
Database Management System
Dr. S. Srinath

Department Of Computer Science and Engineering
Indian Institute of Technology Madras

Lecture No. 27

Introduction to Transaction Recovery

Hello and welcome. In this session today we shall be staring with a new topic namely that
of recovery that is how to recover data or how do we bring back database into what we
called as a consistent state in the phase of any kind of failures. Failures could be of any
kinds. Let us say disk crashes, power shutdown or network connection failure, many
different kinds of failures and we are going to be somewhat specific when we say
recovery. Obviously we cannot recover data that involved that were being processed in
main memory during ram. Main memory during the crash but only we can recover
whatever has been returned on to persistent storage like disc. But what is written on the
disk? Good recovery or somewhat semantics associated to what is written on to the disk
and do we have to do something more when in order to recover from crash schedule?

In order to answer this question we need to know the concept of a transaction in a
database processing environment. Therefore, the title of session is called introduction to
transaction recovery. In fact we are going to define the notion of correct recovery from
wrong recovery based on the concept of transactions. We are not going to study about
transactions in detail here. They are covered in a separate topic under itself transaction
processing itself is a vast topic with several different aspects to it and we shall be
concerned mainly with the recovery aspect here when it comes to and we are using the
transactions to help us guide in deciding which kind of recovery is correct recovery
which is incorrect recovery.

Let us first define the term OLTP. I am sure you might you heard of the term OLTP in
several different contexts. It stands for online transaction processing and environment
that is the database system plus an application program plus any other associated
accessories like networks and so on that goes into form an environment that is meant for
online transaction processing.

(Refer Slide Time: 3:22)

What is meant by online transaction processing? As the name suggests, it is a processing
environment that can interactively process database transactions. We will define these
terms in a much more accurate fashion later on.

(Refer Slide Time: 3:53)

But, let us first look at some environments that can be classified as online transaction
processing environment. Some examples are like airline or railway reservation systems.
What are the characteristics of such system? One of the main characteristic that you can
straight away see in Railway Reservation Systems, for example:

(Refer Slide Time: 4:29)

Is that there are several numbers of users who are accessing the database system
simultaneously that is you might have experienced it if you have tried booking a railway
ticket over the internet. Suppose a train is getting almost full and if you delay in booking
your ticket given by let us say some times even by few minutes, then never you may not
get a conform ticket at all might go in to waiting list.

So that means, at that particular instance of time when your checking the status of tickets,
there were several other people accessing the same database throughout the country. That
is they could be accessing via the internet, could be accessing via let us say some kind of
Queuing system that is across the booth or whatever from, they are all accessing the same
database and several different transactions are happening at the same time and similar
examples are of that of banking systems and especially how cash dispensed in atm’s or
wire transfer mechanisms and so on. Another over tip environments require super market
checkout systems and where customers come in with their baggage of whatever things
that they have bought, they have to be checked out praised and build and so on.

(Refer Slide Time: 5:52)

There are hotels and hospital system, trading and breakage system where buying and
selling of the shares keep happening continuously whenever trading is on and several
such sessions are happening simultaneously. Now let us take scenario which helps us
understand what should be the properties of these transactions that go on in OLTP
environment. Now consider a small banking example where different accounts are
maintained in a bank. There could be on different databases or within the same database
or different locations or same location, it does not matter. Let us just consider that there
are different accounts and this database is being accessed simultaneously by several users
performing several transactions. Let us say that one percent using net banking to transfer
some money from his account to somebody else account.

(Refer Slide Time: 7:14)

At the same time, other person is using an atm to withdraw some money or deposit some
cheque or some cheque is getting enchased some did is getting enchased or withdraw
whatever several things are happening simultaneously in the bank. Now, among this let
us consider a small one particular example that account number 2,565 sense 2,500 rupees
to another account number 165.

So let us say at time t equal to 0 however we define our time, a transaction begins or set
of database operations begin the application program that is making this wired transfer
will initiate database operations which will first read the balance of 2565. Now it will
read the read the balance amount and because it is withdraw, it is a withdrawal from
account 2500 will be deducted from this balance and let us say we are using concurrent
applications which can have different threads of execution which can run at the same
time.

