
Database Management System
Prof. D. Janakiram

Department of Computer Science & Engineering
Indian Institute of Technology, Madras

Lecture No. # 20

Concurrency Control – Part -1

Foundations for concurrency control in particular what we did was we looked at the
problem of serializability when transactions are executing concurrently. For example
there are a set of transactions and all these transactions are executing concurrently. We
were looking at how this can be interpreted as a serial execution of the transactions. For
example some order in which they could be seen to be executed is what we looked at a
theory for correct execution of the transactions.

[Refer Slide Time: 02.21]

We also looked at two kinds of a serializabilty, the conflict serializability where the
transactions which are executing on the same data item when they conflict, how they can
be reduced to serializable transactions. That is what we meant by conflict serializability.
We also looked at other forms of serializability like view serializability. What we are
going to in this todays class is we are going to look at specific concurrency control
protocols. And to begin with what we are going to do is we are going to look at what are
the different types of algorithms that will allow concurrent execution of transactions to be
serializable that means which produce correct execution of the transactions in a database.

So what we are going to do now is we are going to look at what are the algorithms that
we use for achieving serializability and these algorithms are called concurrency control
algorithms.

Now there are two broad classes of these concurrency control algorithms based on how
they actually view the system. Some view the system in an optimistic fashion and some
view the system in a pessimistic fashion. What we mean by optimistic and pessimistic, I
just explain with a simple example. Now if you basically look at a narrow pass bridge
where vehicles are crossing this bridge and this is relatively a very very low traffic
bridge. We don’t really look at, the vehicles will hit each other when they are passing
through this narrow bridge which in effect means that there are actually vehicles coming
from opposite ends.

So you actually assume that relatively, the conflicts are very low which actually means
that a scenario where the conflicts are extremely low is one situation. There could be
another situation where the conflicts could be extremely high which means that this is a
very high traffic bridge and hence you assume the possibility of two vehicles finding
themselves passing through this narrow bridge at the same time is likely to be high. In
either case what we have to see is the two scenarios are different system configuration.
So what we will do is we will broadly classify conflicts being extremely low and
conflicts being extremely high.

Now if you typically look at the way we would see when the conflict are extremely high
is we basically will put some kind of a traffic signal here and we will ensure only one of
the vehicles is into the narrow pass bridge. That means we in effect will ensure that only
one of them is going to be inside. If we don’t put the traffic lights her, very often what
will happen is two vehicles will get into the bridge and realize they are in conflict and
one of them has to back track.

For example if we assume that one vehicle V1 has passed up to this point and V2 has
passed up to this point and you find there is a conflict here. One of them has to backtrack
and this basically involves lot of hard work and hence when the conflicts are very high, it
is probably not advisable to actually allow the vehicles to get in without any kind of a
control. The situation where the conflicts are low is seem to optimistic that means you
actually believing that they conflict are less which is an optimistic approach or you view
the system in an optimistic way, the second one where the conflicts are very high, you
look at it has pessimistic. So this is broadly classified in the two scenarios optimistic and
pessimistic scenarios.

[Refer Slide Time: 06.47]

Now what will do is we will see algorithms that operate on the database system assuming
that the system is an optimistic scenario. And those algorithm which actually operate
assuming that they are in the pessimistic scenario. For example if you know chennai for
example in the mount road, if you assume optimistically no vehicles are going to hit each
other and remove the traffic lights, everything is going to be chaos there. But on the other
hand if you know IIT Madras at gagendra circle, you are not going to install a traffic light
because we don’t have that much traffic, it is going to be cumbersome.

So in some sense if the conflicts are rare and if you apply the other algorithm, it is going
to be overkill. So typically we have to understand, what is the scenario in which the
system is in whether it is in optimistic scenario or in the pessimistic scenario and based
on that you should be applying this algorithms. Now broadly what we are going to look is
these two classes of algorithms which are actually categorized, two classes of cc
algorithms but it is possible that there are more algorithms than these two classes.

