
Database Management System
Prof. D. Janakiram

Department of Computer Science & Engineering
Indian Institute of Technology, Madras

Lecture No. # 18

Transaction Processing and Database Manager

In the previous lecture we have looked at the basic properties of transactions namely the
acid properties atomicity, concurrency, isolation and durability. In today’s lecture we are
going to see how these properties will be realized by the transaction processing system
within the database manager. We will take a few simple examples and through this
examples we will illustrate how the transaction processing system will ensure the acid
properties of the transaction.

[Refer Slide Time: 02:04]

Here is a very simple example shown in the slides here. There are two transactions here
which are shown T1 and T2. T1 is a account transfer transaction, transfer of money from
one account to other account. Now 1000 rupees had been transferred from account A to
account B by transaction T1, transaction two is an interest payment transaction. So it is
actually crediting into each account a 5 % interest into each of the accounts.

Now what is shown here is this T1 and T2 operating simultaneously on the banking
system. Now what we will do is we will try to understand these two transactions in terms
of the various operations performed by these transactions. What I am going to do here is I
will write T1 as performing several transactions or several operations. Now the first
operation that is performed by T1 is to actually take the account A and read the value of
the balance that is there in this account. So it is basically a read operation of the account.
The second operation is essentially to add 1000 rupees into this account and the third

operation is going to be writing the value back. The same thing is going to be done for
the account B. So I will actually show that as the fourth operation but the subsequent
operations will not be shown here.

They are self-explanatory one can understand after that, the other operations. Now the
suffix here shows that this is the first operation and this gives the transaction id. One is
the transaction id and the one here indicates that it is the first operation. So operation 1 1
indicates that this is the first instruction of transaction. This indicates that it is the second
instruction of transaction 1 like that it is shown here.

Now if you basically take a operation Oi j, it indicates that this is j th operation of i the
transaction. This is the notation that we will be using. Now as you can see here this is
basically a read operation on A and this is basically a write operation on A. So we have
between the processing we have the reads and the writes happening on the data items.
Now we can also understand the transaction T2 also has shown in the slide as trying to do
the following operations.

O21 is going to be a read of A and then the O22 operation is going to be an update on the
value of the data item and then O22 O23 is going to be an item again A the rest of the
operations as shown in the earlier case for the B, operation B.

[Refer Slide Time: 06:17]

Now what we are going to show you is what happens when these transactions are
executed simultaneously on the database. Now a list of actions form a set of transactions
as seen by the dbms. As you can see here O11 O12 O13 O14 are set of transaction, set of
operations constituting T1. Similarly we have O21 O22 O23 constituting the set of
instructions constituting transaction T2.

[Refer Slide Time: 06.52]

Now it is possible for these operations to get interleaved in the sense that it is possible for
these transactions, operations of the transactions to execute in an interleaved fashion.
Now when this gets executed in an interleaved fashion, we basically call that as schedule.
A schedule is nothing but a series of operations as executed by the database management
system.

Now you can see here it is possible for these two transactions to execute concurrently, a
set of interleavings that were shown is the operation T1 are constituting A equals to A
plus hundred is executed here. Then T2 is executed which is equivalent to saying A
equals to this operation is executed here, followed by the T2 of B then T1 again B equals
to B minus. This is one schedule which is called a possible schedule, we can call this is as
SC1 as one possible schedule. As you can see here these two constitute transaction T1
these two operations, these two operations constitute T2.

[Refer Slide Time: 08.29]

Now there is another possible schedule also shown in the slide there in which case T1 and
T2 are executed as shown here. But the other two operations are interchanged. This is
executed before the other operation. Now when we actually have the schedules, one of
the important criterion for this schedules to be valid is to see that these schedules produce
proper consistent results at the end of the execution.

[Refer Slide Time: 09.07]

Now this schedule one can be seen as shown in the slide as read and the writes on the
various data items. T1 is basically is reading A and then writing A. It is reading the old
value of the bank account balance of account A and writing the new value for the balance

here. T2 is also doing a read of A and write of A because you are computing the new
value of A by calculating the interest that is payable for this account. Similar way we can
also write for write B and then read B and write B and read B and then again write B.
What we are going to show you through this example is what happens when these reads
and writes are interleaved from the consistency point of view.