So when this balance is being deducted here at the same time the balance of second
account is being read of account number 165 and due to some reason, this thread process
gets swapped of into disk by the operating system. Some other process is running because
note that operating system of the scheduling processes to and some other processes
running at the time and by the time, this process comes back. It is time number 4, time t
equal to 4. At this time, balance amount of 2,500 is added to this account.

Now meanwhile let us say there is another transaction. Let us say, the account holder of
this of this account number 165 is meanwhile standing in an atm and depositing certain
cash certain amount of cash to the atm or may be he has sent a cheque and that cheque is
getting clear. So, why this person with the account 2565 performing wires transfer? The
person having the account 165 is also depositing amount of 3,000 rupees and it is so
happens that, the way processes are scheduled this set of operation that is reading the

balance of account number 165 here and adding 3000 rupees is done before the previous
transaction finished.

That is before the balance of before amount of 2,500 is deducted from that is based on the
previous transaction. You can see what happens what has happened now? The previous
transaction has read the old balance amount and added. Actually this should be added. I
am sorry. There is a small bug here. This should be plus equal to that it is taken. It is
taken previous balance amount and added to 2500 rupees here. While before it could that
the previous balance was read, 3000 rupees was added by the customer who is depositing
his cheque from the atm.

Now what has happened here in that, this entire transaction is lost this entire serious of
operation is lost after time t equal to 4 because suppose this person had 50,000 rupees in
his account it will be now 52,500 rupees rather than 55,500 rupees. 3000 plus 2500
rupees.

(Refer Slide Time: 11:12)

So 3000 rupees is just gone, it is just lost. Now, as you can see this is not unrealistic
situation especially we just saw today, when we have facilities like net banking or atm or
booking train tickets over the web or using telephone calls or using sms from mobiles and
so on. This is not an unrealistic situation because concurrency is concurrent activities are
happening at the same time. I mean a concurrent activity is happening all the while and if
you are not careful, such kind of activities can result in an inconsistent database. The
entire transaction of depositing 3,000 rupees is lost in this example.

So, if you are not careful what is the clear you have to take what is that you need to
remember when we are dealing with situations like this. The thing that you need to
remember here is the first two activities. Let us say the first activity of wired transfer

between account 2 5 6 5 1 6 5 is a completely different or is a conceptually separate or
distinct activity from the second activity of depositing 3000 rupees.

(Refer Slide Time: 12:47)

So the first activity is a conceptually or logically separate activity or functionally than the
second activity. Such kind of logical units of works are called transactions and
transaction activities in a transaction, the actual database activities transaction should be
schedule in such a way such that these kinds of anonyms do not occur. Let us try to
formulate these things in a little bit in much more detail. Now what is a transaction? A
transaction is a logical unit of program execution.

(Refer Slide Time: 13:35)

As we saw the entire activity of withdrawing money from A’s account and depositing
that money in to the B’s account constitutes one logical unit of operation and it is a
combination of database updates which have been performed together. They cannot be
independent of one another. The withdrawal from a’s account is not independent of
deposit into b’s account and vice versa. There are several different transactions
depending on where and how it is being used.

Let us have a brief look at the different definitions of transactions which makes it clear
what are the different fests to handling transactions or recovering from transactions one.
Firstly we can define a transaction as a logical unit of work that is meaningful in the
user’s environment. As we can see here, the wire transfer that is withdrawal of money
from A’s account and depositing in to B’s account is a meaningful semantic activity as
part of the users environment because that constitutes a semantic process in the users
environment, a wire transfer. Similarly depositing 3,000 rupees; In order to deposit 3,000
rupees, there were two database operations. Network done that is reading previous
balance and updating the balance. So both these activities of reading and updation is one
semantic activity that, it constitutes one meaningful activity namely that of depositing
certain amount of money in to an account.

