
Database Management System
Prof. D. Janakiram

Department of Computer Science & Engineering
Indian Institute of Technology, Madras

Lecture No. 24

 Distributed Transaction Models

We have been considering transactions in the data executing on a single system.
Implicitly this is assumption that we been making do we did not explicitly state that
underline assumption of the model transaction model is that the transactions are
executing on the node and the data is also fully resident on same node. What we mean by
node is the node is a single computer system on which there is an operating system image
and on which the database is running and now the transaction which are part of
applications are all running on the same system, that’s the assumption which we are
making when we are actually explaining all the transactions models.

Now consider an example where for example, railway reservation system where sitting in
Chennai and your trying to make booking for train leaving out of Delhi which could
mean that you are actually trying to access the database that is resident physically on a
computer system in Delhi sitting in Chennai. Now, it could mean several things. It could
mean just that you are actually trying to access the database to a physical connectivity
which could be a telephone line, a lease line, a some kind of connectivity between your
interface which could be just display interface to the system in Delhi which means that
you are still physically working on the computer system that is located in Delhi that’s
could be one model. But, this will not be one model which could be present when you
work with systems which are dispersed and which are connected by wide area network,
local area network or this is what we called as distributed system.

When computer systems are connected by a network they could logically present a single
node kind of abstraction for the end user. This is what we mean by the distributed system.
Now when the data is distributed and the transactions can be executed on different nodes
of the distributed system, we called the scenario as distributed transactions that means
we are no longer assuming that, the transactions execute on a single system computer
system but they could be executed on different nodes of a distributed system. To explain
this scenario what I will do is, I will take a very example of a banking system and explain
how the scenario look like.

Let us say that we have a bank in Chennai SBI branch. Now I have also a branch in let us
say Mumbai again SBI branch could be a different bank also and it is possible that i have
an account one here and have an account two here and i am actually doing a fund transfer
from account one to account two, which means that i am going to do a debate here from
account one by let us say two hundred rupees. Now it is possible for me to credit the
following thing on to the other thing. Now this is data for account one is resident on node
1 which is basically node okay and the account to which is the other account data that is

resident on node two which is in Mumbai. Now this means that physically the data is
distributed in two locations one in Chennai branch and the other in Mumbai branch.

Now if you assume that these two are connected by some kind of a network does not
really matter what is the network but you can you can assume that physically these two
nodes are connected by an underlined network. This network could be an atm network
okay or could it be a fiber optic network or it could be variety of even a satellite network
is present between these two nodes. So we are actually assuming that some kind of
connectivity exist between these two nodes which affectively means that the information
from one node to another node can be accessed or the data can be from one node can be
accessed. The thing in another node otherwise vice versa it is possible.

(Refer Slide Time: 7:15)

Now supposed to these if you are actually seeing a single case where both account one
and account two present on a single node. Both are present in Chennai. This is what the
case we actually look at account one and account two and all that we had begin
transaction end transaction as part of the transaction here and all this will be executed in
the same branch of one system, that means physically this entire transaction is executed
on a single node. Now all the things that we so far have been talking belong to this
scenario where both account one and account two are present on a single node and the
entire transaction. Here TR is executed on a single node. So TR is executed on node
which is the single node here and account one and account two are present on the node.
So there is no remote access. This TR does not access any remote information both
accounts are present on the same node. This is what ideally we are talking about.

(Refer Slide Time: 9:00)

When we are talking about one single node of distributed system. As opposed to this, if
you consider this particular case, we are talking about account 1 and debiting some other
two hundred rupees from this account here and account 2 which is present on different
node and adding 200 rupees here. Now imagine what could happen if these are executed
on two different nodes. Now it is possible in other case, a power has failed in the whole
thing is proceeding in the single system case it is possible that power could fail or other
things could happen when the transaction is executing.

(Refer Slide Time: 9:25)

This is what we consider the acid properties of the transaction. Now if the transaction
debiting and crediting from one account to another account you should ensure that the
properties are completely preserved as acid properties are completely preserved as far as
the transaction is concerned. Now in a single node now when the power fails the log
records could be used to make sure that the transaction will always be an in consistent
state. For example: for part of a transaction executed that is credit part is executed the
debit part is not executed.

