
Computer Organization
Part – I

Prof. S. Raman
Department of Computer Science & Engineering

Indian Institute of Technology
Lecture – 4

Processor Activities

In the previous lecture we were going into the details of the instruction cycle – this is an
instruction cycle consisting of machine cycle, which in turn consists of state or a low
level activity as I said.

(Refer Slide Time 00:01:19)

This state is nothing but the one defined by the clock period, the basic clock of the
processor. You can see that in each clock period, there is some minimum activity that is
going on; that in fact is the state of the processor. That point to us that the study of
processor is essentially the study of a state machine in general. We will come to that a
little later.

How did we start? We said the overall computer system consists of the CPU, memory
and I by O; and then interconnecting these, we have a set of signal lines that form the bus.
So far, we got an overview of the entire computing system and also learnt something
about each of these blocks; that is, CPU, memory and then I by O. I was also giving
overall generalized information about each of it in detail. Now the time has come for us
to go into the details of each of these blocks; in fact we can get started with the CPU.

Though we may identify each of these as CPU, memory, etc., we cannot study them in
isolation. Some kind of interaction will be there; but first, the focus will be on the CPU
and later on the memory, and in between, we will also focus on their interaction.

This is the design of the CPU, what we are going to take a look at, though not in detail, so
that we will be able to understand what a processor is doing in the overall system.
Towards the end of the previous lecture, what we started discussing the instruction cycle.
In this lecture as well as few lectures to follow, we will be going in to the details of
processor: what it is and so on. At least we know that a processor is a state machine; it is,
in fact, an example of a digital system which is a state machine, because it has to go
through state after state as defined by the clock period and then it will be executing its
overall function. What is that overall function? Essentially, it is to execute instruction,
mainly because the processor executes a program and the program essentially consists of
instructions and data. We have talked about this earlier too. These instructions and data
are stored in the memory. In other words, what we have is the stored program that is what
essentially a digital computer is. That is, the program is stored and the computer takes
this particular program and keeps executing it. In this, essentially we have identified that
the instructions are the ones which tell what operations are to be carried out, and on what
operands the operations must be carried out – these are the two parts.

Now these instruction and data form the program, and that program is stored in the
memory. That, in fact, points to what we know as von Neumann architecture, because it
was a mathematician by the name John von Neumann, who had thought of storing a
program in the memory and executing them. In fact, even today, for instance 95 98 95 of
the computing systems are based on this architecture, that is, Von Neumann architecture,
in which we have the memory in which the program is stored and that is executed. Later
on, we will also talk about a few other architectures, which have been derived from this
particular main thing. Though this series of lectures is not on architecture, it will be
interesting for us to know some details about this too.

Now let us go back to the program consisting of instruction and data, where the program
is executed because some data will have to be processed and the results must have to be
delivered. So instruction after instruction is given and the program is executed. That
means the processor is going through a series of instruction cycles; what it does is it is
fetching the instruction and executing the instruction. I already mentioned that in the
execution of the instruction there will also be data fetch. Data fetch or instruction fetch
will be similar, because both are stored in the memory. So in this execute phase, you may
have data fetch also; because the program is stored in the memory and the data also
stored in the memory and so the CPU fetches an instruction or when it fetches the data it
is behaving in the similar way. The CPU will address the instruction; the CPU may later
on address a location which contains the data. So CPU addresses memory and the
memory responds – this is what we are talking about. In one case, that is, during
instruction fetch case, the memory will be responding with an instruction, and if there is a
need for fetching the data or the operand, it will take place during the execute phase.

The memory will then place the data, address of data or the operand, and the memory will
respond. The CPU will address that particular location, which contains that data. So each
time, whenever the CPU accesses the bus and makes the demand, we said there is an
emission cycle.

Whenever there is a bus activity – bus activity is essentially for fetching an instruction or
fetching some data – both are stored in the memory. So whenever CPU accesses the bus
for fetching instruction or for fetching data, there is a machine cycle. During the machine
cycle, the processor goes through a series of states. As shown here, this fetch phase of the
instruction cycle consists of three machine cycles, which means essentially the processor,
for fetching these instructions, makes use of the bus three times; that is, it is fetching the
instructions from three memory locations. As shown here, for example, this particular
first machine cycle consists of two states – basically the processor is going to make use of
two clock periods or two basic activities, and we will see what these are in detail later.

