of a relational schema is a set of tuples which belong to
the schema or which conforms to the schema along with the schema itself. So a set of
tuples of the form t1 t2 extra tm were each tuple is of the form of n different attributes or n
different values one for each of the attribute.

So again in the example that we saw earlier, it had three different tuples. There were three
different student records with three different roll numbers. So the entire set that is the
schema plus the set of all tuples is called a relation. So a relation as you can say, it can
also be defined as a subset of a cross product of all this domains. So the cross product of
the set of all roll numbers times the set of all student names times the set of all
registration dates that are possible. Now a subset of this cross product is what is going to
form a relation. Now what is some of the characteristics of a relation in the relational
model? Ordering of tuples, that is one of the first issue that we are going to look at. This
slide shows here three different characteristics of tuples.

(Refer Slide Time: 00:15:02)

Ordering of tuples: Mathematically the relational model does not have any ordering that
is specified over the tuples. Now it does not matter as far as the mathematical model of
the relational schema is concerned whether the set of all tuples are ordered roll number
wise or name wise or whatever. It is just a set of tuples that are in conformance with the
relational schema. So but in reality of course they do have some kind of an order which is
specifically the order in which they are stored on the disk whether they are stored in
sorted order or not, it doesn’t matter but they have some kind of an order in reality.

Ordering of attributes: Note that a tuple, you might have studied in course on discrete
mathematics a list is something where the order is important. A list is different from a set.
So tuple is basically a list of n different elements which means that the order of these n
different elements is actually important. So if the relational schema says that my
relational scheme is called student record and I have these attributes roll number, name
and date of registration and if I have a tuple having three different values the first value
corresponds to roll number, the second value corresponds to name and the third value
corresponds to the date of registration.

So the ordering is important but that is mathematically speaking. In fact, in reality though
we can do away with ordering within a tuple as well. I can as well dereference a
particular attributes by its name, I can as well say what is the roll number value of this
relation, what is the name value of this relation, what is the date of registration value of
this relation and so on. And values of tuples which is the third characteristic that we are
going to look at today. So like I mentioned before each tuple or each value that makes up
a tuple is assumed to be atomic in nature and this is what is called as a first normal form
assumption.

In fact we are going to see in one of later sessions that the first normal form is just the
first step in a series of different normal forms in which the database can be optimized for
enhanced maintenance of the data. What do we mean by enhance maintenance? Easy
addition of data elements, easy searching for data elements, easy updation of data
elements and so on. And this is primarily the reason why it is stipulated that or why it is
required that each data value that makes up a relation are to be atomic in nature and
atomic as we had seen earlier is something that’s not composite that is some value that
cannot be subdivided into further semantic values. So just like entity relationship model,
a relational model also are specified by certain kinds of constraints on the data model.

One of the first constraints that we are going to look at is pretty obvious which is what is
called as the domain constraints. What is the domain constraints say? Each value of an
attribute within a relation has to have a value which lies within the domain which is
pretty obvious. So the roll number of a particular student has to be a valid roll number
that is it has to belong to the set of all possible roll numbers If the set of all possible roll
numbers range from 1 to 150, I obviously cannot have a roll number which is 200 or I
obviously cannot have a roll number which says A B C and so on.

So the domain constraint specification basically states that each data value that makes up
a relation has to be or has to belong to the domain in which it is the domain of the
attribute in which it utilizes.

(Refer Slide Time: 00:18:16)

The second constraint in the relational model is what is called as the key constraint and
this is quiet similar to the key constraint that you saw in the ER model as well. In any
relation there could be a subset of attributes that have a property that for every tuple in
which those attributes appear, they have a unique value for those tuples. Such kinds of
attributes are called super keys. Now what is the use of a superkey? Obviously to be able
to uniquely identify every tuple in a relation.

In the previous example where we took that a relation having three different attributes
roll number, name and date of joining you can see that roll number forms a superkey
because roll number is an attribute whose value is unique for every tuple in the relation.
However you can also combine roll numbers along with the names and you can see that
it’s always going to be unique. If the roll number is unique roll number plus name is
obviously going to be unique. So roll number plus name or in fact the entire record can be
called the super key for each record which brings us to another property of the relational
model.