Now we can see here the notion of what is correct from the execution point of view is
shown here. Suddenly we don’t want transactions to execute one after the other because
then the throughput of the system will come down drastically. You want as many
operations as possible should be executed in a concurrent fashion to actually increase the
throughput of the system. Now when concurrently executed transactions at the end of it
whether they can be translated into what is called a serial execution.

Now in this particular case, what you would like to say is T1 executed completely after
T2 this is one possibility or T2 executed after T1. As long as this is possible for you say,
we call this kind of schedule as a serial schedule. And that is what is actually shown in
the diagram here. A schedule is which is equivalent to one of the serial schedules is
equivalent to saying that either T1 executed before T2 or T2 executed before T1 that is
one of these should be possible.

[Refer Slide Time: 11.28]

Now to see what really happens when the execution is not serial that means when finally
you are not able to detect saying that the execution of the transactions is not as per the
serial schedule.

[Refer Slide Time: 11.51]

I will take a very simple example and show how exactly will deduce the serial schedules.
Let us take a case of a transaction T1 with operation x and then 1 2 which is actually a
write of y. Now we can take another transaction T2 where basically it is a read of y and
then a write of x. Now no matter how these operations are executed. As long as it
possible for you to say that all the operations at T1 have been executed before T2 which is
equivalent to saying that if there is a schedule that says O11(x) and O12 (y) has actually
finished before O21 (y) and O22 (x) are executed by the database manager. This is
equivalent to saying that T1 finished before T2. This is what actually we mean by a serial
execution of the transactions.

[Refer Slide Time: 13.26]

That is T1 finished execution before transaction T2 started executing. Now it is also
possible for you to also have the reverse order where all the operations of T2 have been
executed before T1. This is a very simple and straight forward case where we can easily
save on all the operations of T1 and T2 are executed in this particular fashion very easy to
see that T1 has actually finished all the operations before T2 stated executing. The only
case where you will have problems is when some operations of T1 have been executed in
such a way that they are interleaved with the execution of the operations of T2.

[Refer Slide Time: 14.12]

Then the problem of deciding whether the schedule is equivalent to a serial schedule that
all the operations of one transaction finish before the other becomes a important
requirement. And that is what actually we are going to look at how that can be done. In
this particular case what we are going to say is all that will be required for us as a
criterion whereas schedule is produced is two operations are said to conflict, we say the
notion of a conflicting operation is when one of them is a write operation. One of the
operations is a write operation.

[Refer Slide Time: 15.15]

Now to give you the little more simplistic view, let us say T1 is trying to read a data item
x and T2 is actually trying to write the data item x. These two operations O1 of some i,
O2 of some j are said to conflicting because they are operating on the same data item and
they are conflicting with each other. Here as you can see here, T1 is reading the data item
x, T2 is writing the same data item x. Since both transactions are reading the same data
item and one of the operations is a write operation, we say that these two operations are
called conflicting.

Now whenever we have conflicting operations like this, the first inference is here O1 i
and O2 j are conflicting. Now in transactions, if there is conflicting operations and there
is a way this conflicting operations have been executed, let us say the conflicting
operation in this particular case is executed is such a way that this is the order in a
schedule. Now this order actually determines that T1 actually preceded T2 because it is
conflicting on data item x and T1 has been executed before T2.

[Refer Slide Time: 17.02]

And now this order should be preserved, no matter what happens with respect to other
operations. And as long as you preserve that order with respect to all other operations, we
say that the operations have been executed in a serial fashion or the schedule is reducible
to a serial schedule. This is the concept of serializibilty. Now this is the important notion
here is when transactions are executing concurrently. We need to ensure that the
conflicting operations are serializable, all the conflicting operations are serializable.

Now here is a very simple case shown in the slide where it shows that where it is not
possible to serialize, we need to actually abort the transaction. Now in this particular case
it is shown that T1 actually is reading as we go to the earlier case, T1 is actually reading
the data item A and then writing data item A. Now if you look at the T2 is also reading
data item A and then writing data item A. Now the other part of T2 is read B and write B.
Now as you can see here with respect to data item A, the order between T1 and T2 is T1
is before T2.

Now if you look at the data item B, it is coming in the revere direction which actually
means that as you can see here, on the data item B as far as the conflicting data item A is
concerned, T1 is before T2, as far as B is concerned it is T2 before T1. As you can see this
is on data item B and this is on data item A.