Now one can define even transaction as a logical unit of work with respect to
concurrency control and recovery. Not necessarily semantic activity in terms of the user’s
environment. Many cases users depending on what granularity you are looking at. Users
may not be concerned with water considered transaction set at the database level.
However, we might have to club or we might have to combine certain database activities
in to transactions in order to maintain consistency in the phase of concurrency control and
recovery process. Transactions are also called atomic unit of work. Instead of calling it as
logical unit of work, much more stringent definition is to say that it is an atomic unit of
work with respect to concurrency control and recovery. Atomic unit of work is a more
stringent requirement than saying logical unit of work. An atomic unit of work basically
means that it cannot be subdivided in to smaller works.

Either all of the activities of a transaction are performed or none of them are performed.
You cannot perform half a transaction and leave it at that or you cannot perform 90
percent transaction and leave it. Either you have to perform the entire set of activities of a
transaction or nothing at all or another definition that it is generally used that is
transaction is an atomic unit of work that will apply to consistent database returns another
consistent database.

(Refer Slide Time: 16:58)

That is an atomic unit of work that is meaningful, that could be meaningful that is the
atomic unit of work with respect to concurrency control recovery. However, not all
atomic units of work that can be managed for concurrency and recovery could be
transactions because some of them could take it take the database to inconsistent state. So
the transactions sometimes defined as in those only units of work make transactions to a
valid state of database. Now what are the properties that a transaction should satisfy that,
we have seen we have motivated the need for transaction in several different from angles.

We first saw an example application an example OLTP application where transaction
processing incorrect transaction lead to anonymous and also we saw different definitions
that look at the notion of transactions from different levels. Now how can we consolidate
them together and synthesis what are the basic properties the transaction should hold? So
the basic properties that a transaction should hold are called as the acid properties of a
transaction. Acid stands for atomicity, consistency, isolation and durability that is shown
in the slide here. So, what is atomicity in the acid property? Atomicity we just saw in the
previous slide that a transaction should be viewed as an indivisible unit of work.

(Refer Slide Time: 18:46)

That means either all activities in a transaction should be performed or none of them. We
cannot perform half a transaction and leave it. Consistency: Consistency of a transaction
basically means that of the database is consistent transaction should be consistent after a
transaction. The transaction the atomic unit of work should not lead the database in to an
inconsistent state. What is meant by an inconsistent state? Any state that violate the
integrity constraint of the database.

(Refer Slide Time: 19:17)

We saw how to specify integrity constraints and how they are enforced in a database
system. The third property of transactions is isolation. We saw an example of transaction
violating isolations in our banking example that we saw before. Isolation essentially
means that even though activities in the database are happening concurrently that is the
readings and updates and reads and writes operation whatever is happening on to the
database level are all happening in a simultaneous fashion.

(Refer Slide Time: 19:53)

The net effect in an OLTP environment, the net effect should be as though the
transactions have been executed in some serial order. It does not really matter to what
should be the serial order as long as we can establish equivalence between the way in
which database activities are performed to a serial sequence of execution. That is it
should be as though that transaction ‘a’ was completed before transaction ‘b’ begin. ‘b’
was completed before transaction ‘c’ begin and so on and the last property of the
transaction is called durability, that is once the transaction finishes are rather we used the
term commit here, that is once the transaction says now i have done all my work and you
can commit whatever changes have made in to the database. Once it is committed, the
changes are persistent.

(Refer Slide Time: 20:52)

You cannot rollback or you cannot undo the changes that are being made by the
transaction after it is being committed to the database that is commit is something like in
order to understand the notion of commit, it is something like a physical activity. For
example: dispensing money from an atm is a commit operation. Once it is committed,
once money is dispensed, you cannot rollback. You cannot expect the user to say no no
no, we did something wrong. We have to put back money that i gave you because some
other transaction is conflicting. So once commit operations is performed, it is durable that
is the transaction cannot be rolled back and we have to do something else in order to
undo the operations of transaction.

