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Interrupt-Driven I/O 
 
In the previous lecture, we took a look at one mode of transfer, which was essentially 
programmed I/O. I have also explained why it is called programmed I /O. Essentially by running 
a program the CPU affects an input/output and the way the CPU will deal with the device entirely 
depends on the program.  
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It can be changed any time that it is wanted. What was the essential thing about the programmed 
I/O? We saw essentially that the CPU first addresses the device, which is too general a term. We 
will see which part in the device it addresses because there can be many parts which can be 
addressed. Then essentially it addresses the device – by that we mean that select one of this 
devices because there can be many devices on the bus as marked here. Only the interface part of it 
is marked, that is, the I/O1 up to I/On.  
 
 
 
 
 
 
 
 



There can be any number; this CPU selects one of these devices and then it essentially first 
checks its status. The information about status of the device will give whether the device is ready 
for data transfer.  
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If ready, the CPU will do the data transfer. This is essentially the crux of the whole thing about 
the programmed I/O. If it is not ready, possibly the CPU, when it finds one device is not ready, 
will keep checking the other devices and so basically the CPU polls among these devices. We 
also said programmed I/O also means device polling. Now the important thing here is the CPU 
takes the initiative and does it. So this is important; the CPU takes the initiative. If the CPU does 
not take the initiative there is not going to be any data transfer. When the CPU takes the initiative, 
it first has to check whether the device is ready. All these things, that is, addressing the device and 
then checking whether it is ready or not, do not contribute for the actual input or output because 
the actual input or output is with reference to the data transfer. We said data transfer essentially 
can be an input or output; so if it goes from CPU to I/O, it is output; and if it goes from I/O to 
CPU, it is called input – either way it is a transfer. So we can say that the CPU is tied up with this 
activity of checking; this is the first mode. Before we go into the second mode of I/O transfer, 
there are essentially three modes; we will see that. Before that I would like to say a few words.   
     
Basically recall some of what we had seen; we said there would be a status register and one of the 
bits would be checking whether the device is ready. There can be many more bits in that 
particular status register – that is one aspect. We also said there will be a data buffer, another 
register. Essentially the data buffer assembles the data so that at the bus transfer rate, the data 
transfer can be affected, so that the CPU will be utilized to the maximum. We also saw an 
example of a 1-bit data production and an 8-bit data transfer between CPU and I/O. How about if 
the CPU wants to define the function of an I/O? What do you mean by that? In this particular one, 
the CPU checks the status of the device. Suppose CPU can dictate to the device what it should do, 
CPU, for instance, can configure or define some function of I/O in case the I/O is a multifunction 
or a multipurpose. Suppose the particular I/O is the multifunction interface.   
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We will assume a simple thing. That is, an I/O is either capable of transferring 4 bits or 8 bits or 
16 bits at a time or possibly something like let us say one part of this; I/O will be configured as an 
input and another part will be configured as an output. Now all these things would mean the I/O is 
essentially a multifunction, in which case the CPU can send some code to the I/O and then define 
what that particular I/O will be doing. That is possible by having status register and data buffer in 
the interface circuitry – do you remember we saw in the previous lecture all these as part of 
interface circuitry? Similarly an interface circuitry can have a command register added to it, so 
that the CPU can issue an appropriate command to tell which of the multi-functions that particular 
device will carry out at a given time. Then you can see that the status register, which we saw 
earlier, is essentially for reading the information from the interface whereas a command register is 
a register into which the CPU can write in, that is, the status register is essentially for reading the 
information from that.  
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Sometimes you may have only read only a function from that register. The command register is 
essentially for writing into. What we mean by that is the CPU writes the command into the 
register and the CPU reads the status information from the register. Since the CPU and the 
interface circuitry will either involve in read or write only, some times what happens is this 
function will be combined and there may be a single register because when CPU addresses, it 
issues a read command; then it could be reading the status. If the CPU issues a write command, 
obviously it means CPU is writing some command into it so that physically this can be combined 
and that can be single register also.  
 