[Refer Slide Time: 19.18]

Now from this it is not possible for us to say whether T1 actually has finished before T2
or T2 has finished before T1. Since we can’t now decipher which one has actually
finishing before the other, this schedule is non serializable schedule. And this is what
should be avoided. A non serialzable schedule shows that the execution of the operations
will lead to inconsistency. The database will be in an inconsistent state when we have the
operations executed in a non serlizable way.

Now in this particular case it is shown here that T2 can commit but T1 has to abort.
That’s what was shown in the slide saying that only B can come, transaction T2 can
commit but T1 has to abort because T1 trying to commit here will produce a non
serialzable schedule. This is also shown, as if you go back to the slide you can see that
this is shown as dirty reads, that is write and read conflicts. As you can see B has been,
T1 has read A and B values but it is reading the, writing the value at a much later stage.
And now the one of the later updates will be lost if you allow T1 and T2 to execute in this
particular way. One of the operations will be lost and that’s the reason why the schedule
is not allowed. We look at other kinds of conflicts that can arise when transactions are
executing. First kind of conflict that we saw is a write read conflict.

[Refer Slide Time: 21.08]

We can also have a read write conflict and a write write conflict. what a read write
conflict shows is the example shown here is transaction T1 is reading the data item A and
if its value is more than zero then it decrements. T2 is actually reading A and it is
decrementing the value of A. Now when T1 and T2 are operating concurrently, T1 is
actually reading data item whereas T2 is actually writing on to the data item. This is what
we mean by a read write conflict on the data item A, with respect to data item A both
transaction T1 and T2 are conflicting in terms of T1 reading the data item and T2
modifying the data item. And this is what we mean by a read write conflict.

Again you can see that in this particular case the value read by T1, if it is before the value
is changed will be inconsistent. Let us say right now the value of A is zero and T1 reads it
as zero, then it is unlikely to decrement that because it has read the value as zero. Now if
T2 also read the value at the same time as zero and reads it as zero then it decrements it as
minus 1. So that value is actually in conflict. The actual value that is read by T1 and T2
are not correct.

Another example for conflict is the write write conflict where two transactions, both of
them access the data items and tries to modify the value of the data item. This is a case
where it is shown here as two people simultaneously trying to credit into the same
account is shown as a example of a write write conflict. As can be seen here, T one is
actually writing the value into the account, T two is also writing a value in the account A
as well as into B and T1 at a later stage is trying to write the value into B. Now as you
can see in this particular case, the writes on the same data item will be conflicting leading
to non serializable schedule. So typically this is what we mean by a write write conflict.

To summarize what we are actually seeing, I will give a simple example of an operation
and show how exactly is the conflicts serializability is to be achieved. If you take a
transaction Ti and say Ti as a operation oip and data item x and you have a transaction T j

which has an operation q on x. now we say that these operations are conflicting if one
them is write. Now when you say this is write and this is a read, you have between oip x
and oj q you basically have a read write conflict. The x data item is read by transaction T i
and it is been modified by T j. So this is basically a read write conflict. Now if you say
that this is a write write, typically what you see is between operation o i p x and o j q x
you see a write write conflict.

[Refer Slide Time: 25.01]

Now when there is a conflict between the two operations, whether it is a read write or a
write write conflict, you need to actually serialize the operations by actually saying that
they are executed in a serial order which is what we mean by conflict serializablitiy. Now
whenever there is a conflicting operations, we need to actually serialize the two
operations which is known as the conflict serializability.

In this particular case oi p (x) and oj q (x) are the conflicting operations and they need to
be serialized in a particular fashion and this is what we mean by conflict serializability.
We are going to see in later lectures, how the transactions are executed by the transaction
manager to ensure that conflicting operations are serialized or serial schedules are
produced by the transaction manager.

One of the simple technique that is used is what we see as a two phase locking and we are
going to study that two phase locking as a technique for achieving conflict serailizability
later in our lectures. Now here is actually what is shown as how exactly the transaction
manager achieves some of the properties that we have been discussing.

[Refer Slide Time: 26.52]

The dbms ensure that a transaction either completes and its results are permanently
written. This is what we mean by committing a transaction or no effect at all on the
database, this is equivalent to saying that the transaction has been aborted. So we have
two states for the transaction, either a commit state or an abort state. In the case of a
commit state, all the operations of the transaction or executed in full and then they are
committed. In the case of abort, no effect at all on the database as far as that transaction is
concerned. Now the idea of transaction manager is it controls the execution of the
transactions. As we saw in this particular case, it controls the execution of the
transactions in such a way that the operations of the transactions are serializable.