Once you dispense the money from an atm you have to do something else. We chased the
person who withdrew the money and get back from him if required and so on. So we
cannot undo the transactions within per view the database. Let us look at the examples
that specify each of these acid properties of the transaction. Have a look at slide here. Let
us say the transaction involves again a wire transfer from account a to account b that is,
the transaction should be like this. Account a dot balance minus equal to amount
whatever amount has to be transferred and account b dot balance plus equal to amount.
Let us suppose that the balance that is amount number of rupees has been debited from
a’s account and for some reason the databases crashes.

Let say there is disk crash or a network failure whatever or operating system crash or
whatever. Now once the system is brought up again that is once there is a recovery
process, this transaction has not completed. Therefore in order to make it atomic, we have
to roll back. We have to roll back the changes that you have made since the beginning of
the transaction that is, we have to put back this amount back into a’s account and then
restart the transaction once again. Otherwise, it would not be an atomic operation.

(Refer Slide Time: 23:17)

This amount to if it did not perform the recovery operation this would amount to
performing half a transaction and we saw that performing half a transaction and we saw
that half a transaction is not an atomic transaction. What about consistency? Have a look
at the example here again. This is again the wire transfer example from account ‘a’ to
account ‘b’ that is the same series of operations have to be performed that is A dot
balance minus equal to amount and B dot equal to B dot balance equal to amount. Now
let us say that the query that has to be performed. These two things have been that is the
query planned has been performed and these two operations are given to two different
threads in the operating system.

(Refer Slide Time: 24:05)

And it so happens that the thread performing changes on B’s balance is scheduled first
before that of ‘A’. Let us say first ‘B’s balance amount is crediting. Let us say ‘A’ is
sending 2500 rupees to ‘B’. So we know the amount 2500. So these balances added by a
value of 2500 and however when trying to recover, remove 2500 rupees from A’s
account. We see that A has zero balance in his amount. He cannot make this payment. So
this transaction fails. We cannot make this transaction. So in order to keep this
transaction consistent, we have to deduct whatever credit we made in to the account of B
in order to bring back the consistency in the database systems.

(Refer Slide Time: 25:06)

Note that here there is no crash or anything of that sort. Here there is the normative
failure. The normative or failure with respect to nor. The failure which violated the
integrity constraint. We can think of an integrity constraint that says odd raff are not
allowed that is the balance amount in users account may never be negative. So when we
try to do this operation that is when you try to debit 2500 rupees from ‘A’s account, we
found that the balance is becoming negative and it violate the integrity constraint which
in turn cause the transaction to roll back that is in order to maintain the consistencies in
the database systems.

The third property is that of isolation and isolation like you said before deals with
concurrency that is what how do we handle concurrent operations being performed from
two or more transactions simultaneously. So again consider the case of wired transfer
another case of wired transferred that is account A’s is transferring some account to B. At
the same time, account the person holding account ‘A’ is also withdrawing some money
that is the person holding account A has given a check at some time which is getting
process now and if the same time, the account holder is withdrawing some money. Let us
say the transaction t1 is reading account A’s balance debiting the amount and crediting
the amount account B.

Let us say that A’s balance will become zero after debiting this amount. Let us say it
2500 rupees and let us say the same amount is also being withdrawn by being as by
account holder for withdrawal. The net effect of running these two transactions should
not be the case that both of them read the database or if the balance, there is 2500 rupees
and then go ahead independently debiting them debiting the account because that would
be in correct because we would have debited more than 2500 rupees.

From these two transactions where it is not could not be reflected. So the net effect
should be T 1 precedes T 2 that is T 2 begins only operation after T 2 completed is in
effect that that should be the case. Which case T 2 will fail or Tone begins operations
after T 2 completed? It does not matter which is the serializable schedule which is the
serialize schedule that we want is it T 2 after Tone after T 2.So in either case none of the
2 transaction will fail that is either the withdrawal will fail or the wired transfer will fail.

(Refer Slide Time: 28:02)

And durability like we said is the commit operation that is one thing committed, then it is
not change we gave an example of let us say money dispense information from atm.