Now if all of an I/O function can be specifically defined, if the I/O supports, we say that the CPU 
configures that particular I/O. So this phase is called a configuration phase. The CPU addresses 
the I/O and then defines or configures the particular I/O. It says the function it will be doing. 
Essentially the configuration is by writing a specific command mode into that register. Now, once 
the configuration is done, then the next phase is only data transfer. So essentially in any I/O, 
especially if the I/O is of multi-function type, we have these two phases in mode and in this phase 
for any I/O device there will be a specific interface chip. Generally that particular chip is called a 
peripheral chip. For instance, you may have come across the term micro-computer peripheral. 
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What is a micro-computer peripheral? Essentially it is nothing but the interface circuitry in a 
micro-computer system, which interfaces with the bus of the micro-computer system and the 
device on this side. That is nothing but a peripheral device that separates and this is called 
peripheral. In fact if you come across the term peripheral, it means only the interface the interface 
circuitry, the chip part of it, not this; to denote this generally we would say peripheral device, 
whereas this is called peripheral.  
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So the CPU will first configure the peripheral, which means the peripheral chip, by writing a 
command into it, would, just like we saw in the case of status register in which ready it is in 1 bit, 
similarly in the case of command register there may be many bits and setting or resetting these 
bits is precisely what is done during configuration phase. And then once you configure, whenever 
the device is ready the CPU will do the transfer. This is somewhat related to the input output; so I 
thought I would mention it before I go on to the second mode of data transfer. What is that one? 
In the first one, the CPU takes the initiative and checks whether it is ready, and so there is going 
to be some delay. It is possible that the device was ready for quite some time; it has been waiting 
and the CPU is not really checking it. So there is a possibility because when does the CPU check? 
The CPU checks as per the given program which it runs.  
 
There is a program; according to that program only, it will go and check whether the device is 
ready. So there is a possibility that the device is ready and the CPU does not know mainly 
because it has not gone and checked; that is why we say CPU must take the initiative and do it. It 
is up to the system designer concerned to make sure that the low device is idling; the CPU is fully 
utilized; memory is fully utilized, etc. But then there is always a situation which cannot be 
foreseen. So the other thing in which the wait period is such that device is ready but CPU is not 
checking it; there is a delay; or we may say the device is waiting for a transfer. To reduce that, we 
have the second mode of data transfer and that is called an interrupt driven technique, interrupt 
driven mode or just interrupt driven I/O.  
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As you would have guessed by now, the interrupt is that the device, when it is ready, that is, when 
the I/O is ready, immediately informs the CPU because possibly CPU is doing something else. So 
it will be interrupting the CPU and informing of its readiness. So in this particular one, we can 
say the device takes the initiative and informs the CPU. For this purpose there must be a special 
line, interrupt line. T hat must be part of this bus. So we may say that CPU gets – only one part of 
the bus I am showing – the information. It is called INT or interrupts input. So I/O, that is, the 
device, is ready to indicate that the I/O interface is generating and interrupts CPU.  



Now what was CPU doing and what will be its response on receiving this interrupt input? 
Interrupt is an input signal to the CPU and it is generated when the device is ready. What is the 
relationship between the CPU clock and device? They are two independent things. So we say that 
interrupt is an asynchronous signal, meaning it is not synchronized with the clock of the system. 
Any time the device is ready, the device will generate the signal and there is no synchronization 
between the clock of this and when this will be generated, any time it can come. Now if CPU is 
busy doing something, what do you mean by the CPU being busy? The CPU is executing some 
instruction. That is, it is going though the instruction cycle; what does an instruction cycle consist 
of? It consists of machine cycle; the machine cycle consists of states. So half way through an 
instruction cycle, we can say that any time during an instruction cycle the interrupt input can 
come, it can arrive. When should the CPU be permitted to get interrupted? Because if we just 
allow the CPU to be interrupted, whatever the CPU is doing may be lost. The CPU cannot 
respond immediately. We will come to that a little later. On receiving the interrupt request, that is 
interrupt input, the CPU at some convenient time will generate an acknowledge; generally it is 
called an interrupt acknowledge signal. So that is interrupt acknowledge signal. This essentially 
means the CPU has taken note of the incoming interrupt.  
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So this particular thing should go to the device. Now this INT input and INTA output are actually 
two signals on the bus; one is an INT input, which goes to the CPU and another one interrupt 
output, which comes from the CPU. Now these really go over the bus, means they are being 
watched or noticed by all the devices; it is in public domain. Any device can notice that, is it not? 
Now suppose two devices generate interrupt, one simple way is you can always have two 
interrupt input signals and connect one device each, but then how long you can go on 
multiplying? We will come to these various things a little later. So we will just take that there is 
only one interrupt input signal being processor and then there is one interrupt acknowledge from 
the processor. So these actually go over the bus.  
 