In the relational model each tuple is distinct that means in the worst case the entire tuple
is the superkey. The relation does not allow multi multiple tuples having the same value
in the sense that it is a set of tuples and not a multi set of tuples or what is typically called
a bag of tuples. So each tuple are to be different in value from the other. So, a key is a set
of tuples in which is defined in a similar fashion as in the ER model a key of a relation is
a subset of the superkey such that no subset of a key is a key in itself.

If you remember this was more or less very similar to the way we defined a key in the ER
model itself. So roll number in the case of the student record is a key and if you take
away the roll number, you cannot identify or you cannot distinguish one tuple from the
other.

So however roll number plus name is not a key in itself. Why? Because you can still take
out the name attribute from the key and you can still uniquely identify each tuple using
just the roll number because the roll number is sufficient to identify each tuple uniquely
in the relation. So there are also called minimal superkeys.

(Refer Slide Time: 00:22:10)

So this slide shows the talks about what we saw just now that in the student table roll
number and name is a super key. However it is not a key or it’s not a minimal super key
because you can still take away name and still be left out with the key that is you can still
identify each tuple uniquely in the relation or in the table. So, just roll number is a
minimal or a minimal super key. Now, just like we had seen in the example earlier that a
house can have more that one keys, the key for the front door and key for the back door.
Any relational scheme or any relation can have more than one key or so on.

Take an employee record and usually employees are given employee identification
number and they also have a pan number which is given by the government. Now using
either of these two, you can identify an employee uniquely because each of them are
unique for an employee. So each such key or each such set of subset of attributes which
can uniquely identify tuples in a relation is called a candidate key. So either the employee
number or the pan number is a candidate key in itself but usually one of those candidate
keys are used for identifying tuples in a relation.

In a company contacts its usually the employee number, we do not usually identify
people with that pan number when you are talking about their performance records or
salary statements or anything of that sort, we usually talk about their employee number.
Now whichever candidate key is used for the purpose of retrieval in quires and insertions
and so on is called the primary key of a relation. So in the student relation that we saw
earlier usually it’s the roll number is what we use for students, so the roll number is a
good primary key.

Now just like their entity constraints as part of the ER model, there are certain constraints
that make up the relational model as well. The first constraint is what is called as the
entity integrity constraint. So what is the entity integrity constraint? It essentially says
that whichever entity the, now look at what we mean by an entity here. It’s a slight
change of nomenclature what we mean by an entity, here is a tuple in the relation.

(Refer Slide Time: 00:24:14)

So the primary key of a tuple can never be null obviously because we won't be able to
identify each tuple uniquely. The second integrity constraint that’s important in the
relational model is what is called as a referential integrity constraint. Now what is a
referential integrity constraint mean? Sometimes some set of attributes in a relation may
point to certain other tuples in another relation. We had seen such an example in one of
the previous sessions as well, when we said that a department is headed by an employee
who is the manager or the head of the department. So that the headed by is usually
contains an employee id of the person who is going to head this department.

So here what we are and ensure that we are going to get here is what is called as the
referential integrity. Here there is a reference from the department entity to the employee
entity. Now this referential integrity constraint basically says that whenever I make a
reference from any tuple to any other tuple, it should make a reference to an existing
tuple. That means I can appoint somebody, I can appoint some employee with some
employee id as manager of the department as long as or only as long as such an employee
already exist in the database. So such a reference is what is called as a foreign key.

So in any given relation set of attributes is set to be a foreign key if the following rules
hold. The first rule basically says that the attribute in foreign key has to be the same as
the primary key of the other relation, this is fairly obvious. If I am going to say that the
department is headed by an employee and I write an employee id here but use employee
name as the name of the person who heads, it obviously is not a foreign key. It has to be

either both the primary key in the employee record and the reference in the department
record has to be names or they both have to be employee id’s in some sense. And for
every tuple in the referencing attribute or in the referencing relation like department, the
attributes in its foreign key refer to existing tuples that is each department should have a
manager who exists, who already exists in the database or there should be null that means
there should not have a manager at all. So either of these two should hold for the
referential integrity constraint to hold.

(Refer Slide Time: 00:27:36)

So referential integrity is usually depicted in a diagrammatic fashion as shown in this
slide here. This slide shows two different schemes or relational schemes, one called the
employee schema and the second called the department schema. So the employee schema
has employee id, name, works_in and reports_to. So employee id would be the primary
key here and the works_in actually is a foreign key which refers to the department id and
reports_to is another foreign key which refers to another employee id within the same
relation.