Now, the one class which we are going to look at is the lock based algorithms which all
assume pessimistic scenario which assume that the transactions are going to conflict with
each other often. The other basically a time stamp based algorithms. The time stamp
based algorithms assume that the system is in the optimistic fashion and hence conflicts
are there. What we are going to look at is one lock based algorithm, the most popular
algorithm called the two phase locking algorithm and we are going to look at a basic time
stamping algorithm for the time stamp basic time for the time stamp based algorithms, we
look at the basic time stamp based algorithm.

[Refer Slide Time: 09.16]

Both these classes will tell us that one belongs to the pessimistic class and other belongs
to the optimistic class. Now what I am going to do in the rest of the lecture is look at the
lock based algorithm called the two phase algorithm in detail and explain what are the
properties of this two phase algorithm and we will study this algorithm in detail and this
is the most popular algorithm implemented in practice as well. So we are going to spend
some time looking at two phase locking algorithm used for concurrency control in
database systems.

As the name suggests, this actually is a locking based algorithm. The lock is very
important here because what we are trying to do here is when transactions conflict on
data items; we are in essential going to allow these transactions to lock the data items.
This is equivalent to saying that once the transactions is locked the data item, it is not
accessible for other transactions and in effect that protects the data item from being
wrongly manipulated by other transactions. So locking is a concept that is used in this
particular case.

Now to explain the concepts of locking in more detail, we have a problem which we are
also familiar in operating systems called the mutual exclusion problem. What actually the
mutual exclusion problem will try to do is it actually tells that if there is one process P1
which is trying to be in a critical section. The critical section is nothing but as piece of
code that is trying to address a share data structure between P1 and P2.

Let us say there is a shared data structure here between P1 and P2 and whenever P1 is in
the critical section, it means that it is trying to manipulate the share data structure here.
Now only one of them can be allowed to be in the critical section for manipulating. This
is basically the read write operations that they might perform on the shared data structure.

So what in a sense the mutual exclusion problem does is it allows only one of the
processes to be in the critical section. If one process is in the critical section, it excludes
the other process from being in the critical section. This is what we understand in
operating systems as a mutual exclusion problem.

Now this is achieved in the operating system by using two operators called the P and the
V operators. P is essentially a lock operator. So when you actually apply a p operation,
the process actually uses the P to lock the critical section and uses v to unlock the critical
section. This is like I know two people cannot be in the room simultaneously then what
the use is they use a lock and once somebody acquires this lock, gets into the room unless
he actually unlocks it and comes out of it, the other person cannot enter into the room.
That is what actually prevented by using this P and V operators in the operating system
context.

[Refer Slide Time: 13.00]

Now in the case of databases, it is slightly different than being just mutually exclusion
problem because what we are actually doing in the database context is we are actually
assuming that there are different types of locks, there could be a read lock. Whereas in
the case of a mutual exclusion problem, we have only one kind a of lock but here there
are different types of locks that we introduce. Read lock actually says that transaction is
trying to read the data item, is trying to read. This is very important that means it is not
going to right on the data item is only going to read the data item.

And if you say there is a write lock, the write lock means that it is trying to write, the
transaction wants to write onto the data item. Transaction is trying to write on the data
item. It is also you can say read lock, I will abbreviate here afterwards read lock with an
RL. An RL shows that the transaction only wants to read the data item and this is also
called a shared lock because it’s possible that more number of transactions can start
reading the item at the same time.

It is shared, that means there won’t be any violation if more than one transaction tries to
read the same data item. But at any given point of time, only one transaction can write on
the data item. So when we abbreviate write lock as WL, this also is called exclusive lock
that means this lock will be granted only to one transaction whereas the shared lock can
be given to multiple transactions at the same time.

[Refer Slide Time: 15.05]

By actually distinguishing the kind of locks, we will in sense that try to increase the
concurrency because whenever a transaction acquires a read lock, it is possible for other
transactions also to acquire this lock but whereas if one transaction is given the write
lock, the other transaction cannot be given an extra write lock on the same data item
unless the work was finished by the first transaction.