 



This is not only going to one device but it also goes to other devices because it is part of the bus 
signal. An interrupt request comes under the device when CPU goes and checks; when the device 
is ready the interrupt input comes. So in other words, the device is taking the initiative and the 
CPU will be interrupted at an appropriate time, the most appropriate time. When is it? It is at the 
end of an instruction cycle because at the end of an instruction cycle, that particular end of an 
instruction cycle would have been executed, and all the necessary information to continue in the 
next instruction will all be available with the processor.  
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So really speaking, the interrupt will be acknowledged at the end of an instruction cycle; this is 
one convenient time. So generally we say that this kind of acknowledging interrupt and a few 
more things are part of what we may call as service, meaning the CPU keeps looking for these 
things in anticipation of servicing of some device. This is in fact a service phase. As part of the 
service phase, it will check whether there is an interrupt which may have come during an 
instruction cycle for which an appropriate acknowledge must be generated at the end of it.  
 
That is the interrupt driven I/O. Now if there is only one device which interrupts, there is no 
problem. But if there are multiple devices, suppose we have got multiple devices which is a very 
valid situation and if you just have only one interrupt input, then essentially what we mean is we 
have another I/O, which also makes use of the same interrupt input. What is the relation between 
these two? These two devices will be independent. Just as we said earlier when the CPU is doing 
something the device may be ready and the moment it is ready it will interrupt. 
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It is also possible in the same way that these two devices being independent may generate the 
interrupt when they are ready and it is also possible that simultaneously they are ready and both 
of them are putting a request and this device may be a printer and that device may be a plotter. 
Whatever be the device and I/O devices being very much different in the configuration function, 
the way the signal must be sent etc., that is, the form in which the data must be sent to these, the 
CPU will be having different device routines. For multiple devices, that is, for different devices, it 
will have different device routines.  
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Essentially since these device routines are executed in response to an interrupt, generally these are 
also called interrupt routine or device interrupt service routine and so on. They are interrupt 
routines, meaning the CPU was carrying out some program execution; we will call it a main 
program; that main program has been interrupted and a device must be serviced because the 
device says it is ready. And this device routine would be different from this device routine. In 
other words the CPU must know which device has interrupted because these routines are 
different; device routines are different. The CPU must choose the appropriate routine and execute 
them, that is, it has to stop the main program and go to the appropriate program associated with 
that. What does it mean? It means essentially the interrupting device must identify itself. So it is 
not enough if the device interrupts; the interrupting device must identify itself.  
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That is, there must be an identification phase. How can identification be done? There are two 
ways. One is: the moment the CPU gets an interrupt input, at the end of the instruction cycle it 
can acknowledge and then while acknowledging, the CPU can check these devices, whether they 
are ready. As we earlier did with programmed I/O, we do it in a similar way, except that the CPU 
is not checking on its own; the CPU is responding to an interrupt; that is the difference. Otherwise 
the CPU can check while generating the interrupt acknowledge, that is, while generating the 
acknowledge, whether this device is ready or this device is ready and so on is one possibility. The 
other possibility is that the CPU generates an interrupt acknowledge and it is up to the device 
which interrupted the CPU; let us not worry for the moment when more than one device has 
interrupted. Suppose only one of the devices is interrupted, then on receiving the interrupted 
acknowledge the device which has interrupted the CPU can generate an identification code. 
Generally the identification code is called a vector; what is it? Essentially this particular thing is 
going to point to where its device service routine is available.  
 
 
 



Essentially the whole exercise for this CPU is to know which device service routing must be 
executed and that service routine is different for different devices. So this identification code, 
which is generally called a vector, points to device service routine one in this case or the device 
service routine two in this case and so on and so forth. Because it comes through interrupt, they 
are also called interrupt service routines or just interrupt routines. This is one way. So a device 
may generate and put an interrupt request on a common input, and CPU may go ahead and poll 
among the device which is ready and then service it, or the CPU generates an inter acknowledge 
and the I/O device identifies itself. Now more than one device is interrupted because there is 
certainly going to be some delay between the time when interrupt has been generated and 
interrupt acknowledge comes because only at the end of the instruction cycle the 
acknowledgement will come. So there is going to be some delay.  
 