Similarly if you take the recovery manager, recovery manager is responsible for undoing
the actions of transaction which do not commit. This is a equivalent to saying that the
recovery manger is responsible for ensuring the property of atomicity. All actions of the
committed transactions survive any kind of hardware or software failures. This is actually
known as writing the committed transactions on to a stable storage. What we are going to
do is we are going to look at little further into how the recovery manager ensures that
properties of atomicity and durability.

[Refer Slide Time: 28.28]

Now what are issues involved in ensuring atomicity and durability? The following errors
can occur when a transaction is executing. First is it could relate to logical errors. For
example you are trying to withdraw some money from a bank account, it is possible that
the account itself doesn’t exist or the account doesn’t has sufficient funds. In all this
cases, transaction cannot proceed any further. This is what we mean by logical errors.
The transaction may have to abort because of logical errors. There could be system
errors. For example it is possible that there are problems of network, there are problems
of system failures, temporary failure or power failure in which case when the power
comes back, you need to know what really happened for your transaction with respect to
already started transactions.

A simple example could be, you go to a atm and try to withdraw money from the atm and
the power, when you actually press the button for withdrawing the money, the atm stops
functioning. atm failed due to various reasons. You would like to know whether their
system is actually debited the amount from the bank, from your balance or not. That is
basically system errors. There could be crash, system crashes, there could be a hard disk
failure, the disk head could have been corrupted. So there could be various reasons why
the system didn’t’ perform, it could be a system crash. So all these errors are possible.

When the system actually goes into any of these errors, you want to understand how
exactly the atomicity and the durability properties can be maintained. A simple example
trying to illustrate this point will be something like a file which all of us open on a
windows machine or any of our unix machines. Now here when you open a file in a
editor mode and tries to edit your file, there is no guarantee in terms of what happens
when a power fails because the file could be in a very corrupted state. there is no
guarantee for you in terms of the state of the file which all of us know we keep repeatedly
saving the file, when we actually entering or writing some document, we try actually

saving the document as many times as possible, so that when the power goes off or
something else happens we still save the portion of the work we have actually done.

We don’t lose the file because of power failure all the work that we have done. Now the
same thing cannot happen in the case of database systems because here the more critical
data that is been in saved in the file. So we need to ensure that whatever happens when
any of these failures happen, the system is still in a predictable state. That is the
difference between ordinary file systems implemented by an operating system and a
database implemented by commercial systems. They ensure that whenever these things
happen, still the properties, the save properties for the transaction, the acid properties of
the transactions are retained.

[Refer Slide Time: 32.11]

To explain how these properties are retained by the system, we need to also understand
the different storage types that are available in a computer system. A simple volatile
storage, we basically look at a simple volatile storage, this does not survive system
crashes that means when the system actually crashes the storage is lost, the storage is
volatile it is lost the minute the system crashes. When you talk about non volatile storage,
the system actually survives these crashes. That means the storage is the, whatever you
write into the storage is not lost when the system crash occurs.

A simple case is whatever is there in the main memory is lost when the power goes
whereas if you have written it onto your hard disk, it survives a power failure because it
is written into a more non volatile storage. Now we also have a concept of a stable
storage which is an abstraction of maintaining replicated copies in multiple non volatile
storage media, so that whenever higher disasters occur we still have a way of getting our
data back and that is we mean by the concept of a stable storage.

Now what we are going to see is how this concepts are used for actually achieving the
atomicity and durability properties in the transaction manager.

[Refer Slide Time: 33.55]

What we are going to show here in this particular case is what really happens when
transactions have to roll back. The rolling of the transaction has to happen mainly
because of logical errors or the system crashes and hence it has to be restored back to a
previous state. Transaction abort requires roll back which means undoing all the actions
of that particular transaction.

Now to ensure that roll back of the transaction occurs properly, what we have to do is all
the writes of the transaction have to be properly recorded in what is called as a log file.
The log file retains all the information relating to the writes of the transaction and this
will be used when the roll back has to occur. Now if the system crashes, all active
transactions during the crash need to be aborted when the system comes back. This is
equivalent to saying that they will all be rolled back and the information that is there in
the system in the log file will be used to properly undo the transaction activities, whatever
the transactions are being doing. What we are going to do is again in this particular case,
we will take a very simple example and see how exactly this happens.