So in other words as opposed to looking at the operating system context where we have
only one lock, we actually distinguish the semantics of the lock here whether it is read
lock or whether it is write lock, based on the database systems tries to optimize the
concurrency that is possible when transactions are simultaneously executing, to also
understand the granularity of the lock. This is also important issue when you actually
look at locking algorithms. The granularity actually means that how the size of the data
items that are locked by the database by the transaction.

Now it is possible that the transaction only locks a simple data item which actually means
that in a database table one single data item, for example in student in the case of a
student record, it is possible that we are locking only a we are locking only a student
name or we are locking only the students cgpa. We are not locking any of the other
information of the student record. The other one could be the entire tuple, tuple means all
the things relating to the students, one particular student getting locked that is called a
tuple.

This is equivalent to also a row in a database. The entire row is being locked. The other
one is the table which actually means that all student records are getting locked. That
means that the entire table is getting locked, this is very important to understand the
granularity. As you reduce granularity, the transactions only locks that small item but if
you start increasing the granularity it starts locking a large number of items. So
consequently as you increase a granularity of the lock, you correspondingly reduce the
concurrency that is available in the system for transactions to execute.

One simple example is for example if you provide for the entire IIT, access at the in gate
where there is there is going to be a lock. There is going to be only one person entering
into the entire into the campus at any given point of time and after he goes out the lock is
given to the next person, it drastically reduces the number of people who can get into the
campus at any given point of time. But on the other hand if the access is controlled at a
room level where when they enter into the IIT, when they reach the particular room you
want only one person to be entering into the room at aty given point of time and that is
the point where the room is locked.

A particular room is locked then the amount of concurrency that is available in the
system is extremely high but it depends on where the concurrency is to be provided but
we suddenly should lock as small as a granularity item as possible, keeping the consistent
criteria into account.

[Refer Slide Time: 19.01]

Now given the understanding of the lock, let us go on to see how a simple two phase
locking protocol will be working in the database context. As the term two phase locking
explains, there are two phases in these particular algorithm. The first phase is what we
call as a growing phase of the transaction in which the transaction tries to acquire all the
locks and there is a second phase which is called a shrinking phase where the transaction
tries to release the locks.

So if you basically look at the execution in terms of time, let us say this is the time
access. Now the transaction starts executing at some point T1 and what it actually does is
as it starts executing, let us say it starts to actually reach execution points where it needs
some data items. For example let us take a simple transaction where it is accessing bank
card database as shown in the earlier examples.

I will basically try to read the balance in a bank account. Now the first thing that will
happen in this case is I try to acquire a read lock on the balance data item which could
mean that I might actually lock the entire account of a particular person and that shows
that I in effect reached a point where I have locked, I have asked for a lock. Now it is up
to the database manager to see that if nobody else is actually has a lock on this at this
point of time or if the other transactions own only the read blocks on this data item, I can
be granted the lock request.

Now as I proceed like this, I might keep asking for a locks on other items as well. So this
is basically the growing phase where the transaction is actually asking for locks. This is
the first phase of the transaction execution which is called the growing phase. The
growing phase, the transaction is trying to get all the locks it needs to do the work that it
has to do. For example imagine that you have to move some items form one room to
another item, another room then you first step before moving the items from one room to
the other room or manipulating the items in a particular room, you try to acquire locks on
all the rooms that is the first phase of the growing which is called the growing phase.

After you have got all the locks, you do the operation that you have supposed to do and
after that you basically start releasing the locks. This is basically called the shrinking
phase. In the shrinking phase, the transaction is actually releasing the locks. This is lock
acquisition and this is lock release. In this side it is basically releasing the locks. Now the
important condition of two phase locking is once a transaction is released one lock, it
cannot ask for any more locks. This is a very important condition and a subtle condition
that enforces serializability.