During that period if another device has been ready or let us say two devices simultaneously are 
ready the situation is same. So first an interrupt has been generated and before interrupt 
acknowledge can be generated by the CPU, the end of the cycle of another device is ready. 
Suppose two devices are ready; what can be done? If you adopt the second scheme in which the 
device is identified on interrupt acknowledge, and if both the devices which are ready will 
identify, then there will be problem. So there must be some way in which we can resolve among 
these various devices. So we talk about what is known as priority among these devices, that is, 
you have to assign some priority among these devices, so that, let us say, this device has higher 
priority and this device has a lower priority, in which case the higher priority device will be 
having service first. The lower priority will have to wait; one can keep changing this priority. 
Now where exactly will the identification code or vector be placed? Essentially this is a code 
which should identify the start address of the device routine. So the best place for this particular 
code is generated by the respective devices. So the I/O device places the code on the data bus and 
CPU reads it in. 
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Essentially it is a code which gives the start address of the device service routine; so that 
particular routine can be started and executed. This is one thing. Another scheme is whatever I 
mentioned earlier – you can have multiple interrupt inputs. Now here I have shown two different 
interrupt inputs, in which case possibly I remove this. If I connect this to this, there is no problem 
when INT 1 is generated, the CPU knows this device is interrupted; when INT 2 is generated, the 
CPU knows this device has been generated.    
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Now you can see that by having multiple interrupt inputs, essentially I have hard wired the 
information because when INT 1 is generated, this device is identified immediately because there 
is only one device, at least in the particular scheme. It is again possible that both INT 1 and INT 2 
are generated simultaneously because these two devices are independent. So then we must come 
to this priority part of it. Among these between these two inputs, INT 2 and INT 1, the priority 
must be defined. That is not a problem. So now I can hard wire the information about this code. 
The code essentially has start address of the service routine. I can hard wire it by having uniquely 
one device for one; I mean connecting only one device for one interrupt line. Then it is known by 
the CPU or alternately, through the software, the device can identify itself the start address of its 
service routine.  
 
Now as you can see in this particular one, the overhead to some extent is minimized; more 
important thing is the moment the device is ready, the CPU can be informed   and the CPU by 
itself does not go and spend some time. This way the overheads are reduced but then, in the 
practical situation, you cannot have many interrupt inputs. So there are overheads involved, 
because the device must identify and CPU must know which service routine is there and, to that 
extent, the overhead that is there. But then the response to any interrupt request of a device, which 
indicates its readiness with the data or its readiness for accepting the data, that particular response 
can be certainly vastly improved. By having this particular one, we are automatically talking 
about other necessities such as priority and so on, because multiple interrupts have multiple 
priorities.  



Now we will take a look at the sequence of interrupt generation, request acknowledgement and 
service – what it all involves and what it means in terms of the efficiency of the processor. 
Remember one thing: the processor is always doing something or the other, that is, either execute 
main program or it gets interrupted by a request and then it is going to execute interrupt service 
routine for a requesting device. Either way, it is just going to execute some program or other: if it 
is a main program the instruction cycle corresponding to that; if it’s a service program the 
instruction cycle corresponding to that. So essentially, the processor turns its attention from one 
program to another program. In other words we say there is switch; there is a switch from one 
program execution to another program execution. Each program is supposed to create a specific 
context. So we talk about a context switch, meaning the CPU switches its context from main 
program to device service program one, or main program to device service program two. This 
context switch is not very much different from going from a main routine to a subroutine. Instead, 
here we are talking about main program – the CPU is engaged in some program and then it goes 
to device service program. Now diagrammatically we represent something like this. In course of 
time when a program is getting executed, as a program is getting executed an interrupt request 
comes. By this I mean here is there is a time axis.  
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So some program is getting executed; an interrupt request comes at the end of the current 
instruction cycle and the CPU turns its attention in a way from the main program. So let us just 
say this is one related to the main execution, from this it has to go to execute a different program, 
that is, the device service program and that end of it comes back to the main program and resumes 
its main program. So the CPU is involved in executing some program and then it goes into 
execution of some service program, which is, servicing that device. Now you can see that 
different types of things are involved here. First one is the interrupt: any program execution 
consists of taking an instruction one by one and doing it. An instruction cycle consists of machine 
cycles and states as we know. So an interrupt request comes during an instruction cycle, at the 
end of the instruction cycle possibly.  



The instruction cycle was started here, let us say, and during the instruction cycle the request 
comes and then at the end of the instruction cycle, when the CPU goes and sees whether there is 
any pending interrupt input request, it sees that there had been one and then it changes. Now 
subsequently, the main program must be resumed and continued. So all the information related to 
the main program execution must be stored. These things will be usually stored in the stack area. 
All these things will have been stored. So first we say that at the end of the instruction cycle, there 
is a switch; certainly the main from execution is stopped – that is number one. Whether the 
service program can be taken up or not, first it is stopped. And the first thing that will be done is 
the CPU will spend some time and then store all the information related to the main program 
execution so that it can be used later on. Some time before or after it will have to identify which 
service program must be taken up because there can be many devices. That is, we may say 
identification of device and then actually it executes the device service only for some duration 
and this is precisely what we may call device service. At the end of the device service, the device 
which interrupted is serviced. At the end of it, whatever was saved with reference to the main 
program will be restored so that the main program can be received safely. So you can see here 
that here in this particular thing, if I mark it as 1, then 1 corresponds to what we may call as 
interrupt latency time. That is, interrupt has come, but the CPU is not yet ready to respond; some 
time will have to be spent.  
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So this whole thing is instruction cycle time. We may call it as last instruction cycle before the 
contact switch not exactly the whole of this, not for this from here to here. This is what 1 must be; 
that is, from the time the interrupt request has come to the time context switch takes place or the 
end of the particular instruction to the end of the particular instruction cycle. So that is interrupt 
latency time. Here if we mark it as 2, then you can say that it is for saving the main context. First 
thing is the program counter content, which indicates at what point of the main program it 
stopped and then the set of registers because the registers are part of the CPU. The CPU registers 
may be taken up for other program. So they also have to be saved and any other status related 
information for the main program has to be saved. They have to be saved some where.  