So note that foreign keys can be from a relationship to itself but the same referential
integrity constraints hold. That is if an employee A is reporting to employee B, employee
B should already exist in the database by the time employee A is being added to the
database.

(Refer Slide Time: 00:28:35)

And the last kind of constraint over a relational model is what is called as the semantic
integrity constraint. An semantic integrity constraints is usually more of an application
specific constraints something like the age of an employee cannot be less than 18 years
and greater than 65 years. So this is not per say part of the relational model but usually
this is important to be implemented within a database context and automatically checked
and verified that these integrity constraints are maintained. Now let us quickly look at
what are some of the basic relational algebra operations that make up the relational
model. Now essentially the operations of relational algebra can be categorized into one of
two different kinds of operations namely retrieval of data or updates to the database.

(Refer Slide Time: 00:29:07)

Now updates to the database are usually handled by what are called as insert and delete
operations. We should not be looking into insert and delete operations in any detail in this
session mainly because they don't have many, very many properties that we can explore
at this moment. So right now we will be looking mainly at the retrieval operations and
retrieval operations are handled by two basic operations called select. Select is denoted
by a sigma as shown in the slide here and the project operation which is denoted by a pi
which is also shown in the slide here.

So let us go to the select operation. The select operation is a very simple operation that is
used to select a set of tuples from an existing relation. So remember a relation is basically
a set of different data tuples along with the schema. Now given this set of tuples and
schema, we can use the select operation to select a subset of those tuples. Now this slide
here shows an example which says select salary greater than 3000 from employee. So as
it shows here sigma salary greater than 3000 as a subscript and employee has the
parameter this operation.

(Refer Slide Time: 00:30:11)

So as you can see there is a operation here, there is a condition and there is a domain or
there is a relation over which the operation is going to be performed. So this is going to
select the set of all records from the employee relation where the value of the attributes
salary is greater than 3000.

(Refer Slide Time: 00:31:15)

So the general form of select is shown in this slide, its simply as like this select condition
relation. So where condition is a conditional expression, I have written a slightly formal
grammar of how a condition looks like. Essentially condition is a logical expression over
attributes names, something like select salary greater than 3000 and gender equal to male
from employee. So which basically says give me all male employees in this relation
whose salary is greater than 3000 and so on.

(Refer Slide Time: 00:31:48)

Now what is some of the properties of the select operation? The first property which you
might have noticed here is that the select operation is unary in nature. What is a unary

operator? A unary operator is something which operates on just one operand. The select
operator operates on just one relation even if my database has many different relations,
the select operator operates on just one relation and we have to some how make sure that
when we are giving the select operator we have just one relation as the argument of this
select relation. And, each selection criteria the condition basically that’s specified is
applied to each tuple separately.

The condition that we specified here was select salary greater than 3000 from employee.
Now it’s going to apply this condition separately to each tuple. Basically it also means
again that each tuple in a relation is independent of the other and the degree of the
relation that emerges out of a select operation. Note that the output of a select operation is
a relation in itself because it has just taken a subset of the tuples from the given relation
and return them along with the schema.

So the input to the select operator is a relation and the output is also a relation and the
degree of the output relation is the same as the degree of the input relation. That is if the
employee table in this example here had 4 different attributes, the output of the select
operator also has 4 different attributes and in the same order as well. However the
number of tuples returned by a select operator is bounded by the number tuples that
already exist in the relation.

That is this slide shows this as in a very compact fashion, the cardinality of the select
output relation is less than or equal to the cardinality of the select input relation and the
last properties shows that select is commutative which is again quiet interesting and
important. This slide shows here that if I select based on condition c1, an output of a
select based on condition c2 for R, I can as well replace c1 by c2 and c2 by c1 and it
doesn’t matter. So you can verify that for yourself that the select operator is commutative
whether it doesn’t matter in which order I am going to apply the conditions. The second
operator that we are going to be looking at is what is called as a project operator.

Now select operator if you have absorbed carefully is going to return entire tuples, it is
not going to modify the schema of the relation which is given as an input. For example if
the employee relation is given as an input and the employee relation has four attributes in
some particular order, the same set of attributes in the same order is what is going to be
returned by the select operator.