For doing this particular thing, we say the processor enters state one and then it enters
state two. So essentially, the CPU can be looked at as a state machine; that is, it is going
through a series of states. That, in fact, is the basic concept of any digital system. What is
the processor CPU? It is an example of a digital system. According to the Von Neumann
architecture, we are considering memory as a single block, in which both the instructions
and data are present. Later on, we will see how this memory can be split into different
blocks and then different architectures also will keep following. When it comes to the
state machine, that is, where the basic activity is going on, it may be as simple as moving
contents from one place to another within the CPU.

Memory may be organized so that it consists of some locations, each of which can be
uniquely addressed. So there is some unit of data that is present there. Normally the
memory stores a word; the word will consist of a sequence of binary digits, 0s and 1s.
But be careful whenever you come across the term word – it is sometimes taken as some
specific width. But the term word is also used in a very general sense. For instance, we
can talk about what a binary digit is. It is a bit, for instance, you may talk about a 4-bit
word, 8-bit word, 16-bit word, 32-bit word in that sense that the word is. Otherwise
normally word could mean a 16-bit word. Whatever be the length, say n bits, each
location holds an n bit word.

Similarly, in the case of the CPU, since this information, that is, the unit of information or
data comes over the bus; will it not be meaningful for you to assume that if this is n bit in
width? It is also meaningful for the bus also to be n bit and then CPU also has some
internal storage facility, each with n bit; though not always it need be true, but it is
meaningful. Then we talk about matching; that is, the CPU, which can hold an n bit word
and the bus, can transfer the n bit word and the CPU can receive it internally. So the
element, which stores such unit of data in CPU generally it is called a register. But it need
not always be true; one need not have an n bit CPU and then n bit wide memory and n bit
wide bus. It is not always necessary, but it is meaningful; we will assume it that way.
Instantly, why don’t I point out something – now there are two ways through which I can
diagrammatically represent parallel lines? For instance, n means n parallel lines; here I
have marked two things. I will use another character; I will say m, which means basically
there are m set of signal lines – this is one way of representing. Another way is just put
one thing and then have a slash there and then m, which means this particular thing is m.
So there are two ways in which I can write.

I can either have a parallel line like this and indicate m, or if both are identical, I could
put a thing like this and write m – both are just the same. Let us note that down. So it will
be meaningful to see that the bus width, the memory word width and the CPU word
width are all matching; they are all meaningful, but remember need not really be so all
the time.

Now let us come back to this register. The CPU holds some data in the register; as long
as the CPU holds a data, the CPU need not address the memory and get that – it is
available internally. If the CPU does not have the data in itself, only then it need access
the memory. When we say that this particular thing consists of two or rather three
machine cycles, basically we are saying three times a CPU is accessing the bus.

Now let us assume that as part of execute phase, we have an operand fetch – that is a data
fetch. Suppose the data that need to be fetched from the memory happen to be a two
word, then during data fetch there will be two machine cycles. On the other hand, if the
instruction that is fetched points to a data, which is already available in the register in the
CPU, in that case the CPU need not access the bus; it means the data is already available
here. So CPU always accesses and gets what it does not have; since the instructions are
always stored in the memory it needs to fetch. The data sometimes may be available with
the processor, in which case it need not make use of the bus. That means there will not be
any machine cycle.

Now the CPU must have the instruction; that is, fetch the instruction and it must fetch or
have all the data that is required; after that, the execute phase starts, which means
basically whatever the particular instruction says, the corresponding operation will be
executed. So if the instruction is an add instruction, the operation of addition will take
place after it gets both the numbers. Suppose you have an instruction like add a b, once
the CPU has a and b, whether a and b are fetched from the memory or they are locally
available from CPU, then addition operation will be executed. In other words, what is
happening is that the instruction must be fetched. This in fact we have talked about earlier
too. The instruction must be fetched and then what the particular instruction is must be
interpreted or decoded, and then that particular instruction must be executed. That is,
instruction fetch, decode, execute – these are the things that take place during an
instruction cycle. Then the particular instruction in a given program is executed; the
processor keeps repeating this one after another. This is the way a program is executed.

(Refer Slide Time 00:19:07)

Whatever may be the application, finally there is going to be a program and that program
is going to be executed by the processor in this particular manner. Fetch the instruction,
decode the instruction and execute the instruction. So what happens is that first the
instruction is fetched and that itself will be in a coded form. Essentially, what we are
talking about here is the instruction format, meaning the way in which the instruction is
organized. This instruction format will be some words’ length; now one part of it will be
the opcode the other part of it will be referring to the operand or the data.

