Computer Organization
Part — I
Prof. S. Raman
Department of Computer Science & Engineering
Indian Institute of Technology
Lecture —10
Controller Design: Micro programmed and hard wired (contd)

Continuing with whatever we saw in the previous lectures, we are going to discuss or
continue to discuss the hardwired logic design.

(Refer Slide Time 00:01:17)

Earlier we looked at what the firmware approach was; that is a ROM-based design. We
have taken master—slave flip-flop as one simple example for which we are designing
these, based on these two approaches, that is, the hardware approach as well as the
firmware approach, just to see how a controller works. Instead of considering all the
states in a computing system, specifically a processor based system, and then seeing the
various states and so on, we are just taking a simple example. So let us remember that
always.

Now in the hardwired logic design in the previous lectures, we came up to the point of
arriving at the Boolean equation for the Boolean functions for the two state variables.
What are they? We found that in the implementation of master—slave flip-flop there were
essentially four states and, in that particular one, it was accepting three inputs that is YJ,
YC and YK. These were the three inputs and it was generating two outputs, namely, H
ZERO and H ONE. In the process of this, accepting these three inputs and generating
these two outputs, we found that the system goes through four states; that is more
important. Essentially the user is concerned with these two only: that is, inputs and
outputs; the user is not concerned with anything else.



For instance, the user is not concerned with state; it is actually the designer who
introduces the states, mainly because with a state by state approach we will be able to
design the system. That is important. Now the starting point for this was ASM chart; the
same chart, based on which we also did our firmware design. Now let us take a look at
the chart to recall whatever we had seen so far.

(Refer Slide Time 00:03:40)

The particular system has four states, and we mark these as a, b, ¢ and d. It generates two
outputs: H ZERO and H ONE; so this H ZERO and H ONE and the inputs are there in
the diamond boxes YJ, YC and YK. We discussed this in detail; now we found this
particular one, this system or this; we may call it a machine. This machine is in one of the
four states at any instant: a, b, ¢, d, which can be represented using two state variables: A
and B.

These two state variables physically will be represented making use of two latches, and
what did we do? We considered two SR latch. Strictly speaking, it is an S bar R bar latch,
which we discussed earlier; we may call it loosely as SR latch also, and having
considered or discussed the behavior of the system which consists essentially of four
states, we have now reduced our problem to consideration of two state variables. That is,
we have a whole machine and then we talked about state by state behavior of the
machine, and then subsequently, by reducing it to state variables, now we need to
consider only how the state variables A and B behave. Then subsequently, we derived the
equations for SA and RA, that is, the set input for the state variable A and the reset input
for the state variable A. For Sa and Ra we got this equation; similarly we also worked out
for Sg and Rg. Now let us go back and since we decided that we will be using S bar R bar
latch, now we have to derive the equations corresponding to these: that is Sx is given as —
now we can refer to the chart — YC bar and B. So Sa is YC bar and B.



From this, we get the equation that Sa bar — that is, we are actually applying the De
Morgan's laws, which you would have learnt in the switching theory in project design
course also — the inverse of it, the complement of this will be YC or B. What is this? Just
to recall, invert this; that is, complement this, for which what we have to do is we have to
complement each of the variables. So YC bar complemented will be YC; B
complemented will be B bar; and instead of and you will have or. You get this based on
De Morgan's laws, or De Morgan's rule, or whatever you call.

(Refer Slide Time 00:07:15)

Now this is the one equation we get of S bar. Similarly, what is Ra? Ra is given — see
the chart — Ra is given as YC bar and B bar, from which we get Ra bar as we
complement this, which is YC; instead of and you have or instead of B bar, when you
complement it, you get B. So that is what you have. For the state variable A, there is one
SR latch. There is one memory element, which will develop our output A; the input for
that is Sa bar and Ra bar — this particular one.

Similarly, we have another one for the memory element B. So we have to work out for
that particular one also. We have both the outputs A and A bar, similarly B and B bar
from these memory elements. Now the input to these is Sg bar or B bar. So we have two
latches, that is, Sa Ra latch, and Sg Rg latch — two things which will represent the state
variable respectively, A and B.