We are going to examine this little more deeply little later but right now what we
understand is the condition between these two phases says once the transaction has
reached this point which is called the lock point. This is called the lock point. When the
lock point has been reached let us say at time T, the transaction is not going to ask for any
more locks and it only releases the locks. This we will put it, so the first phase is the
growing phase and the second phase is the shrinking phase. Now in terms of the two
phases, the condition is you are not going to this lock point, you are not going to ask for
any more locks after you have reached actually the lock point.

This is a very important condition that is enforced. Now let us examine how exactly the
two phase protocol works for a transaction and understand deeply what are the
consequences of applying a two phase locking protocol.

[Refer Slide Time: 23.58]

Now I will take a simple transaction and show what exactly would have happened, if I
had actually applied a two phase locking algorithm. I will take a simple case of a
transaction 1 which is actually reading an item Rx and actually writing an item data item
x and then again it is basically trying to acquire or read an item y and then write an item
y. There is basically another transaction T2 which is also doing exactly the same work of
reading a data item x, writing a data item x, reading a data item y and writing a data item
y.

Now if you basically look at how two phase locking protocol would have worked in this
particular case, when both these transactions at some point of time come into the system.
Now let us assume that actually T2 has actually come into the system at some point of
time, the first thing it will start doing is as its starts, it requests for a read lock on x, read
lock on x.

Now when the read lock on x is granted, it is going to ask for an up gradation of this read
lock to a write lock. Now it still cannot release this lock on x, though it knows that at this
point of time it is actually finished working with x. Now it is going to work with y but
still it cannot release the lock on x because if it has released the lock on x, it cannot ask
for the lock on y. This is the condition for two phase locking. If you have released one
lock, you cannot ask for any more locks. So the transaction T2 will hold the lock x and
ask for now read lock on y and it will upgrade it to the write lock on y and it this point of
time, it will release all the locks.

[Refer Slide Time: 26.05]

Now only when it releases the locks on x and y, can the transaction T1 start executing
which actually means that the locking will ensure if T2 has acquired a lock on x, it
effectively prevents T1 from acquiring the same lock on x and hence when there are
actually two conflicting transactions on a data item, they will be serialized based on who
has acquired the lock first. This is how exactly two phase locking protocol will work.
Now the meaning of acquiring a lock is it subsequently prevents any other transactions
from getting the lock on the data item as long as this transaction is using it.

This is typically what is achieved as part of the execution, what you are achieving here is
what is called conflict serializability. Here in fact making sure that the transactions
execute when they are conflicting on data items in a serializable order. I am going to
show a small proof to show that a two phase locking in effect produces serializable order
of transactions. Before I do that, I am going to look at some more properties of two phase
locking in terms what it can be doing. Since the first thing that is going to happen here is
since transaction has to wait, if the transaction has been locked by some other transaction.
If a data item is locked by some other transaction, it is possible that transactions could be
waiting for each other.

Now this could result in what we call as the problem of dead locks. This is one of the
problems of two phase locking. What we mean by dead lock is let us say T1 has actually
acquired a lock on, T1 has acquired a lock on data item x and T2 has actually acquired
now a lock on data item y. It is possible that now requesting a lock on y and this is
requesting a lock on x. Both cannot proceed any further because they have reached this
point but they are not going to release this x or y till they reach the point of lock point
where this is the lock point. So both will, they are at this point right now and there is no
way both these transactions can reach their point but unless they reach the lock point
there is no way they are going to release these locks.

So it is possible in which case T1 is actually waiting for T2 to release a lock and T2 is
actually waiting for T1 to release a lock and both will keep on waiting for each other
because they are in a continuous loop here. This in effect means that there is a dead lock
because neither of them will be able to proceed any further and they will be waiting for
each other in this particular context. This is what we mean by dead lock. This is one of
the problems of using a pessimistic kind of an algorithm because the algorithms which
make the which make the system wait for each other, will transactions to wait for each
other can result in this dead locks.