(Refer Slide Time 00:20:25)

So this opcode is the one which will be decoded, and the operands, once fetched from the
memory, will be executed as per this particular operation. An instruction format
essentially consists of opcode and operand, which means essentially, after an instruction
is fetched, the decoding will be starting from the opcode side – that is where you have to
decode, and depending on the instruction, it will also indicate how many operands are
there. Sometimes, there are some instructions in which no operands are referred to at all.

We were talking about addition. Addition implies at least two operands; so we talk about
a double operand instruction; that is, addition is one such double operand instruction.
Then there may be an instruction in which there is only one operand, a single operand.
For instance, supposing it says just change the sign of the data. It says just take one data
and then changes its sign. For instance, the register contains some data and there can be
an instruction which says clear that register. Clear that register is only one thing; clear
one location. So if you are just referring to only one unit, and it is going to refer to only
one particular operand, that operand which contains that particular operand or the data
must be cleared single operand. In an image, there is no operand; so it will be zero
operand; it seems no operand even will be referred to.

(Refer Slide Time 00:22:25)

There is no need for explicitly stating what the operand is. For instance, you have an
instruction that says simply halt the processor; that is, there is absolutely no operand
involved. So the instruction format, which generally must take care of reference to at
least two operands – there can be multiple operands, but there are processors, which take
care of even more than two operands, but of late generally we have this double operand,
single operand, or no operand instructions. While decoding this opcode, the processor
will know which type of instruction it is – whether it is double operand, single operand,
or no operand. Then it will look into the other part, and then it knows that when it is no
operand, there will not be any reference to operand at all. For instance, if add is the
instruction, at the minimum, it is a double operand.

Then it will fetch the two operands. Once it has the two operands in, then it will carry out
that particular instruction. Here what is important is that we will now go into the details
of this instruction set or how an instruction is executed; there is something more we need
to note down here. I said it is meaningful if the width of memory, the width of register
and the width of some part of the bus – that is the data part of the bus – match, and I also
said they need not match. What do I mean by that? Now I will try to introduce a few
things. Suppose we talk about an 8-bit CPU or a 16-bit CPU. What is it I am actually
referring to? What about the memory? Again with memory also, I have to talk about the
width; I will come to it a little later.

An 8-bit CPU basically means the data that can be handled by the CPU is of 8 bits; that
is, the data being processed by CPU is of width 8 bits. In the case of 16 bits, when I say
16 bits of data being processed by CPU, what we are talking about is what the processor
would be doing internally. A processor may be capable of processing a 16-bit data, but
the memory may supply only 8 bits, in which case the memory must do it twice; that is,
memory must supply the data twice – two 8 bits, and now the width of the bus also
comes. Specifically what we are talking about is the data width of the bus. The width or
the data part of the bus – that’s what essentially we are concerned in this particular thing.

Generally the memory is organized so that the width of the memory is 8; n = 8, meaning
8, bit stands for what is known as byte. So when a memory is organized so that the width
of the memory word is a byte, then we talk about a byte organized memory. Why do we
organize memory in this particular way? Now, 8 is a very convenient figure; in case of
more than 8, we talk about multiples of 8 bits and so on. May be in an application, the
data that is referred to in one case may be an 8-bit data, may be for some other thing the
same program we may be referring to double the size of that. So we may also deal with
16-bit data, with generally less than 8; these days we do not bother but it is possible to
organize if one wants it. So generally what we have these days is a byte organized
memory, in which case the memory is going to hold the data in units of bytes and
similarly the bus will generally be capable of transferring an 8-bit or 16-bit or 32-bit data
or CPU. We need not worry very much about the memory because it is byte organized.

What is the bus width and what is the CPU size? As I said, an 8-bit CPU means the data
being internally processed by CPU is of width 8 bits. In other words, we are not talking
about the width of the bus or the way the data is organized. What we are talking about is
the internal processing capability of the CPU. In other words what did I say earlier?
Processing essentially is either arithmetic or logical. Arithmetic processing will be carried
out or logical processing will be carried out, and for carrying out these we have the
arithmetic logical unit or ALU. Essentially when we say 8-bit CPU, what we mean is 8-
bit ALU, and when we say 16-bit CPU, what we imply is 16-bit ALU. It does not tell
anything about the memory or the bus or something else also – we will talk about that a
little later. Essentially, the internal processing by the processor is carried out with ALU as
the main thing, and we talk about that particular width. Having seen that ALU of a
particular width defines the CPU of the same width, what is this ALU? I said arithmetic
and logic processing and the processing is going on, on the data. So the CPU will consist
of some paths or routes over which the data will be routed.