(Refer Slide Time: 28:15)

Once the commit operation is performed, it is safe to dispense money from the atm and
we cannot roll back the transaction once the commit is performed. What are the different
states in which a transaction is in and this is important to know when we are trying to
recover from a failure of a transaction? Now transaction is set to be in several different
states depending on what has happened since it begin. It is said to be in active set which
is the initial set when the transaction is executed. When the last statement has finish
execution and it is ready to commit, the transaction is said to be partially committed.

When the transaction discovers that it no longer proceeds with normal execution because
something else has happened, some crash or some violation of an integrity constraint or
some violation of an isolation requirement and so on. When it discover something like
that then it is said to be in the fail state and once roll once the transaction is rolled back, it
is said to be aborted and if the transaction successfully completes that its operation that is
an atm successfully dispenses money. It is said to be committed and either committed or
roll back or aborted state is called terminated state.

(Refer Slide Time: 28:30)

So this slide schematically depicts the different states in a transaction and also shows
from which state you can go to which other state that is from the active state, you can go
to either a partially commit state or a failed state and also you can reach fail state from a
partially committed state that is after performing a few operations and from a partially
committed state, if everything okay then you can go to committed state or if the things
are not okay you can go in to the fail state turns take in to an aborted state.

(Refer Slide Time: 30:14)

Let us have a simple look at how these acid properties can be maintained or what it takes
to maintain these acid properties and we are going to look at simple example called

simple technique called a shadow copy. Shadow copy is extremely simple extremely
inefficient and it is not used in practice. Several more sophisticated techniques for
handling are maintaining acid properties or taken up in much more detail when we take
up the topic of transaction processing itself. Here this is just to illustrate the concept of
what it takes to perform, to maintain certain properties of a transaction.

(Refer Slide Time: 31:06)

Shadow copy transaction assumes the database to be a single file and assumes that ther is
only one transaction that is active at any time. Note that it can only provide ACD that is
Atomicity Consistency and Durability and not isolation.

(Refer Slide Time: 31:22)

So shadow copy is simply like this. Suppose you have database in a file and you have to
perform your transaction. Now before performing your transaction, make a copy of the
database that is copy in to entire file. The file and make your changes on the copy of the
databases. Now if your changes succeed, that is it does not violate any integrity constraint
and it is consistent and it is safe to commit and so on, then simply you delete the original
database and then you keep the new updated copy of the database. Incase you have to
abort your transaction, then you just delete the copy that you have created and let the
original database be in its place as simple as that, that is you make the entire database to
in to shadow.

(Refer Slide Time: 32:22)

Copy the entire database into another file and make changes on it and if it is safe to
commit the changes, then delete the original file or if it is unsafe delete the new file and
let the original file be as it is. Of course, how it is interactional and inefficient but of
course later does it satisfy these acid properties of a database. Let us look at atomicity. If
i see that i cannot do all operations in a transaction such that atomicity needs to be met
then i just delete the new transaction that is i just delete the new file. It is all are nothing.

(Refer Slide Time: 33:10)

When all operations are committed, all operations are performed in the new file, will i
delete the old file. So, therefore it is all or nothing. No operations have been performed.
Consistency: If any consistency, if any integrity constraint is violated in the new database
is deleted. So assign that old database is consistent, we are still left in a consistent state.
Isolation obviously not supported because when two or more transactions are copying
making different shadow copies cannot we cannot support isolation here and durability.
At any point in time, once the transaction commits, it just ensures that either the old file
or the new file remains that is once the transaction terminates it is either commit or abort
if it commits, then the new file remains. If it aborts, old file remains. So it is durable what
are changes made are persistent in the database.