This can be figure out from the log logs of the transaction and either you can do undo or
redo the transaction depending upon the state of the current transaction logs record that
that is preserved. Now the scenario becomes quite complicated if you essentially look at
distributed system. Now you imagine account 1 debiting is happening in one node
account 2 crediting is happening in another node. Now it is possible that, part of the
transaction is got executed part of the transaction is not executed for various other
reasons. Firstly, to know that they both got executed itself is an important issue which is
like two friends separated in two different locations try to ascertain whether the other
friend exactly the other than excepting to do.

(Refer Slide Time: 11:07)

It requires a few phone calls and also making sure if the phone rings, the person is
present. So many other issues get involved when people are physically separated and they
have to coordinate and do some activity, but on the other hand, if they are present in the
same node, in the same room, it becomes lot more easier when they have to coordinate.
The minute they are physically separated when phone rings, somebody does not pick up
does it mean they are busy with something that is why he did not pick up the phone. You
have to make assumptions really relating to behavior to other node with respect to your
node and also if you put a telegram it could be a different mode of communication
compared to ringing using a telephone and trying to reach him. So what is the mode of
communication between these two systems between node 1 and node 2? What is the kind

of communication primitives that are present between these two systems that also makes
an important requirement when you study this model.

(Refer Slide Time: 12:10)

What you are trying to say is, if you assume the transactions execute on a multiple nodes
of distributed system, the whole approach to concurrency control and commit protocols
takes an extra dimension because you have to consider here the possibilities of distributed
system. What can happen in distributed system? Node can fail, network can partition,
network can fail with results in the system getting partition. For example: there is a
temporary network failure between node one and node two, the node two may not be
reachable from node one. So all these are becoming important.

Now the transactions take these in to account and they have to ensure the acid properties
when these things happen that’s the most important thing. So we will actually consider
this model as a distributed transaction model and we will study some concepts relating to
distributed transaction model starting from this lecture.

(Refer Slide Time: 13:46)

Now I will explain at very high level, the distributed transaction model and get start more
details of some of more transaction models to explain the essential difference between
centralized system database system and distributed systems with respect to the
transaction models. We will take a very simple example and illustrate with respect to the
simple example how exactly we can build a distributed transaction model on top of
distributed database systems. Now continuing the discussion we had on credit debit
transaction, what we will see essentially in the case of distributed transaction is a
transaction TR which we have seen there will have now, two portions which is the debit
portion of the transaction and the credit portion of the transaction. Now, debit portion of
the transaction is executing on a different account 1 which is on a node 1 which is
Chennai node. This is resident on a different node and this resident on node 2. Now we
call this in credit and debit two sub transactions of this root transactions TR. Now TR
becomes the root transaction.

(Refer Slide Time: 15:10)

So there is a root transaction which is the complete transaction. Now what this root
transaction will do is it will actually spawn two agents which are nothing but two sub
transactions agent 1 and agent 2. This agent 1 is actually sub transaction of the main
transaction agent 2 is another sub transaction 2. Now a single transaction is split into two
sub transactions. So that, these two sub transactions are executed on two different nodes
of the system. For example: the root is going to be on one node, agent 1 is going to be in
another node. Agent 2 is going to be in another node. Now agent 1 is going to execute the
debit portion of the transaction and agent 2 will execute only the credit portion of the
transaction that means, it will access account one here and make sure in the account two
hundred rupees is debited and here it will access account two and make sure two hundred
is added here. Now while doing this, all the acid properties have to be preserved as part
of this which means that atomicity, concurrency, isolation, durability all the acid
properties independently have to be preserved as part of this particular exercise.

(Refer Slide Time: 16:58)

You do not want if power goes off in the middle of transaction you do not want to be
unsure what really happen to your account on node one. It should be the preserver the
property that two hundred rupees detected by this transaction atomically you know when
accessing this account, other transactions are not allowed to access this account. When it
is modifying, somebody not to allow the results before it finish its computation. Now
after finish it executing it is completely preserved on the database. All these in an
atomicity concurrency, isolation, durability properties. Now to achieve this issue at the
highest level, this is the model what we have is the agent. The root agent spawning other
agents okay agent one and agent one on different nodes. These agent 1 and 2 are
responsible for executing the transactions on the local node and together they form a
complete transaction.