(Refer Slide Time 00:08:53)

Now the output of these will be A and B; the input for this is what we are working out.
So now we know the output—input relationship. Let us continue — just like we did for Sa
bar and Ra bar, we have to do for Sg bar and Rg bar also. Now | would straightaway
work out Sg bar after taking a look at the chart. Sg is YJ and YC and A bar. SJ is YJ and
YC and A bar; so Sg bar will be YJ bar or YC bar or A, that is, YJ bar or YC bar or A.

(Refer Slide Time 00:10:35)




Similarly, Rg bar would be — what is Rg? Say it is YK and YC and A; so Rg bar will be
YK bar or YC bar or A bar. So now we have these four equations here: Sa bar and Ra bar
and we have Sg bar and Rg bar. Now, making use of these two memory elements, let us
try and draw the whole circuit diagram, that is, the logic circuit diagram. In this, let us
take A, Sa bar, Ra bar and the other one, B. Actually we saw that B comes and B bar also
comes; this we have discussed earlier — both A output and A bar output are available.

(Refer Slide Time 00:11:59)

Now how do we proceed implementing this? This, as you can see, is an or circuit. Now
let us assume that we will make use of NAND gates and implement the whole thing. Now
you must recall what is known as NAND circuit synthesis — how do you do that? May be
some of you are familiar; I do not expect all of you to be familiar.



(Refer Slide Time 00:12:44)

Let us work out the NAND circuit synthesis and then implement this. The NAND circuit
synthesizing is about synthesizing a logic system using NAND gates. That is, suppose
you have only NAND gates, how would you synthesize the whole logic? We know that if
A and B happen to be the inputs the NAND gate output will be A and B the whole bar,
which again by De Morgan's rule or law is nothing but A bar or B bar.

Now this particular thing must suggest you something. What is that? Suppose you have
only one NAND gate, A bar or B bar. Suppose you have only one NAND gate, what we
find is the output of NAND gate is A bar or B bar, which means basically the NAND gate
works like an or gate, with its inputs A and B complementary. In other words, suppose
you have one NAND gate, if you give A bar with inputs and the other input is B bar, it
means that basically A bar will be complemented, which will be A and B bar will be
complemented, which is B. In other words, as this says, NAND gate output shows that if
you have one NAND gate the one NAND gate works as an or gate, with its inputs
complemented.

Now let us work out further. Take another NAND gate; we are just repeating this. Let us
say A and B are the two inputs: the output will be A and B bar, that is, a usual NAND
gate has A and B bar. Now you give this particular one to another NAND gate; let us
assume another NAND gate with two inputs. What is that actually? Both are same. It is
nothing but inverting the whole thing; so when inverted, the output will be A and B. You
just inverted A and B bar there. There is no logic as such here because the inputs are
shorted. It is just inverting it; so when you invert this, A and B bar becomes A and B, in
other words, a NAND gate, which is from this output level, a NAND gate, which is two
levels away, that particular NAND gate works like an and gate with its inputs true. Now
you know that using and, or and not, you can synthesize all the logic functions that you
need.



(Refer Slide Time 00:16:35)

Now we see that the NAND gate performs as an or gate or performs as an and gate, and
when the input to the NAND gate is shorted, it just works like a not gate. So a NAND
gate itself can perform as an and, or, or not, depending on what level it is in. Suppose you
want a function with reference to that see at what level it is. Is it level one or level two or
level three or level four? Without much discussion, I can just extend this: the level one as
an odd level and level two as an even level. You can work it out as any odd level NAND
gate. What we mean by that is NAND gates, which are one, three or five steps away from
the output. That will work as an or gate. Now this is only one here so this is the odd one;
this will work as an or gate. The ones which are two or four or six and so on, even levels
away, they will all work as an and gate, but remember the corresponding inputs must be
in the case of and, and it must be true; in the case of or, it must be complementary.

So now, let us sum this up. We can say that an odd level — I have just shown you for one
level and two level, but we can work out and then see about the generalization of odd and
even levels — so an odd level NAND gate functions as an or gate, with its inputs
complemented. An even level NAND gate works as an AND gate, and its inputs must be
true.