Let us have look at concept of serializability which is again very important, when it
comes to recovering from failed transactions. Like we mentioned before, in the previous
shadow copy example, isolation was not supported and in order to support isolation we
should ensure the notion serializability in our transaction processing environment. This
serializability simply says that, if i set of activities from two or more concurrent
transaction taking place, they should they should schedule in such a fashion as though
transaction were executed in some serial order. So have a look at the slide here. Slide
shows two transactions here T1 and T 2 and transaction. Tone is a wire transfer that is
taking fifty rupees from A’s account putting in to B’s account. Transaction T 2 is also a
wired transfer that is taking ten percent of whatever amount is their in A’s account and
crediting in to the B’s account.

(Refer Slide Time: 33:25)

Now suppose i have to perform all activities of T1and then start with all the activities of
T 2 obviously it is a serialize schedule. Such a schedule is called a serial schedule that is
performing all activities of one of transaction before starting first activity of the second
transaction. So this equivalent to performing T1 followed by T2.

(Refer Slide Time: 35:27)

If i perform all activities of T 2 and then start with the first activity of T1 and then
perform all activities of T 1, this is also a serial schedule, this is also correct schedule and
this is equivalent to T 2 followed by T1. However serial schedules do not have does not
necessarily mean that all activities pertaining to given to transaction completed before the
first activity of the next transaction T1 is taken up.

For example: this one this slide shows how activities from T1 and T 2 are interleaved.
The color activities here belong to T 2 that is read a T equal to eight times “point one” A
equal to A minus t write A and then the transaction T2 has not yet completed. But
transaction T1 is already begin. Read ‘A’ equal to A minus 50 and so on and then
transaction T2 continues here and transaction T1 also continues here. However, if you
notice even this schedule is a serialize schedule or it is a serial schedule. This schedule is
equivalent to performing T 2 followed by T1.

Why is this so? Have a look here. Have a look at how the activities of T 2 and T1 are
interleaved? All activities performing are regarding updation of data element A is
completed of the transaction T2 or from the transaction T2 before first operation involved
involving data element A is even performed from transaction T1. Same thing with respect
to B and we can actually see that, we can rewrite it that is we can take these elements of
B back here and put this back here without changing the semantics that is without
changing the overall semantics of this serialized schedule that is once this schedule
finishes, it is equivalent to as though T2 was executed first followed by T1 that is
although activities of T2 before the first activities of T1 ever started.

(Refer Slide Time: 38:15)

This brings to some definitions of how we can enforce serializability over a set of
database activities. We define the term conflict serilazability by first defining. The term
called conflict between database activities then we say that then we say that particular
schedule is conflict serial able. If there is no conflicts or with respect to or when it is

being transformed to a serialize schedule. A schedule in which, all transactions all
activities of one transaction is performed before all activities of the second transaction.
Now consider 2 activities i and g belong to two different transactions is T1and T2.

Now i and j can be swapped in their execution order if they refer to different data element
because it does not matter. One is referring to element A other is referring to B. It does
not matter. We can perform them in any order and i and j can be swapped in their
execution order even if they refer to same data element, however all that they are doing is
reading all the contents of the data element. Even both are reading the same data element
does not matter who is reading first and who is reading second. As long as nothing else in
between them that is and they are said to conflict that, i and j cannot be swapped in their
execution order if atleast one of them is a write operation. If at least i is trying to write
and j is trying to read. We cannot perform i should be read before j, we cannot have j read
the database before i writes it and so on.

(Refer Slide Time: 40:04)

The same thing is true when both are write operations. Given a schedule ‘S’. A schedule
is something like what we saw in this slide here, it is a schedule. Now suppose we are
given a schedule like this that is the activities of T2 will perform will like this and
activities of T1 are performed and activities of T2 continues and so on. Now given a
schedule: If we in order to determine whether it is safe or not, whether it is serialazable or
not, we can identify this, if we can swap or if we make one or more swapping of activities
database schedule activities and bring them to a serialize schedule were all activities of
one transaction are performed before all activities of the second transactions without
encountering any conflicts as a way defined in the previous slide.

(Refer Slide Time: 40:12)

Then this kind of schedule is said to be a conflict equivalent schedule and it is also said to
be a conflict serilizable schedule that is, it can be serialized or it can be equivalent to
serialized schedule where the equivalent criteria is conflict equivalence that is conflict
serializable.