(Refer Slide Time 18:19)

For example: additionally we have to worry about if A 2 alone is done, A 1 is not done,
then again we have the inconsistency because A 1 is debit, A 1 is debit A 2 is credit. So
you do not want the debit being done, not credit or vice versa or both have to be done
simultaneously. When this is done, this also done this is also not done this is also done
that’s what we mean by atomicity either the whole thing is executed or none of its
executed. Now to ensure that this kind of agreement is reached between the various sub
portions or sub transactions that are executing on different nodes. We need what is called
an exercise a module that i actually does this which make sure that transaction properties
which includes the commit property that all of them either commit or none of them
commit.

The transaction the transaction end all these to preserve these we will have an all nodes
manager running which is called the distributed transaction manager. This is the
responsibility of the distributed transaction manager. This DTM stands for distributed
transaction manager distributed transaction manager. Now that DTM on every node
ensures that the transaction properties are obtained on each one of these nodes when they
are participating in the execution of the transaction. Now each local execution which
needs to again maintain transaction properties will come under what we will see in LTM,
LTM is nothing but the local transaction manager and if you see, LTM stands for local
transaction manager.

(Refer Slide Time: 20:24)

If you see exactly what we have said in the earlier slide, the credit and debit here which
are executed by agent 1 and agent 2 needs to be preserved by the transaction property and
this is obtained by the acid by the preserved acid property for debit transaction and credit
credit transaction. This is ensured for agent 1 and agent 2 by the LTM. LTM preservers
the logs and all the related things done in the centralized database context. The LTM
make sure al the things are executed by the agent or as per the acid properties and that is
what is achieved by actually having the LTM.

(Refer Slide Time: 21:41)

On each of the nodes to explain this is the model, this is the distributed transaction model.
What you see at the highest level to just recap what we have been telling along the
complete transaction. Now become the root transaction as part of the root transaction
when you will have the sub transaction which needs to be started on different nodes of
the distributed system. Now here agent1 gets started node 1 and agent 2 started on node
2, agent 1 indicates a sub transaction the root transaction. Agent 2 indicates the other two
sub transaction of the root transaction.

Now for staring this agents and also making sure that the coordinate among themselves
when they are committing, corresponding properties are achieved by the distributed
transaction manager which is called the DTM. Now the DTM is responsible for
preserving the transaction properties across the various nodes. Now, when the agent starts
on a local machine whatever it gets executed in the local node, it preserve by this local
transaction manager that means the local transaction manager is responsible for ensuring
whatever is executed in the local node obeys the transactional properties and this is the
complete model of the distributed transaction model.

(Refer Slide Time: 23:17)

What we are going to look at is, we are going to look at with respect to this model, how
the concurrency control and model the commit protocols are going to be executed in this
context and suddenly this becomes little more complicated than what we have studied in
this centralized scenario. For example: commit in the centralized scenario is just writing
the logs and making sure all the values modified by the transactions are return back on to
the database and then if your using two phase locking, then make sure that the locks are
released so that other transaction can make use of now the data items modified by the
current transaction. So commit becomes a simple exercise of just writing the logs and
writing the modified values back on to the database.

Now if you consider the distributed scenario where there are multiple agents running on
the multiple nodes of the distributed system, the commit no longer becomes that simple.
Now you need to worry about whether node 1 and node 2. For example: some reason
node 2 wants to commit each part of its transaction and then you need to know node1
should roll back. You need some kind of agreement to be reached among the various
nodes before they actually commit the values on to the database system. So this is
basically called the commit protocol, commit protocol is the most specialized protocol
than a general agreement problem.

Now all that you have to agree in the case of commit protocols is either to commit or
abort. There is no other agreement that you try to reach in the case of commit protocol
because one could mean i want to agree to commit my part of the transaction. Zero could
mean that i could abort a part of the transaction. So all the nodes at the end of this
transaction that agents involved in distributed transaction have to agree for one or zero
depending on one actually means that all together to commit zero means they do not want
to commit. So we typically we going to look at commit protocols and study various
commit protocols for achieving consciences. This is the first part of the distributed
transaction model, what kind of commit protocols exist and how do they work with
respect to various scenario like node failure, network failure, partitions.