On the other hand what if we can select over columns rather than select over rows and
return a different relation with possibly a different scheme. In order to do that we are
going to use the projector operator.

(Refer Slide Time: 00:34:33)

The project operator as shown in the slide here is quiet similar to the select operator in
the sense that it has first the command called project which is denoted by pi and a list of
attributes, here it shows name, salary from employee. So the output of this relation is
again another relation. However with a different structure from that of employee that
means it is going to return just the name and salary attributes or the name and salary
columns of the employee table as part of its output. So we can also say that it has
projected the employee relation on to the selected set of list of operation.

So the general forms of the project operation is simply of the form project, attribute list
and relation. So I can just give a list of attributes and the project operator returns relation
in the same order that is being presented in the attribute list. Hence if I gave salary before
name, it would also return salary before name in the tuple that is returned as part of the
project operation. So what are the properties of the project operation? The first property
is that which basically is one of the main properties of the relational model that is a
relation may not have many duplicates.

(Refer Slide Time: 00:36:13)

(Refer Slide Time: 00:36:53)

That means when I am projecting let us say I am just projecting name and salary
attributes from the employee relation, it may so happen that there maybe two employees
with the same name and the same salary but with of course different employee
identification or employee numbers. So the project operator actually would start forming
duplicates in the relation that emerges out of this however duplicates are not alone. So the
project operations remove duplicates from its results when it returns results. And the
number of tuples returned by project is less than or equal to the number of tuples in the
specified relation. How can you verify that the number of tuples is less than or equal to,
why not equal to because I am just asking for certain columns in the relation.

The answer to this lies in the first point that is there are no duplicates. So when I selected
just the name and salary attributes from the employee table it may so happen that their
maybe certain duplicates that exist in the output relation. Now because the duplicates are
removed, the number of tuples in the output relation is actually less than the number of
tuples that forms the database, that was in the relation in the first place. So when the
attribute list of project includes the superkey then the number of tuples is same as the
number of tuples as in the database which again follow from the first two points and the
last point is again important, the project is not commutative.

So have a look at the slide once more, it gives an example project l1 and project l2 out of
R. If this were the case then this would become, this would be equivalent to just saying
project l1 from R if and only if l1 is a substring of l2. So for example if l1 is just name and
l2 is name, salary then I could just say project name from R instead of saying project
name, salary from R. On the other hand if I try to do it the other way around then it
becomes an incorrect expression. So I can't project name, salary after projecting just
name from the relation

Composition: Now this is another property of the relational model. If you notice again
carefully, we have mentioned this point in passing when we looked at both select and
project but this is going to be very important now. The input for the relational operator
select as well as project is a relation and the output is also a relation. The select operators
return a relation containing only a subset of the tuples of the input relation. Similarly the
project operator returns a relation which contains only a subset of the attributes of the
input relation however both select and project returns a relation.

Now this brings us to a very important property that a relation can be dynamically
defined, it need not actually statically exist in the database. That means to say that I can
put a project operator to the output of a select operator and it would still make sense
because the output is a relation and the project operator also expects a relation. So this is
what is called as composability of the relational operators. So relational operators can be
composed as shown in the slide here that which shows project name, salary as the
outermost operator and there is an innermost operator called select.

(Refer Slide Time: 00:41:01)

So if you can look at the slide again, there is a project operator here. The project operator
is operating obviously on a relation. Now what is this relation? The relation doesn’t exist
when the project operator is performed, in fact it exist only when the select operator is
performed. That is once the select operator finishes, it basically brings out a relation
which is the set of all tuples where the salary field is greater than 3000 from the
employee record or the employee relation and this set of tuples which is dynamically
created forms the input for the project operator which is going to be another relation.

Now because this is going to be another relation, it can be very well assigned to a relation
called salary statements for example here. So which says salary statement equal to project
name, salary from where select salary greater than 3000 from the set of all employees.
Now before we conclude today, we will just look at one major question which I am sure
you would be asking yourself. Now the question is both project and select operators
expect only one relation. Now does it mean to say that I cannot ask any queries that span
more than one relation, should I ask every query over just the employee record, over just
the department record I mean the department relation or employee relation or so on. Can I
not ask any question that spans employee and department relations together and so on.