(Refer Slide Time 41.29)

There is an alternate weaker notion of serializability called view serializability. Conflict
serializablity is quite strong and in many cases we do not need the stringent property of
conflict serializability. The view serializability simply says the following. Suppose for
each data item Q, suppose there are set of transactions that are happening in a dbms
system. Now for each data element Q, suppose it was transaction ‘Ti’ which reads the
initial value of Q in a serialized schedule that is in a serialized schedule ‘S’ that is in any
other schedule which is view serializable.

(Refer Slide Time: 42:20)

It should also be the case that, the same transaction is the first transaction to be reading
this data element S or this data element Q and similarly in the given schedule, for each
data item Q if T j precedes or T j writes to Q before Ti that is before Ti reads, then the
same dependency should be maintained in any other schedule that is anybody writing to a
data element before somebody else is reading it, this kind of dependency should be
maintained in whatever if the schedule has to be view serializable. Similarly, the last
operation that is whoever performing the final write in a serializable schedule should be
the same transaction who performs the final write in whichever schedule is view
serializable.

(Refer Slide Time: 42:38)

Let us take an example: there are 3 transactions shown in this figure. The first transaction
T1 reads data element queue and writes it back to disk after performing some operations
which is not relevant here. It is only the reads and writes which we have concerned about
it and T 2 just writes some something in to queue and T 3 alone it is writes something
into Q. Now the following schedule is a view equivalent schedule or a view serializable
schedule. Note that it is not a pure serialize schedule. The activities of T1 and T2 are
being interleaved here. All activities of T1 are not completed before activities are
performed.

However, if you see who is reading the first, who is the first transaction to read the data
element Q. Suppose we take a serializable schedule that is T1is followed byT 2 that is T 2
followed by T3. If in that serialize schedule, the first transaction to be reading data
element Q is T1, that is the same thing in the schedule as well. Now is there any read
before write dependency? For example: T1 is reading before T2 is writing or rather T1
is reading before T3 is writing. Is that dependency maintained here? that is read before
writes write before writes either of those dependencies are maintained here and who is
the last transaction writing to Q that is T3 that is same thing here that is T3 is the last
transaction that is writing to Q. Therefore this is the view equivalent schedule that is it
corresponds to T1 happening before T2 happening before T3, because the first data
element to read was T1read Q was read one last element write in to Q was T3.

So when the T 3 finishes, then there is no difference between saying it was performed as
T1T 2 T 3 or it performed in this fashion. However note that, this schedule is not conflict
serializable. If we try to swap updates here, that is if he try to swap the activities here in
order to get serialize schedule, then we encounter a conflict that is take a look at the
second and third activities here. Now in order to bring in a serialize schedule, we have to
swap the second activities with the third activity. So that T1comes here and T 2 comes

here. However both of them are writes and we saw that when both of them are write
operations on the same data element and belong to two different transactions, then you
cannot swap them, they are in conflict. Therefore this schedule is not conflict serializable.
However it is view serializable that is, as far as database view is concerned, it remains the
same whenever we look at before T1 or after T3. It is being the same.

(Refer Slide Time: 46:34)

So every conflict serializable schedule is also view serializable. However, the converse is
not true which was the example we saw in the previous slide. Usually, this thing happens
that is usually, we find view serializable schedule that are not conflict serializable
whenever what are called as blind write. A blind write is something that we saw in the
previous slide here.

That is transaction T 2 T 3 shown in slide contains no read operation. They just write in
to the database, without any read operation. So such it is a hall mark of blind writes
which bring in schedules that are view serializable, but not conflict serializable.

(Refer Slide Time: 47:21)

Let us look at the last concept of what are called as recoverable schedule and in order to
understand what are the requirements of database recovery? Consider the set of following
set of transactions as shown in the slide here. There are two transactions here T8 and T9.
T8 reads a data element ‘A’ does some modifications and writes set and then goes about
reading about some other read data element and so on. After it writes here transaction T9
reads the data element A and possibly let us say displace it and it does not perform any
writes. So, as you can see this is the conflict equivalent schedule That is i can swap read
A with read B which will give me serialize schedule that is T8 followed by T9 and
swapping by read B and read A it is it is still conflict equivalent. So, therefore performing
read A write A read A of T9 and read B of T8 is conflict equivalent.