(Refer Slide Time: 26:15)

So we are going to look at various scenarios what could happen in the distributed system
with respect to this how these commit protocols really work that’s going to be the first
part of the lecture, going to focus on the commit protocols. We are going to essentially
look at two kinds of commit protocols. One is the two phase commit protocol which has
the name suggest does it two phases that means the first phase which participations are
prepared, in the second phase actual commitment take place and that is what we mean by
the two phase commit protocol and this two phase commit protocol naturally integrates

(Refer Slide Time: 26:59)

with the two phase locking protocol that we have studied earlier in the case of a
centralized database system. So we will study the two phase commit protocol and study
extension of the two phase commit protocol in to what we see as the three phase commit
protocol. Now the idea of this three phase commit protocol is when sudden things happen
in the two phase protocol which we are going to see the protocol will get lock that means
the protocol any way to proceed further till the recovery take place in other words certain
kind of failures occur, the two phase commit actually locks the protocol blocks the
system whereas actually modifying it in three phase commit protocol, we will able to
avoid the wait for.

(Refer Slide Time: 28:24)

It actually becomes the wait free protocol in some sense, when some kind of failure
occurs wait free protocol are extremely important because when failures occurs if the
system is not blocked, because of the failure it is a good property of the system, because
it allows the system to actually go forward and not blocked by the failure. So wait free
protocols are very interesting and important in distributed systems. Now from two phase
to three phase commit protocol, what we see is, you can avoid certain kind of failures and
make the system resilient for this kind of failures.

The system becomes more robust under three phase commit protocol as opposed to two
phase commit protocol. We are going to study the two phase commit protocol in detail
and then going to study the three phase commit protocol in the context of distributed
transactions to start with. In this particular class, we are going to focus on two phase
commit protocol and study the two phase commit protocol in detail and see what under
circumstances two phase commit protocol works correctly. Now after looking at the
commit protocols, they are going to look at concurrency control protocol in the context of
distributed transactions,

(Refer Slide Time: 29:38)

is going to be later part of the talk we will focus on the concurrency control mechanism
as applied to the distributed transaction systems. Now the rest of the lecture from this
point will concentrate on the two phase commit protocol and we will try to explain in
detail the two phase commit protocol. Now let us look what kind of scenario will be
required when you actually looking at the two phase commit protocol. Now to explain
what really commit protocol means?

(Refer Slide Time: 30:14)

We have actually taken a root transaction which actually started executing on this is
basically the begin transaction. This is the begin transaction. Now I have basically the
agent 1 which is the debit portion of the transaction. This is debit on node 1 debit on node
1. This is basically the sub transactions agent 1 agent 2 is the credit on node 2. This is
particularly operating on account 1 and this is operating on account 2. Assume that some
point of time, this is the end transaction. Now when the actual agent 1 and agent 2 are
started on different nodes of the distributed system and they start executing on the two
different nodes at some point of time when i reach the end of the transaction. I am going
to look at this part and at this point of time i have to decide whether i will be committing
my transaction.

I have reached this point now and when i reach this point, i need to understand now
whether agent 1 and agent 2 are willing to now go with writing or doing the debit and
credit completely. For various reasons its possible that agent 1 or agent 2 may not be
willing to complete part of the transaction. One reason could be account 1 is not present
on node 1 or the account has been closed for various reasons which means that account 1
is not present on node 1 which means the debit cannot produce logically further in which
case the agent 1 whatever agent 2 wants to do agent 1 will say i am going to abort my
part of the transactions because i cant complete my part of the deal.

(Refer Slide Time: 32:33)

I cannot finish debit transactions on my node, because account 1 has been closed. The
other case is account 1 have sufficient funds. Let us say it has no balance and you try to
withdraw two hundred rupees from the account, when there is no balance in the account.
Again agent is to say look i am not going to commit my part of the transaction because
there is no way I can commit this transactions. So in all these cases both nodes have to
agree both agent 1 and agent 2 have to agree to commit their transaction for this whole
thing to go through.