(Refer Slide Time 00:19:38)

That is, an odd level NAND gate works as an or gate with its inputs complemented; an
even level NAND gate works like an and gate with its inputs true. Now this in fact is the
crux of the NAND circuit synthesis. Now let us work out this particular one: what we
have is an or gate. That is, Sa bar is YC or B bar; now we will work out just for Sa bar
and then see. We will do this for S bar alone. What did we see? We want or function; we
just need odd level, which means one gate will do. If you have one NAND gate, we want
the output Sa bar, which is YC or B bar. What does it say? An odd level NAND gate
works as an or gate with its inputs complemented.

So if you want Sa bar as the output, which in fact is this, its inputs must be
complemented, which means the input for this is YC bar and the other input, B bar, you
complement it will be B. So just one NAND gate is enough to implement this function,
that is, for the output, Sa bar, which is YC or B bar, the rule says to complement the
inputs. So for YC, we complement and get YC bar; for B bar we complement, which
means we recomplement B bar and get B. So this in fact is the output of the NAND gate,
which we can include here. That is, for Sa bar, we just need one NAND gate and the
inputs to this are YC bar. I will call this YC bar and the other one B. Similarly for Ra
bar, again it is an or gate; so we need just one more NAND gate for Ra bar; the two
inputs now we say are YC or B. These are the two inputs.

So again, the input must be complemented. So YC bar is the same as this; so we can give
the same YC bar here too. YC bar and the other input also must be complemented. B
means B bar; so you must have B bar here. Where do we have B and B bar? We know
that you have got it from here. So we can take B bar from here, and we can take B from
here. YC bar is one of the inputs; actually our one input will be YC; we have to
complement that. Now continuing, let us go to the other thing, SB bar.



Again we have the or function, but this time with three inputs: we need or, which means
we need a three input NAND gate and that again must be complemented. So for Sg bar,
we will have three inputs, which must be complemented. The first one is YJ: when YJ bar
is complemented, it will be YJ; YC bar complemented will be YC; A complemented will
be A bar. Then Rg bar, which is or again, and has three inputs or gates. That is, for a three
input NAND gate, one gate will do; so we will use a three input NAND gate and generate
Rg bar. This input must be complemented. So instead of YK bar, complement and
generate YK; then complement YC bar. It is YC, which is the same thing as what we
have here, YC. The other input also must be complemented; you complement A bar and
you get A.

Where do we have A and A bar? We already have them here. A will be here and we have
A bar here. We will run this a bar. So now, look at this: we have YC bar here, we have
YC here. And we know that YC is an input of the system, like YJ and YK. Now that we
have done it, we do not need these functions anymore. YJ is one input; YC is one input;
YK is the third input. Now from YC, you invert and you get a YC bar; it is the YC bar
that we need. Suppose you happen to have a two input NAND gate; you just short that
and from YC you get YC bar.

(Refer Slide Time 00:27:07)

Now we know how exactly, using the three inputs, the two states can be arrived at. What
we have here is only for the next state; this whole circuit diagram depicts the next state
function. We have not yet worked out the output function. That is what we have to do
next. The output will also instantly be derived, making use of the two state variables, A
and B. We will do that — we have to refer to the ASM chart. Now we just see YJ, YK and
YC are the three inputs | said, and the outputs are H ONE and H ZERO. So you can see
that these are the three inputs from the external world, and what we have internally is our
digital system or machine or component, whatever you call; and the output will have to
be generated, which again will be a function of the state, which means A and B.



Let us go to the ASM chart. In the chart you can see that the two outputs, H ZERO and
the other output H ONE are generated respectively in these states. H ZERO is generated
once in state a and again in state b. Similarly H ONE is generated once in state ¢ and
again in state d. In fact we will be able to directly derive the function of H ZERO and H
ONE. What is it? We just take a close look at it without going much into working out the
details we can arrive at. What is it? See here — look at state of A. A is 0 here; A is 0 here
also — | am talking about the state variable A.

Then state variable A is 1 here; A is 1 here also. So whenever the state variable A is 0, H
ZERO is generated; whenever the state variable A is 1, H ONE is generated. This is
alright; this is in the case of very simple ASM chart; that means a simple component. But
let us work it out in a very formal way. What is it? Let us go to the state assignment map;
we need to refer to that again, which I will just call state assignment map. What was that?
We had the Karnaugh map with A and B, assuming values 0 and 1. Let us see the chart
again and see that A corresponds to A and B being 0. B corresponds to A and B being 01.
That is what it is — when A and B both are 0, it corresponds to state a. A 0 B 1
corresponds to state b; and A and B both 1 corresponds to state c; and A 1 B 0
corresponds to state d. This is our state assignment map, which we have done earlier.