That is what we talk about – given the two data how this particular data must move over,
that is, the path which the data will be taking over, and then the other part of it is this
particular movement of the data over certain path – in what sequence, in what time
sequence this must be going on. That is, in other words again we talk about data path. So
I just put it as data path; specifically this is the one which talks about the control aspects.
That is data path and the data path control – these are the two aspects of the circuit, which
constitute the CPU.

So essentially, the CPU design boils (32:00) down to design of data paths and the design
of the control. The control is nothing but the controller, which is going to orchestrate the
movements of the data over these paths. Then, for one particular instruction, there will be
one path and one set of control signals. For another instruction, it will be a different path,
may be even the same path and different control signals certainly. We may just put it as
arithmetic logic circuitry, that is, arithmetic logic circuits and then we talk about the
control circuits here. So this is what the design of a CPU will be.

(Refer Slide Time 00:33:00)

Now let us go back – this data is processed based on a given instruction that means we
have to go back to that instruction cycle consisting of machine cycle, each machine cycle
consisting of state, in other words the particular CPU design is nothing but a digital
system design, an example of a digital system design, which means CPU has a state
machine. So we have to develop some idea about a state machine concept; we have to
have some concepts about that.

(Refer Slide Time 00:33:47)

Now what is it? In each state or the clock period, the CPU enters one state and it carries
out some basic activity recall that is the instruction consisting of machine cycle,
consisting of states, and in each state some basic activity was going on, on the data, and
within the CPU, we have registers. So the basic activity which will be going on during a
state, since essentially it goes on at the register level, can be considered register transfer
activity – register to register, some transfer or clearing a register, and so on. So this will
be generally called a register, transfer level activity or just simply RTL. And in fact, we
have a language which explains the sequence in which the data is moved, for which the
different registers in the CPU will be made use of. That, once you state, will describe the
whole behavior of the CPU or the processor. So at the register transfer level the CPU is
going to do and the design of a CPU will consist of design of data path circuit and the
design of the control circuit and the entire behavior will be at the basic level, that is, the
RTL level.

Now let us develop some concept of the state machine before we proceed to take a look
at the RTL. For the present, note that at the state, that is, during one clock period, this is
what is going on. A state can be represented let us say using a box. A machine enters a
particular state – I will just call state A, and in that state it generates some output which I
will enter. I will just name that particular signal as OUT 1 and in the same state A, it
checks for some input. So I will just name that signal as IN 1, and depending on the state
of that input being, let us say 0 or 1 or the logic states being false or true, the machine
may enter another state like this. The other state is what we may call B and the next state
is C. For the present state A, the machine generates an OUTPUT 1 and in that state, it
checks for an input, and depending on that particular input being false or true, the next
state, the false state is B, and the next true state is C, and again in the next state we talk
about as we did here –the output and the inputs it checks, and so on so forth. This is a
simple picture of a state machine. This is what precisely the processor is doing.

(Refer Slide Time 00:38:15)

The processor enters during the instruction cycle, and in that particular state it generates
some signal. It also looks for some input signal and then it decides on the next state.
Shown this way, it may appear as if in any one state, only one input can be checked or
only one output can be generated. That is not necessary – there can be more than one
output and here also, there can be more than one input checked. It is possible to do that,
but this is one simple way of looking at it and this will help us develop some concept
about the state machine.

Let us not discount the other possibility of having more than one input to be checked and
having more than one output to be generated. You can now see that here computing
system essentially evolves around the processor and the processor as a state machine
finally just is going through state by state as per some algorithm, and that particular thing
in each state is going to check for an input and it will generate output. In other words, the
whole system design will boil down to two things – one is output function generation,
and second is the next state function.

(Refer Slide Time 00:40:14)

That means, the processor, to start with, enters a state – we will call it an initial state, and
in that initial state, the output function will tell the output that needs to be generated. In
that particular state, the next state function will tell what the input that needs to be
checked, and depending on the condition of the input, what the next state is. So the
design of a processor is essentially arriving at these two functions. This is the output and
input; with reference to our CPU we need to know that.