(Refer Slide Time: 33:13)

Otherwise, there is no point to trying through have one part of the transaction executed
and the other part not been executed. Now to ascertain this, this commit protocol gets
started ideally at the end transaction. For example: when you reach the end of the
transaction, you have to actually now start this commit protocol to ascertain whether this
whole transaction can be committed or not which means that at this point of time, all the
agents involved in the transaction have to participate in this commit protocol to ensure
whether they are committing the transaction or not committing the transaction that is the
part of the commit protocol.

(Refer Slide Time: 33:58)

Now let me explain this by taking what we actually call as a coordinator of the
transaction, which means that we will first fix a coordinator for the commit protocol
which means that there is one single node, there is a node in the distributed system that is
going to act as a coordinator for the commit protocol and ideally this is the one where the
transaction has been submitted which will try to coordinate transaction has been that’s
what we mean by coordinator. Now all the agents where this transaction is being
executed we call them actually participants. They are all participating in the commit
protocol. So they are called participants. So all agents where the sub transaction is
executed is called the participants where call the sub transactions is executed is called the
participants.

(Refer Slide Time: 35:37)

So we have actually two things in the two phase commit. One the first coordinator and
number of participants. Now the responsibility of the coordinator is to initiate the commit
protocol and make sure some response from all the participants and based on to that the
coordinator take a decision again inform all the participants and properly terminate the
commit protocol at the end of the execution. So this is what we will call as a coordinator.
Each participant has a responsibility for its own local transaction it should replying on
behalf of the local agent it should ensure that certain things are done by the local agent
before the participant reply back to the coordinator with a reply. Now we are going look
at full detail what are step that we will be done by the coordinator and what are the steps
done by the coordinator participant in the case of two phase commit protocol.

(Refer Slide Time: 36:37)

Now what we do in the case of two phase commit protocol is the coordinator initiates the
commit protocol. At the end of the transaction he initiates the commit protocol. By what
we mean by imitating is he can send certain messages two various participants and make
sure he get some response from this participant when he is ensuring when he is actually
executing this commit protocol. Now this is the responsibility of the coordinator, to start
the commit protocol at the end of the transaction. This he does by sending what he is
called a prepare message to the entire prepared message. This message is a special
message which is called the prepared message. He prepares the participants for this
prepare message is sent to all the participants.

(Refer Slide Time: 38:09)

Now after sending the prepare message, the coordinator enters what we call as a the wait
state because still now decided on the final outcome of this particular weight state till all
replies are received or some of this were basically the problem come. If there is a
problem in terms of some participants not responding because there is a failure either of
the network.

(Refer Slide Time: 38:42)

or the node then they are not going to respond if they do not respond what is going to
happen in the coordinator. So the coordinator basically puts a or time out period actually
starts a time out period immediately after sending the prepare message. Now he will wait
for the time out period and if replies do not come within this time out period he is going
to decide based on what replies he got because he has not got the reply.

(Refer Slide Time: 39:18)

He will ensure that you know based on this, he will make a decision which actually make
sure that even in that case we can still make a decision but probably he might make a
decision on the negative side saying that i will abort which is the safer decision to make
because when the participant comes at lateral point of time, it is always possible to ask
the participants to abort rather than to commit. So you will wait for a time out period and
after the time out period, he is going to make a decision relating to whether he should be
committing or abort, always when time out has reached and replies are not come is going
to make a decision relating to abort of the transactions rather than the commit of the
transaction.

(Refer Slide Time: 40:16)

Now as far as the participant is concerned, participant actually decides now waits for the
commit protocol that means to start with is in an undecided state wait for prepare
message from the coordinator. Now when you get a prepared message from the
coordinator. Now we have to apply the two things which participant can do, participant
can actually reply with a ready message.

(Refer Slide Time: 41: 04)

What ready message means is that the participant is willing to commit his part of a
transaction that’s what actually means by the ready message. The ready message
indicates that the participant is willing to commit his transaction that means he has

executed successfully his part of the transaction and he is willing to actually commit his
sub transaction that’s what it mean by the ready message. Now, before sending the ready
message, if he is willing and before sending the ready message, he needs to actually
ensure that before sending the ready message what should be he doing? He should be
ensuring that all the logs are return because if he does not write the locks and he replies
with the ready message.