The dead locks will basically bring bring the system performance and the throughput of
the system drastically which means that the system time, the system throughput, the
number of transaction that are executed by the system can drastically get affected when
there is a dead lock condition. Problems of deadlocks are they need to be detected when
they happen and the system has to recover back from this deadlock. In this particular case
either of this transactions have to be aborted when a deadlock occurs and make sure they
release their locks so that the other transaction can proceed. For example to break the
dead lock, one of the transactions has to be aborted to make sure that T1 can proceed. So
deadlocks needs detection and subsequently resolving this deadlock require that you
abort one of the transactions that is involved in the deadlocks so that the system can
proceed further.

[Refer Slide Time: 30.06]

This is one of the consequences of two phase locking algorithm. Two phase locking
algorithm also doesn’t produce optimal schedules and we are going to look at the
problem of what is an optimal schedule at a later point of time because the reason for this
is it basically ensures, two phase locking ensures that a transaction always proceeds after
it gets acquires locks to the finish.

It never grants a lock and later actually aborts the transaction at a later point of time
because there is a conflict. Whereas in the case of optimistic algorithms it is the other
way. They let the algorithm, they let the transactions proceed to execute up till some
point of time and resolve the deadlocks by resolve the conflicts at a later point of time by
looking at what they have operated upon and seeing at a later point of time, if the operate
on a data items in a conflicting fashion, they will get aborted at a later point of time.

So in that sense optimal schedules may not be possible in the case of two phase locking.
We are also going to see a small example and show how time stamping produces optimal
schedules compared to two phase locking algorithm. I explain this concept in the slightly
different way by taking what we are actually done in the earlier class of looking at a
serialization graph. For example if you look at as the transactions T1 comes into the
system, in effect you actually creating this graph which shows how the transactions have
executed in the system one before the other. For example in this case let us say there are
three transactions and then after that basically one more transaction has been executing.

Now we are basically, what I am doing here is I am saying that T1 executed before T2, T2
executed before T4. This is required only when there is a conflict. For example they
conflict on a data item x, I need to know how exactly they have executed one before the
other, otherwise it doesn’t make. In this particular case T2 and T3 doesn’t have any
conflict directly and hence there is no need for me to actually put a arc here because they
are not operating on common data items.

Now let us say there is an incoming transaction Ti into the system at this point of time.
Now what the two phase locking in effect does is if there is a lock, for example let us say
there is a z item on which T3 is actually locked in. Now the only way Ti can come into
the system is only after T3, it can never be. For example if it is conflicting on this z data
item with respect to any of the existing transactions, the only way you can allow T i to
execute is by being after T3. There is no way this transaction which arrived now after T3
has locked to come before. This is prevented which means that the transaction graph, the
TG graph here can grow only in the forward direction that is the only way the two phase
locking allows the graph to grow.

[Refer Slide Time: 34.00]

It doesn’t let the graph to grow in any other direction but let us understand this problem
of this graph growing in other directions as well. This is very interesting for various
reasons because that allows a better schedules optimal schedules to be created when you
are actually executing the transactions. Now to explain this, I will take a simple example
of two transactions T1 and T2 executing on two data items x and y.

Now it is possible that I actually allow the read and the write things to proceed in a
slightly different way and ensure that as the transactions are operating on this, either they
read a pre copy or a later version which is modified by T1. Now as we saw earlier there is
a read x and write x that is happening on x and there is a read y and write y happening on
the... Now let us say T2 exactly does the other way of reading y, writing y and then
reading x and then writing x. Now it’s possible that when the transaction is actually
modified the value of x, you can allow still this transaction to read a pre value which
actually means that it is still has not written the value of its modification on to the
database. This is the database storage.

Since it has not yet modified the value on the database storage, it is possible to allow the
T2 to read a value before modification which means that there are three possibilities
depending on what you allow T2 to do after T1 has actually started executing. If you
allow the before value that is pre x to be read then the transaction T2 is actually coming
before T1 because it is actually reading a value that is actually modified or that is not
modified by T1. If you allow T2 to read a modified value then in affect it is coming after
that is this is this is write x, this is after written, T1 has actually written the value on x you
allow T to read the value.