Now, like whatever we did for Sa Ra functions, we do similarly for Sg Rg functions; that
is as for as the input is concerned. Similarly, we have to work out for the output also.
What is it? That is, if you take H ZERO, we have to generate the H ZERO map. What is
that H ZERO map? This is an output map. It just says we have to see the ASM chart and
work it out. Let us first prepare the map for it. Let us check the ASM chart — H zero is
generated in state a and state b. H ZERO is generated in state a and in state b. So the H
ZERO map will have the entry corresponding to state a and state b, which is 1.

(Refer Slide Time 00:31:49)




That means, for H ZERO, the particular Boolean function is 1 in state a, which means H
ZERO is generated in state a and again it is generated in d. Similarly, we can have H
ONE map again without much of difficulty. For A and B, we are assuming value 01. See
the ASM chart again — H ONE is generated in state ¢c; H ONE is generated in state ¢ and
again in state d. So the H ONE map will show that in state ¢ and d, H ONE will be
generated. Now let us work out the Boolean function of H ZERO, that is, encircle this.
That gives you the function for H ZERO. According to this, what is H ZERO? It says
whenever A is 0, H ZERO is generated; that is what that encirclement shows. That is,
whenever A bar is true, that is, A is 0, or A is complemented, this is generated. What
about H ONE? H ONE is generated whenever A is 1; so the function of H ONE is
whenever A is 1, H ONE is generated. This is what | was telling you earlier. You can
arrive at this very simply.

Now H ZERO is A bar and H ONE is A — as simple as that. What happened to our state
variable B? It is not figuring in the output, and recall what we were talking about master—
slave flip-flop. We said there is one memory element, which will follow the inputs;
another memory element will be following the internal state and that is the one, which
will generate the output. Now we find that in A the outputs H ZERO and H ONE depend
on the state of a. In other words, let us just mark it on this. H ZERO is A bar, that is, the
output, and H ONE is A. What happened to B? It is internal. Now we find that the output
of this component depends on this element A; depending on this the output is generated,
and depending on some combination of some state of B and some other combination, a
state will also be arrived at. Now you can see that this element B in fact is the master part
and A just follows B; that is the slave one. B as a master follows the inputs and internally
prepares the states and decides something about the state of A. Depending on state of A
the output follows immediately. So this, in fact, is the master part and that is the slave
part, because the slave follows the master.

As you can see here, a look at the inputs a clock is there and then the state of B alone
decides what the state of A is. So a follows B, and B follows the inputs. If you take a look
these inputs, they will be following the inputs and A just follows B. So A is the slave and
B is the master. So the master keeps an eye on the inputs, changes its states, and the slave
follows the master. It is a very simple output function; nevertheless, even in the case of
complex output functions, this is the way to proceed.

Now do you recall whatever we did on the ROM-based design? What we have here is the
hardwired logic design. | will just put it as simply hardware design. Earlier we did a
ROM based design and | said that is a ROM-based design and that particular one is the
firmware design. So why did we do all these designs? Not to really design the flip-flop,
but just to get an idea of the hardware design and the firmware design, and now we link
this up with whatever we had done earlier. We had taken a look at the firmware design of
a controller of a processor, CPU. Earlier, while discussing the data path control, we did
the firmware design. Similarly, there is a way to do the hardware design, but the number
of states, inputs and outputs in the controller of a CPU will be too many to discuss.



So we took up this example, and through this example, just know the relationship
between a hardware design and a firmware design, and extend or extrapolate your idea
about a firmware based control, which is nothing but a micro-programmed controller, and
the hardware control. Now this is hardware because everything is wired; you have the
two memory elements and again these two memory elements are two NAND gates.
Remember they were connected back to back? I was working out like this. That is,
essentially this will also consist of two NAND gates like this. Similarly here too there
will be two NAND gates; this also is D bar. So the entire thing consists of NAND gates,
nothing else. So it is possible to have any logic system or a digital system designed only
with NAND gates and we have just seen it for this master—slave flip-flop completely.
Now we have to extend for any other system with any number of inputs, outputs and
states.