[Refer Slide Time: 35.22]

Now here is the case where case where the logs are maintained and how this logs are
helpful in ensuring the atomicity property or the how the atomicity property will be
realized by the database manager. What is shown here is a simple case of writing the logs
before the transactions starts executing and making sure that it is carried over whenever
the data item is being written or a new value for the data item is being written.

What you can see here is the first log that will be written as far as the transaction T one is
concerned is what is called is the begin log, transacting begin log. Now what we have is
basically a relating to a transaction, every transaction is preceded by the begin transaction
as a keyword. Now this begin transaction actually tells the database manager to write
what we see as a log, this is the transaction begin log.

Now this is a, the begin log has to be written onto the transaction. Now in between the
transaction does various operations. As we have seen their, it’s possible that there are
several operations which are done by the transaction in between and then we have and
end transaction. Now this is actually the last instruction that is executed by this
transaction, so we will have a what is called a commit log indicating that the transaction
has actually committed which is equivalent to saying that all these operation have been
successfully executed. So between begin and end, at any point of time when there is a
crash, we need to actually recover back to the starting point. And this is what we mean by
actually roll back. What we are calling as a roll back is basically rolling back all the
things that a transaction is done to the beginning. This is what is meant as a roll back.
Now what we do is we actually ensure that whatever the transaction is doing, is written
on to this log and this log will be used for rolling back the transaction whenever a crash
occurs.

[Refer Slide Time: 37.57]

For example you can see that in the slide it is shown that T i writes a data item. Now as
you can see the first one transaction starts, there is a transaction log T i start. Now the
second thing that you notice is T i writes a data item. now there is a old value and a new
value old value is the old value of the data item and the new value is the new value of the
data item x. so there is a log that is written there which shows that T i x old value and a
new value is shown here, this is how actually the log is written.

Whenever there is a change in the data item, we basically write the log and now this log
shows what was the old value and what is the new value now. When you come to the last
transaction, basically you have a commit log that is a T i commit log. So as shown here,
we have a begin log and a commit log and in between whatever is happening is being
recorded there as shown in the slide there. So one of the things that we are going to look
at now is how this logs can be used for recovery purposes. How exactly this logs can be
used by the database manager to ensure that whenever those kind of failures that we are
talking earlier occurs how the system will recover back from those failures.

[Refer Slide Time: 39.54]

Now one of the things when writing this logs is one of the things that one should
remember is the id’s of the transactions are stored. So that we know to this logs pertain to
which transactions, so transaction id’s are appended when the logs records to identify the
transactions for which this have logs been produced. Logs are replicated and stored in a
stable storage. This is also very important because in the logs themselves are lost then
there is no way you can recover back.

Logs only assuming that the logs are written on to a stable storage, you can ensure that
the transaction can be made to recover. But if the logs themselves are subjected to failure
then you will not be able to recover back and hence logs are replicated, one of the
assumption we make it logs are replicated and they are stored in a stable storage. So
when we say a log is written, we assume that the values relating to the log have been
written on a stable storage and it is possible for us to recover this information at any point
of time.

[Refer Slide Time: 41.10]

Now as you can see here we are also showing how this log entries will also be ordered,
ordering of the log entries. We say a transaction T are can commit only if the log entry
relating to that is saved on a stable storage. This is equivalent to saying as you can see
here, when you write this commit log this commit log is actually written on to a stable
storage then we say the transaction is committed. This is the point where it is possible for
the transaction now to say that it is committed. Now before this is actually written, this
log is written all the other entries before this pertaining to this transaction should have
also been written onto the stable storage.

You should never write the commit log before all the other log entries relating to this
transaction have been saved on the stable storage. Now only after the writing the entries
relating to the logs, you should write the data items themselves after this point onto the
stable storage. This is very important, these steps are very important because if you
perform them in any other order, you will have problems in terms of recovering back.
First requirement is all the log entries relating to this transaction should have written onto
the stable storage in the first instance, before you are writing the commit log. Only after
writing the commit log, the data item values pertaining to the transaction can themselves
can be written onto the stable storage.