[Refer Slide Time: 36.30]

Now two phase locking will not allow the transactions to read pre x which in effect
means that it will prevent this from happening. More advanced algorithms allow the
transactions to be placed anywhere in the transaction graph, even they can come before a
particular transaction or after the transaction graph. In effect there is algorithm called the
5 color protocol which allows transaction graph to grow in all directions. These are
actually 5 different, the 5 colors here denote 5 different kinds of locks. 5 kinds of locks
that a transaction can acquire besides just acquiring a read lock, a write lock, the other
kinds of lock with a transaction can be granted when it tries to acquire a read or write
data items which were before or after. Depending upon the pre and post whether the
transactions data items have been modified before or after, it is possible for the
transaction to acquire the locks. And this allows the transaction graph to grow in all
directions and this produces sort of, it produces more optimal schedules than what we see
in the case of two phase locking.

[Refer Slide Time: 38.12]

The other interesting problem that you see if you actually look at two phase locking is
presence of long live transactions which actually means that the transactions are
executing for a longer time. For example, the example for a long live transaction is a
transaction that is trying to compute annual interest for every account in the bank. What
this does is every year ending time, the savings is taken and the rate, interest need to be
paid for each account is calculated. Now what this long live transaction, it runs for a very
long time.

Normal transactions run only for a few milliseconds, this runs for a few hours and then it
tries to acquire locks on almost all the data items, acquires locks on a large number of
data items. Now, what this means is this is property one and this is property two, large
number of data items. This in effect introduces lot of problems because this blocks a large
number of short transactions, what we actually have is in case short live transactions.
Now in the presence of long live transactions, short transactions will have problems of
execution because they don’t be able to run.

Their response time is going to get drastically effected, when there are long live
transactions, if you apply a two phase locking algorithm because the long live transaction
will in effect lock all the data items and will not release the locks on other data items till
it finishes because that is one of the conditions of the two phase locking.

[Refer Slide Time: 40.09]

So if you apply a two phase locking, for long live transactions which are also there along
with short live transactions, the performance of the short live transactions will drastically
get effected, they won’t be able to execute. The response time is going to be really bad
when you actually apply two phase locking. This is another very important issue when
you actually look at two phase locking algorithm.

There are lot of protocols which modify the two phase locking. There is not strictly two
phase locking, they modify the two phase locking condition to actually allow long live
transactions to execute along with short live transactions and there is a whole large
number of protocols available for making long live transactions execute along with short
live transactions.

We will not go into details of that but then there is i will I am going to give references at
the end of it pointing out a papers which actually give this algorithms, a host of this
algorithms. Now what I am going to now touch up on is the other aspect of how a
concurrency control algorithm has to be integrated with a commit protocol. Now what we
understand by commit protocol and concurrency control algorithm has to be made little
more clear. Now as you can see here, it is only after the transactions commits. If you
remember the way we actually explained earlier, there is the transaction begins execution
by actually saying begin transaction.

When it actually comes to the end of the transaction, you are actually that is the time
when you are writing all the values that the transaction is modified back onto the
database. It is still that point the values modified by the transaction are not actually
written onto the database. That is what we mean by the commit protocol. There is inter
relationship between concurrency and commit, in the sense that as the transaction
modifies the values, this is this the place where transaction is actually modifying the
values, transaction modifies.

And this is the point only after commit point it is actually visible, the modifications are
visible only after this point. So there is going to be some kind of an interaction between
concurrency protocols and the commit protocols and what we need to understand is how
exactly the concurrency control algorithms get integrated with commit protocols because
both together can only provide correctness. And if you basically see that the transaction
has it modified it is visible then it is going to create difficulties in terms of the other
transactions reading the values which are not yet committed by the transaction on the
database.

So both concurrency and commit protocols have to work together. And we are going to
explain in the next few minutes, how exactly the commit protocols works along with
concurrency control algorithms. What I am going to look at it is how the 2 PL algorithm
gets integrated with a commit protocol.