Let us go back and see what the processor was doing. The processor during its first
instruction cycle will take a machine cycle. We have seen what is taking place during a
state; that is, in every state it is going to involve in some RTL activity. If you have not
got right picture of what is the register transfer we will come to that later; some basic
activity is at the lowest level. So we will go to the next level, that is, machine cycle.

What is the CPU doing? First the CPU addresses memory, and we will assume an
instruction fetch, in which case the CPU is placing the address of the instruction on the
bus. Now the memory must know whether it must accept – because memory is always a
slave; it does not know whether it must accept something coming into or it must generate.
How should it respond? The CPU must also indicate that. So the CPU generates, I will
say in general, the control signal.

What is that control signal? In the case of instruction fetch, it is essential that the memory
must send the instruction. That is with reference to CPU, we talk about the instruction
word, which is coming over the bus as a data. Remember I was telling you once when I
say data, do not confuse program and its instruction and data. From the memory point of
view, whatever is stored is a piece of data, some unit of data. In the instruction fetch, the
memory must respond with the instruction word – that comes as data over the bus, which
the CPU will read.

So the appropriate control signal in the case of instruction fetch will be read. That will be
the control signal. That is, the CPU tells the memory, let me read the content of this
address, which is an instruction. So the CPU places the address of the instruction on the
bus, and CPU generates the read signal in the case of instruction fetch. In some cases, it
may be right, so I use the word control.

(Refer Slide Time 00:44:35)

But if the CPU wants something to be written into the memory, what is the implication?
The CPU must not only address, but it must also place the data. Only then, that data can
be written into the memory. We will come to it later; I thought I will just mention that too
in passing. The CPU addresses the memory; the CPU generates the read signal. As a true
slave, memory must respond, and memory must place the data on the bus, so that the
CPU may read this data, and in the case of instruction fetch, what is this data? In the case
of instruction fetch, which is the first thing in any instruction cycle, this data is nothing
but one instruction. And remember here you don’t know about the size of the instruction;
the instruction may be a 1-byte instruction or a 2-byte instruction, or a 3-byte instruction.

So assuming it is a 1-byte instruction, the CPU will place the address of that byte. If it
happens to be a 3-byte instruction, the CPU must place the three addresses one after
another. So let us remember that all the time, because we talked about the width of the
memory, width of the bus, width of the CPU and then in general, when we talk we must
always correlate, because the instruction size can vary. The CPU addresses the memory,
CPU generates the read signal, and memory places the data on the bus sizes and
obviously the next signal will be the CPU reads in the instruction, because I said
instruction fetch, but in general, this is nothing but data which the memory has responded
with. This instruction is essentially nothing but data, which has been placed by memory
in response to CPU’s request. We just assume that we are discussing instruction fetch –
that’s why we are talking about an instruction, which the CPU reads.

Now let us get back to our basic concept, that the CPU addresses the memory so the CPU
must place the address on the bus. I will try to translate it into this: CPU addressing the
memory – I will rewrite this particular thing as some address is placed by the CPU on the
bus. The CPU generates the control signal, I will assume read, so I will say some control
signal called read is placed on the bus.

All these are put in different parts of the bus – we will come to that later – then memory
places the data on the bus. I will just put it as memory – that is memory part does it – data
goes on the bus. The CPU reads the instruction, which means whatever was there on the
bus is actually the data, which was available on the bus is going into the CPU, meaning it
is going into a register. We have assumed that it is an instruction. So the instruction is
going into the instruction register. Do you see the register transfer activity? Some part of
the bus is going into the register – this is the basic activity. Similarly, the CPU placing
the address: this may come from an address register of the CPU.

 (Refer Slide Time 00:50:07)

Some address register of the CPU goes into the bus; it is just transferred and then here
this is a control signal. So this is in fact a read signal; it does not matter. The read signal
is placed on some part of the bus. Here again there is a simple transfer and then here, the
memory contains that data placed on the bus. That is, the contents of the memory location
are transferred onto some part of the bus. So now you must have got a good concept
about what we mean by register transfer and that is precisely what is taking place in each
state. The processor must go into one state, do this, and then it must go into another state
and do that, and so on and so forth. Where are the inputs coming from? We will have to
wait to know that; may be in the next lecture we will talk about that too.