The reason for this is simple. If you don’t write the log values first on to the stable
storage, there is no way if something happens to recover from that particular failure. for
example if you have written the data value onto the stable storage, now something
happens there is now way of finding out what is the state in which the transaction is
unless the logs are written properly. So logs are the bases for the database manager to
find out what is the state in which the transaction is when a failure is occurred. And hence
it is important for you to first write all the logs relating to the transaction then write the
commit log and then write all the data items onto the stable storage. This is how one
needs to order or write the various things relating to the transaction.

[Refer Slide Time: 44.09]

We will take a very simple example. A simple example in this case to see how the two
transactions can really execute writing their logs. In this particular case, it is shown T one
and T two T one is actually reading certain data items and writing certain data items.
Similarly T two is also reading and writing certain data items. For completeness sake, we
also have shown the initial values that are there in the database when this transactions T
one and T two start executing.

As can be seen in the slide, the initial values of A are A is 100, B is 300, c is 5, D is 60
and E is 80. Now T1 when starts executing, it is going to read the values of A will
increment by 50 then read the value of B increment it by 100 then write the value of B
back into the system. Then will read the value of C. Now C value is inc is double then the
value of C is again written. At the end of it A is recomputed as A plus B plus C and the
value of A is written.

If you look at the transaction T2, T2 is actually reading the value of A. It is incrementing
it by 10 then it is actually reading the value of D, it is decrementing it by 10 then actually
reading the value of E and reading the value of B. Then E value is computed by adding E
plus B and then writing the value of E then D is recomputed as D plus E then finally the
value of E is written.

What we wish to covey with this is the two transactions are simultaneously reading
several data items and trying to modify. It is equivalent to saying that there is set of
operations which are going simultaneously in terms of reads and writes between these
two transactions.

[Refer Slide Time: 46.21]

Now let us understand what really would have been the logs that would have been
produced when this transaction T1 and T2 start executing. Now when T1 starts executing
you can see that there is an initial log given there as T1 start. This actually shows that T
one started executing that is the start log for the transaction T. T1 is the id of the
transaction. Now when actually T1 tried writing the value of A, the old vale and the new
value are actually stored in the database, in the log.

As you can see in this particular case, this log shows that A’s old value is 100 and the
new computed value is 150. Similarly when B has actually been recomputed, we have a
old value for B as 300 and the new value has 400. Similarly for the value of C, it is 5 and
10 and finally when the last computation for A actually took place. A is 150 and then old
value of A is 150 and then the new value is 560. It is at this point of time actually the T1
finished executing all its instructions and it is ready for commit.

And that is the time the commit log is written, T1 commit log is produced at that point of
time. A similar thing is shown for T2, as you can see there is a start log for T2 and then
we have various new values and old values for the data item that are done by T2 are also
shown here and finally commit log is shown for T2.

[Refer Slide Time: 48:08]

Now what really happens is once a failure is occurred, undo all transactions for which
there is a start entry in the log but there is no corresponding commit entry. This is
equivalent to saying that I will just go back to the previous slide to show what really we
are we are saying. Now we can say if T when you actually a system crash has occurred,
you can see there is a start log for T1 but corresponding commit log is not present. Then
all that we have to do is you have to actually undo whatever has been done by the
transaction.

For example in this particular case, if T1 has actually modified the values of A B C then
those values have to be reset back to the old values from the new values. That is
equivalent to actually saying that we have undone the transaction because it has not
reached the commit state. Now the other case is redo all transactions for which there are
both start and commit entries because these transactions have already gone to the finish
stage. We are going to redo the transaction for all those which commit, a start and the
commit entries are there.

[Refer Slide Time: 49.26]

And also if typically we have, if the data items are not yet written this is what we mean
by actually looking at whether the, not just the log entries but the data item entries are not
still written then we need to redo. But if the data item entries are also been stored on the
stable storage, there would have been along with commit log there would have been a
complete log and the log book showing that the transaction has completed. All the
operations relating to it, in which case the redo need not be done and this is typically
achieved by what is called a checkpoint record.

[Refer Slide Time: 50.04]

If the checkpoint record is entered into the log, whenever the system writes the data item
values onto the database. The effect of the write operations are all committed on the
transactions. Now all transactions whose commit log entry appears before the check point
entry need not be redone in case of a system crash. So the checkpoint is a place where
you can decide whether when a commit log exists whether you have redo or need not
redo those transactions. This is how exactly the database manager will ensure, the
transactions are executed atomically and they satisfy the property of durability. What we
are going to see in the next class is how the concurrency control properties of the
transactions are realized by the transaction manager.