(Refer Slide Time: 41:55)

The coordinator assumes that whatever may happen later, the participant is willing to go
with the commitment of the transaction. Tomorrow you cannot come back and say look i
am not going to commit. Once you have replied with ready message, you are committing
your self to commit this transaction. So it is important for you write all the logs and also
if you are using locking protocol, you are not going to release the locks till you know the
decision of the coordinator because if the coordinator now says please come in, you need
to write all the values on to the database and then release your locks. So before sending
the ready message, the participant should write all the required locks. Participant writes
the required locks.

(Refer Slide Time: 43:16)

Now, if you carefully observe all this writing the locks preserving all the different
properties of the transactions is achieved by the local transaction manager. LTM ensures
that all this local transactions properties are maintained using the LTM. Now once the
participant it’s a ready message the coordinator can now decide if he receives all the
ready messages he can now decide, what needs to be done. Up to this point, we call this
is phase 1 that means phase 1 is preparing the participants for commit.

(Refer Slide Time: 43:41)

You are preparing this is actually prepared phase. Actually, you are preparing the
participants for committing only in the next phase, phase 2 you actually commit.

(Refer Slide Time: 43:52)

So there are two separate phases, thats why called two phase commit protocol. In the first
phase, you are preparing all the participants for committing. In the second phase you are
actually committing the transaction. Now it is possible in phase 1, you reply back for
some reason the participant is not willing to commit because as we explained earlier,
there was no sufficient fund. All these could be reasons while the participant may not to
commit his transactions. In all these cases, what the participant does is, he actually sends
an abort answer message which means that he sense saying that i am aborting. His answer
for prepare is abort answer message.

(Refer Slide Time: 44:46)

When a participant is actually giving an abort message, participant is not willing to
commit his part as the transaction, participant is not willing to commit not willing to
commit when coordinator receives this abort answer message, he will be forced to take
only in the second phase we are going to take that commit decision. So phase 2 once the
coordinator enters phase 2, he is actually making the decision on commit. He is deciding
now on decision commit he is made. Now what are the different decisions? It is possible
in the time out period coordinator receive all the coordinator received all ready messages
from all the participants all the ready messages from all the participants.

(Refer Slide Time: 46:01)

Then now, the coordinator in this particular case, we will take a decision to commit the
transaction. That is obvious because all the participants in the transaction willing to all
the agent transaction are willing to commit their part of the transaction. Hence it is logical
for the coordinator to take the decision to commit in the entire transaction. But before
actually we taking the commit decision okay, before sending the commit message the
agent has coordinator has to write decision on a stable storage. So that whatever may
happen later, the coordinator can recover back see what is the decision that was made by
him, with respect to this particular transaction that is the logical thing which he does.

(Refer Slide Time: 47:10)

So, we except in this particular case the coordinator receives all ready message commit
decision is taken commit message is sent to commit message is sent to all participants.
Before sending the commit message, before sending these are the steps that the
coordinator has to follow before sending the commit message, he needs to actually write
the commit log. The commit message he needs to write a stable log is written a stable log.
This is important because whatever may happen to the coordinator, he should be able to
now tell the rest of the participants at later point of time, what was the decision that was
taken on this particular transaction.

(Refer Slide Time: 48:03)

When the participant receives now, at the second phase, phase 2 when the participant
receives participant receives the commit message receives CM message commit message,
the transaction is committed and an acknowledgement is sent to the transaction is
committed and the ack is sent acknowledgement is sent an ack is sent is sent to the
coordinator

(Refer Slide Time: 48:50)

Now the coordinator, when he receives in the second phase all the acknowledgement the
coordinator on receiving the coordinator on receiving on receiving all ack that is

acknowledgement will write complete log will write the complete log. Now at this point
of this time the transaction is completed and it can be closed, successfully by the
coordinator. Now there could be various cases in between.