[Refer Slide Time: 43.42]

We are going to look at several ways, this can be done with two phase. I will take this
simple graph that we have actually taken earlier to see how the commit protocol gets
integrated with this. This is a familiar thing that we have actually, now the T1 is the start
of the execution of the transaction. This is basically the end of the transaction and this is
the lock point of the transaction. Now what we are actually looking at here is, it is
possible once the transaction is reached the commit point, it is possible as it is releasing
the locks they are immediately made available for some other transaction.

I will take only a simple case of data items x on which the transaction has a write lock.
Now let us say it actually finished and releases the lock release write lock on x which
actually means that it is possible that this x is available for some other transaction T2 now
to actually start working.

Now when T2 actually is trying to now acquire lock on this same data item x, remember
that this transaction has till not reached the commit because the commit point is here. The
transaction is actually committing itself here not before this. So it actually means that we
are allowing the transactions to be executed transactions to release locks before they
actually reached the commit points.

This is where the interface between the locking protocols, that is the concurrency control
protocols and the commit protocols come into picture because the commit protocols start
operating at this point whereas the before that we have applied the concurrency control
protocol. Now if this protocol releases the lock then the data item is visible for other
transactions because they effectively can acquire the lock. But the value that they are
going to read is not the value that actually is produced by this transaction because it is
still not committed.

But if it is reading the value produced by, but our understanding is since it is released the
lock any transaction T2 acquiring the lock is after and hence there is a relationship
between these two that T1 executed before T2 and hence this is to be preserved because
the value T2 should read is now the value modified by T1. Now what is going to happen
in this case is if the lock has been released by a transaction before it is actually
committed, it’s possible at a later point of time at the commit stage, the commit protocol
issues an abort which actually means that this transaction T1 effectively has actually
aborted.

[Refer Slide Time: 46.33]

Now this requires that T2 is also actually aborted. This is what we mean by if you if you
allow the transactions to release the locks before you basically result in cascading aborts.
T1 actually modified a value on x, T2 has actually read this modified value but now T1
actually aborted for various reasons. Now T2 should also abort and this is what really will

happen if you apply the transactions to release the locks before they are actually
committed.

Now we are modification to the two phase locking algorithms taking this into the account
to avoid cascading aborts will require that the transactions actually start acquiring the
locks. This is actually the lock point but actually none of them effectively will release
their locks till they reach the commit point which actually means that the key point
holding on to the locks till they reach the commit point and all the locks are released only
after the commit actually happens, which actually means that the transactions commit
that means they write their values whatever values they have actually got, they will write
these values back on to the system and then they allow or they release all their logs.

The logs are not released before committing, this basically shows that the transaction
effectively starts holding, starts holding the logs till it actually reach reaches the commit
point. This ensures that the concurrency control and the commit protocols work correctly
by actually integrating the concurrency control protocols with the commit protocols. Now
what we are going to look at it is all the protocols will require some kind of a
modifications when we req when we look at how they integrate with the concurrency
control protocols.

[Refer Slide Time: 48.25]

I will show you typically the three properties of, if you if you remember for a transaction,
we are basically looking at three properties of atomicity which actually ensures that all or
none of the actions of the transactions are written. Then we are basically looking at
concurrency control. Typically this is consistency when they basically operating together,
they basically produce consistent results then we are actually looking at the property of
isolation.

Isolation means that one transaction results are not visible for other transaction till the
transaction has committed then we are talking about durability. This durability is the
transaction values are permanently written on the database. So this together what
constitutes what we actually called as the acid properties of the transactions.

Now they together have to hold for every transaction. What we are looking at here is
basically the concurrency control aspects. Now they have to get integrated with the
isolation properties, this is where the commit protocols are coming into to picture. This is
where the integration has to take place between concurrency control protocols and the
commit protocols. When we discuss the time stamping algorithms also which operate in a
slightly different way of actually ensuring that properties of serializability are actually
enforced at the end of the transaction execution not before.