(Refer Slide Time 48:27)

However, suppose let us say T9 that is read A and displayed that is display the latest
value of this stock price or whatever. Suppose this T9 commits and displays the value of
the value of k. But T8 is not committed, that is T8 is not completed still and it sees that it
cannot commit because some problem somewhere and it has to rollback. Now if it rolls
back then T9 also has to be roll backed because it read value of A, after it has been
written by T8.

However we cannot rollback T9 because it is already committed and committed is not the
durability condition here, that is we have already made some commitment in some sense
that is we have displayed the new value of the stock or whatever. So in such a situation,
it is impossible to recover from the failure of T8 because we cannot the rolling back of
T8 will also require rolling back of T9 it is impossible. So this is in an example of a non-
recoverable schedule.

(Refer Slide Time: 49:35)

So serializability or conflict serializability alone is not enough. We need to also look at
recoverability of a particular schedule of transaction events if we have to be recover from
a database crash. So database system requires a recoverable schedule and finally let us
have look at the problem of cascading roll back which is also quite important when it
comes to recovery. Even if a schedule is a recoverable, to recover from a failure of a
transaction in some times, there is need to roll back several transactions. The previous
example was also an example of cascading roll back that is supposes transaction T9 not
committed and transaction T8 roll back, then T9 also has to roll back. So in order to make
it recoverable we have to defer the commit of T9 until after T8 has committed.

So that will make recoverable. However, it still contains the problem of cascading roll
back. So this example also shows cascading rollback situation where there are three
transactions T T1 and T 2 and has read a value of A and written it and whatever value is
return by T is being read by T1 and T2. Now T1 and T2 cannot commit that is cannot
display the new value of A until T has committed. Otherwise, it will become non
recoverable. Now even if they do not commit and suppose T has to roll back, it has a
cascading effect in T1 and T 2 that is in fact T 2 is dependent on T1 and T1 is dependent
on T. So a roll back of T will cause a rollback of T1 which in turn will cause a roll back
of T2. So such cascading roll backs will lead to an undoing of large amount of work from
several different transactions in case of any database crash or system failure. Cascading
rollback is an undesirable thing to happen and leads to an undoing of lot of work.

(Refer Slide Time: 52:05)

So when we are looking at schedules of operations that are performed by OLTP
environments, they have not to be only serializable. They have to be recoverable cascade
list as far as possible we should try to avoid cascading roll backs.

(Refer Slide Time: 52:27)

So that brings us to end of the introduction session on database recovery where we have
said the ground for all the issues that make up that are concerned or that we have
concerned ourselves with whenever we are dealing with database recovery.

(Refer Slide Time: 52:46)

For example: We saw the notion of the transaction that is when we are recovering from
the database crash, we have to ensure that we does not leave any transaction in a half or
partially committed state. It should either be fully committed or no operation should have
performed that is all are nothing. Atomicity transitions have to be obtained whenever we
are recovering from database crash or the system crash and in order of that in happen we
have recoverable schedules and it is not sufficient for schedules to be serializable and
also whether it is conflict or view serializability, it is not sufficient for schedules to be
just serializable.

They should also be recoverable schedules and as far as possible they should be cascade
list schedule that is crash or rollback of one transaction should not automatically mean
that several other transactions or several other work that has been partially completed has
to be rollback. It is not even partially completed, even though they are completed just
waiting for the commits which what we saw in the operations in the previous slide that is
even though transactions T1 and T2 are completed they have read and written a value of
a. They are just waiting for the original transaction to commit and because of some
problem the original transaction may crash and because of that even all the operations
that have been completed have to be rollback without any reason by themselves. So this
brings to the end of this session.