(Refer Slide Time: 00:42:56)

So the answer to this is the Cartesian join obviously. So essentially what we have to do
here is because both select and project operators require just one relation, we have to
some how ensure that even if you have more than one relation they all fall back or they
all combine to form just one relation. So we are going to look at one such very
rudimentary operator to make just one relation which is namely the Cartesian join. In fact
there are other much more efficient ways of combining two or more relations which we
are going to explore in the next session.

So the Cartesian join as you might have imagined is very similar to the Cartesian product
between two sets. What is a Cartesian product between two sets? You just take each
element of one set and combine it with each other elements of the other set. So in the case
of relations, you just take each tuple of one relation and combine it with every possible
tuple of the other relation. So the slide here shows such an example. There are two tables
here, one table is called student and the other table is called lab. Now student table has
three different attributes roll number, name and lab. And lab table itself has three
different attributes that is name faculty and department. That is the name of the lab, the
faculty heading the lab and the department in which the lab belongs to.

Now consider the relational query here shown below the tables, select student . lab equal
to lab . name. So that means to say that lab attribute from the student table equal to name
attribute from the lab table from a Cartesian product of student and lab that is combine
student and lab to get it. So what is the output of this relation or how is this relation or
how is this query evaluated? Let us first straight away compute the Cartesian join or the
Cartesian product of the two relations student and lab. Now what I have done here is I
have take the student relation that is the student relation had 4 different students. So for
each student I have combined it with each possible lab tuple to form one big relation.

(Refer Slide Time: 00:45:16)

So here it says note how the attribute names are changed that is it becomes student dot
roll number, student dot name, student dot lab, lab dot name, lab dot faculty and lab dot
department. Now the query that we require to match was student dot lab equal to lab dot
name. Now all these quires that match are shown here in pink. Now it is these tuples that
are going to be returned. So the result of the query would be something like this. That is
where the student working in a particular lab is same as the name of the lab for whose
record that we are maintaining.

So essentially what we have done here is that from two different attributes or two
different relations student and lab, we have made just one relation by their Cartesian
product and then given it as just any other input to a select operator. So it has become just
one relation as seen in this slide here. The last slide that should be looking here today
would be what exactly are the properties of this Cartesian join operator, just like we saw
the properties of project and select.

(Refer Slide Time: 00:46:14)

(Refer Slide Time: 00:46:59)

Now the Cartesian join represents what might be termed as a canonical join between two
relations that is it just joins every relation from the first tuple to every other relation in the
second tuple. In the example here it just joined every student record with every lab record
whether it made sense or not.

It was if a human being read the two tables, he would have noted that many of these
joints do not make sense that is even though it says that the student works in a particular
lab that record is joined with some other lab which has no relationship with what the
student is doing.

So essentially if the number of tuples that come out of a Cartesian join is actually the
product of the number of tuples that exist in each of the relations that make up the join.
So hence Cartesian join as you might have imagined is actually two inefficient for joining
tables, especially if you note that one table has 10000 records and the other table has 1
million records and the Cartesian product would be 1 million times 10000 records. And
probably the output would be something which maybe 10 records or so which is not
clearly worth it. So Cartesian join is mainly of theoretical interest in the sense that this is
a canonical form of join operator by which we can join two or more relation to form just
one relation because each operator requires just one relation as its input.

So in the next session we are going to be looking at several other join operators especially
what is called as the theta join operator and see how it is actually computed and how its
going to be more efficient than the Cartesian join operator. We are also going to look at
certain more, certain other relational algebra constructs and see how we can express the
several different quires using the relational algebra.

So to summarize what we saw today the relational model is a data model for the internal
schema of a database and the internal schema is something which is oriented towards
optimized performance on a computer rather than human consumption that is something
that is meant for human beings to see and understand and so on.

And the relational algebra, an algebra is some kind of formalism over which we can build
sound software that is something that’s based on a mathematical formulism can be used
to build sound software. So comprises of operators that very elegantly take relations as
input and produce relations as output and then you can start combining relations from one
another and so on. And we also just started to see how we can combine relations so that
we can give just one relation as an input that is required by each of the relational
operators.

In the next session we are going to be looking at certain more sophisticated forms of
combining relations which are much more efficient both in terms of space and time
required to compute these joins. So this brings us to the end of today's session.