We have to see how that actually integrates with the commits protocols. It is going to be
interesting to see how time stamping protocols ensure commit protocols integrate
together in a proper way. When we discuss the time stamping algorithms, we are going to
look at how commit and concurrency control protocols integrate with each other in that
particular context. Typically the atomicity properties and durability properties are
achieved by what we say as recoverability properties which are actually ensured using the
logs. Typically the logs are maintained to make sure at any point of time, the transaction
can redo or undo its actions and that is achieved using the logs.

[Refer Slide Time: 51.24]

Logs plus the concurrency and commit protocols together ensure that the transaction acid
properties are realized. And to just give you complete picture, what we are basically
looking at the lowest tier is the database items. These are nothing but the tables that are
stored in the database. Now at the other end, this basically the applications which are
trying to modify the database items.

Now all the properties algorithms that we are talking about now come in the tier which is
which sits between the applications and the database tables and this is what we mean by
the database management system. Now in this case the dbms has various other things,
this has to ensure among other things. A part of the subsystem has to deal with the
transactions and that is basically what we mean by the transaction manager. Now the
transaction manager is part of the dbms and this transaction manager is the one which
actually ensures that the as the applications are executing, they serializablity condition is
actually enforced using the transaction manager. Now to give an idea of what exactly
happens when a transaction T1 starts executing, when it is actually putting a lock request,
let us say it is actually requesting a read lock, this is actually given to the transaction
manager.

[Refer Slide Time: 52.44]

It is up to the transaction manager now to grant this request or disallow this request at this
point of time. So, all the transactions in effect will make the request to the transaction
manager. The transaction manager when it locks the data items for example there is a
table here the student record table, now typically it allows a particular tuple to be locked
then this lock will be granted based on the request that is basically requested by the
transactions.

[Refer Slide Time: 53.43]

So all the lock requests are coordinated by the transaction manager and it knows which
transaction holds what locks at the given point of time and ensures that the lock request
are properly coordinated among the various transactions that are executing. It also
ensures that along with the, for example if there is a commit protocol that needs to be
operated before the lock is released, the transaction manager ensures that the transaction
locks are not released till the commit point of the transaction is reached.

This is how exactly the concurrency control protocols work in the case of two phase
locking. What we are going to do in the next few minutes is sum up and lead to the next
set of algorithms which are typically time stamp based algorithms. Now what I am going
to show you in this particular case is a simple execution of a transaction and show how
two phase locking may not be a best way of executing the transactions and how one can
think of in effect producing more optimal way of executing the transactions. This is the
very simple example, I will with this example I will lead lead to the next set of protocols
that I will be talking in the next lecture which are called the time stamp based protocols.

In effect looking at the execution of two transaction in T1 and T2, if you typically look at
a read x, a write x and a read y and a write y by transaction x and T1 and T2 let us say just
repeats the same kind of execution. You can in effect see that, it’s possible for T1 and T2
to execute in different possible directions. Now one way the two phase locking ensures
that T1 executes after T2 is both locks of T1.

Let us say the write lock on x and write lock on y will be granted for T1 which in affect
prevents T2 from start executing till T1 has actually finished which means that the
schedule that will be possible in this particular case is read x write x of one, read y write
y of the other this is the point where the transaction would have committed T1 and all the
execution of T2 proceeds after this point.

[Refer Slide Time: 56.31]

But it is possible for, if you carefully notice what is possible here is this is not the best
possible execution of the transactions. It is possible for you to say once T1 has actually
finished working on data item one, data item x, it is possible at the point of time for T2 to
start executing on the data item x because T1 no longer needs that data item on x but the
whole set of problems will come if you let this happen.

First thing as we discussed, we will be sacrificing on the isolation property because you
are letting transaction T2 read the values before T1 has actually committed. So this will
sacrifice isolation property of the transitions. So how exactly if you want actually
optimize the execution of the transactions, probably two phase locking is not the best
possible way of executing but two phase locking is by far the best way of or a simple way
of executing the transactions. I think I will stop here and going to come back in the next
lecture.