(Refer Slide Time: 49:41)

This was talking about only a successful completion on the transaction by the coordinator
as it is proceeding from one phase to another phase. To recap what we have done phase 1,
this is actually in the phase 1 coordinator imitates the commit protocol and here he
actually sends the prepare message is sent to the all participants. This is in the phase 1
first action of the coordinator and enters in to the wait state for a time out period for
replies from all the participants. Now the participant who is waiting for the prepared
message can actually respond with the ready message. Before sending the ready message,
participants make sure he write all the stable logs and enters into a now a wait state of the
decision of the coordinator.

(Refer Slide Time: 50:28)

Now the coordinator after this point enter phase two the phase two is entered by the
coordinator when he receives all the replies from the no all the ready messages from the
participant or a time out period as a write. Now in either case it takes a decision if all the
messages are received ready messages are received he commits the transactions writes
the commit log and sends the commit messages to all the participants. Now when the
participant in the second phase and receive the commit message, they actually write all
the transactions are committed and an acknowledgement is sent back to the coordinator.

(Refer Slide Time: 51:25)

So that now he can write the complete log and close the transaction. Now it is possible
that in the first phase. We did not discuss the case were its possible for the participant to
reply with an abort message. Now when the participant replies with an abort message or
coordinator waits for an time out period, in either of its cases the coordinator is going to
take a abort decision and this will be communicated to all the participants and when
receive the abort decision, the participants are abort the transaction. This is what actually
happens with the two phase commit.

Now before we going to in details of looking at what are the different things can happen
what are the different failures scenario that can be presented in this case and how this two
phase protocol is resilient that kind of failure. We will try first looking at what was the
state transition diagram for the coordinator and the participant, that explains this whole
scenario in lot more detail and after that we are going to look in more details, how the
two phase commit protocol is resilient to certain kind of failures when the commit
protocols is executed.

Now, to just explain this, what we are going to take is, this is actually the coordinator
state transition diagram. Coordinator state transition diagram. I am writing the state
diagram of the coordinator to start with. To start with, the coordinator is based on the
initial state and from the initial state what the coordinator does is he actually sends
prepare message to all the participants. So this actually we will have some level of
undecided state. This is the state where the decision was not taken by the enters its wait
state which is the undecided state. Now this is basically the prepare message is sent by
the coordinator and he is waiting for the decisions. Now its possible that actually he waits
from this state possible for the coordinator from this undecided state that he receives the
all the ready messages this is what we actually seen. Now when he gets all the ready
messages, he is going to take when the input to the coordinator is ready messages.

(Refer Slide Time: 54:27)

All the ready messages have been sent to the coordinator, then you are going to get the
commit command commit message from the coordinator and the state in which actually
the coordinator reaches the state the commit state. Now it is possible that the coordinator
actually got abort answer message from the participants when he got an actually abort
answer message and he is going to taken an abort command message that means is going
to send an abort command to all the participants and that is typically when an abort
decision is taken by the coordinator. Now it is possible that, when from the initial state
the coordinator can reach the abort decision if there are no sufficient replies, that is the
time out period when a time out period is reached.

When the time out period is reached its possible for the actually by sending the prepare
message and gets to the undecided state. So strictly speaking, this arrow should come
from the undecided state here which means that the this state from which this arrow will
come, there is a time out period and after the time out period, the coordinator has to take
an abort command message that he waits for the time out period and after the time out
period he actually takes the decision to abort the message.

(Refer Slide Time: 56:09)

Now if you look at the participants’ state transition diagram, it looks something like this.
To start with actually the participant is in initial state. Now the participants receives the
prepare message and the answers with the ready message then he basically enters the
ready state here. Now from the ready state, it is possible for the participant to reach when
he reach when he receives the command message, he could be receiving the he could be
sending an acknowledgement message and could be reaching the commit state. If he
actually receives an abort message, abort command message, again he will acknowledge,
but he will reach the abort state.

(Refer Slide Time: 57:09)

It is possible for the participant from the initial stage itself. By actually responding with
an abort answer message he could be reaching this state. He actually sends an abort
answer message, with which he actually reaches the abort message.

(Refer Slide Time: 57:27)

This sort of summarizes what we are doing now in two phase commit protocol. What we
are going to do in the next class is, take these two transition diagram and then explain
how the two phase commit protocol is resilient for failures.