(Refer Slide Time 00:39:50)

What is that we had earlier in the firmware design? Let us take a quick look at the ASM
chart and see again, because the ASM chart was the starting point for both hardware as
well as firmware design; that is, the chart describes the behavior of the system and the
system we see consists of four states; in this case, a, b, ¢, and d, and in each state, it
checks for some input and for the output. Then, state by state, we saw that in state a — that
is the state code for a — the system generates output H ZERO and it checks for inputs YJ
and YC. As long as YJ and YC are 0, the next state is a itself; if YJ or YC becomes 1, the
next state becomes b. This is what we did for one state, which is a. With a as present state
the possible next state is a itself or b; the inputs to be checked are YJ and YC; and the
output to be generated is H ZERO. So this is for one state; similarly, we do for the other
three states. Essentially we had four such micro-words. These four micro-words we put in
a read only memory and we got the firmware design. Now instead, here what we have is
a hardwired logic. You remember in the read only memory we had four words, each for
each state: one for a; one for b; one for state c; one for state d.



Then we had the decoder. That is nothing but a simple address decoder, that is, the read
only memory. We have also said that its controller has read only memory and any time
only one word is taken. That consists of three fields, that is, test field, next state field —
there we are talking about two next states possible — and out field, and extra logic. Here
we had two memory elements, A and B. These two states A and B will decide which one
of these to use. We were getting input to A and B from here; we were having some test
logic and so on and so forth.

(Refer Slide Time 00:43:26)

And if you see the ASM chart, we have just reduced the next state as only two next
states; that is, we call one a false next state, the other a true next state. It is possible that
in any practical problem, there can be more than two next states, but everything can be
reduced to always only two next states. May be I will just work out here because there is
a point I want to make here. We are talking about a true or a false next state; where one
of these will be true next state, the other will be a false next state. One of these will be
selected depending on some test logic and what exactly is to be tested depends on what
you get from that word. Here are the actual inputs. One of these is passed on, and that is
the one which forms these two codes — for A B, there will be only 2 bits.

So one of these will be selected because that, in fact, is a multiplexer and outputs will be
generated. Now something can be assumed here. This field can be reduced instead of two
next states; we can call one a true or false next state. One of these can always be
assumed: what is it? That is, we can talk about either a true or false state; we can have, let
us say, true. We can always have only true next state, and then we can always assume the
next state is nothing but the present state plus one, in which case we need not have two
fields; we can just have only one field. One of these can be removed. Let us take a look
at the chart — suppose | am assuming this.



Now you can see here that for AB, the code is 0001. | am assuming the true next state is
assumed, which means after a the next state will be a plus one, which will be 01 itself,
true next state, in which case, | have to give only one next state field, which is, in this
case, 00 itself.

(Refer Slide Time 00:46:17)

That is, | have to give only the false next state, so that a simple counter can be made use
of here; so the assumed next state is the present state plus one. But we have to decide.
Now as you can see the ASM chart, we have assumed for the true next state, in which
case we can reduce this particular one also; that is what we call reducing the size of this
micro-word. Now that is in fact the firmware approach and here we have the hardware
approach.

Now as | said earlier, for both of these, ASM chart is the starting point; but here in the
read only memory we have this entire state by state information. In the present state it
says about the inputs to be tested; the possible next states; and the outputs to be
generated. Starting from the same consideration, we had derived hardware also, is it not?
The same thing, that is, ASM chart, was the starting point for both.

Now, in instead of this particular read only memory, which gives this information as per
the ASM chart as we discussed earlier, you pull out this read only memory, put some
other code, and put it back. Then, the behavior of this machine changes. As long as the
memory remains the same, it is going to behave as per that ASM chart whatever we have
discussed. Instead if you put some other code another one comes; so we talk about the
firmware approach; that is, as long as we have the code, it is okay. If we change the code,
it is going to behave differently. Compare that with the hardware part — if you want to
change anything the entire connections will have to be changed.



So that in fact brings about the flexibility, that means, the firmware approach brings in a
flexibility, and that in fact what we saw as the micro-programmed controller for the
process. Now it is up to you to compare this with whatever we had discussed for the
processor. In connection with processor, we discussed the controller —I took only one
word in that particular one, which was giving the data path control. Now here, we have
for the entire flip-flop.