Then 3 – we are not very sure about specifically it what order it may come. Possibly let us say 3 
is for identifying device. This identifying device indicates which service routine can be taken up. 
About identifying the device, I was talking about two things: one is that device interrupts and 
when it interrupts it identifies itself I said through a code, so at that time of generating interrupt 
itself, it identifies. Then we said the vector is very much a part of the interrupt request itself, and 
so this particular thing is generally known as vector interrupt.  
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There are many ways in which it may be done. For instance by having a unique input signal line 
on one pin or connecting one device, when an interrupt input comes to that particular input pin, 
then the CPU knows where exactly the service program is for that particular device. The other 
one is just not known at the time of interrupt, but then later on the CPU will have to ask the 
device or the device may tell, in which case we call the second type of interrupt as non-vector 
interrupt, meaning at the time of interrupt request it is not known which is the actual start address 
of the device service program. There has to be some way in which the device must be identified 
by the CPU because only then the CPU will know which program to run. Once it knows, and then 
fourth is the device service – from spanning from here to here. This is the main thing as far as the 
interrupt service is concerned. So we can call this is an interrupt service and this interrupt service 
as I said is something like your subroutine.    
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Running a subroutine: main routine is here; interrupt service routine is here and then, at the end of 
this particular phase, that is, when the device has been serviced, or at the end of device interrupt 
service, this particular one goes back. Restore means all that has been saved so that the main 
program can be resumed at the end of it. So, the fifth one will be restoring main context. This 
context itself is used for giving enough information about the state etc., needed for running a 
specific program. The context switch contains of all the register etc. that must be resumed. So 
what ever had been saved will be put back here. At the end of it, the main program can be 
resumed here; so resuming the main program is as simple as this. Now you can see here that in 
intervals 2, 3 and 5, the CPU is not really involved in executing either this program or this 
program – the main program or the service program. So 2, 3 and 5 really contribute to what we 
can call overheads.  
 
Overhead is basically preparing the CPU so that it can take up a service of the device. But then it 
cannot be avoided. Now compare this with a programmed I/O. In the programmed I/O the CPU 
by itself will go as per the program written because the CPU goes and checks. So it is possible 
that the device is ready but the CPU is not checking it; that has been avoided here. But still there 
is some time. Now in this second one, the interrupt driven I/O, you can see that still there is some 
time involved. There is a delay. We do not know; may be it is only a few nanoseconds. The best 
way to calculate the particular one is to see which one of those instruction cycles consumes the 
maximum time. That is, the worst case delay for a given processor will be number 1, which 
corresponds to interrupt latency time. So the worst case interrupt latency time is nothing but the 
maximum what is called maximum number of states, the longest instruction.    
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That is, the maximum number of states is to be multiplied by the time involved. We take the 
maximum or longest time that is taken, or the longest instruction execution, because certain 
instructions will be executed very fast. Basically we have to look at the instruction which takes 
the longest time. In fact this we have to say is time. So we look for that instruction which takes 
the longest time. This in fact corresponds to this and that some times may be even in a micro 
second or two or three. We do not know because it may not really be so, but it is possible that 
when the interrupt request comes, the misfortune may be that the longest instruction execution 
time is what the instruction cycle consists of. So there is going to be some delay; now the problem 
comes.  
 
In case the device is very fast, normally we talk about device being slow and that is what 
happens: if the device is so fast that it cannot wait even for this particular latency time, what is to 
be done? Nothing can really be done because essentially what we mean is the processor is slow. 
In the case of interrupt, this is the only way it can be done. You have to switch from one context 
to another context, and that would involve overheads; there is no other way in which you can 
reduce that. So if you try to reduce, you just cannot reduce it; that is the problem. Another thing is 
this particular one. In case we have a device which is very fast, it means by the time you can 
switch from this to this if the device loses the data, then the data is lost forever. So in the case of 
very fast device interrupt scheme will not work and that is the reason we go for the third mode of 
data transfer, which we will see in the next lecture.  


