Computer Graphics
Prof. Sukhendu Das
Dept. of Computer Science and Engineering
Indian Institute of Technology, Madras
Lecture # 28
Visible Surface Detection (Contd...)

Let us continue the discussion we were having in the last class, first of the VSD algorithms or
Visible Surface Detection algorithms. In the last couple of classes we have been discussing
concepts of VSD algorithms based on back face culling and then of course the first of the VSD
algorithm that is the depth buffer or Z-buffer method.

(Refer Slide Time 02:00 min)

So if you look into the slide you can find that basically the concept of VSD algorithm or any
such algorithm is to basically compare depths and that is what we are doing here that we are
comparing the set of polygons, the depths of those polygons at a particular point (X, Y) and this
is a scenario of orthographic projection where we are looking at the rays coming out of points
out of a polygon and it is coincident at a particular point (X, Y) on the image plane and at that
point whichever polygon has the minimum depth we have to paint that particular pixel with that
corresponding depth and intensity.

We also went through some of the calculations and algorithms necessary for the steps of
processing. We initialize the two buffers used in the algorithm; one is the depth of (X, Y) or
Zmax for all (X, Y) and a similarly refresh buffer for the intensity with the background intensity
and once this is done that initializing process is completed. We process polygon after polygon in
any order and for each position on each polygon surface what we do is we need to calculate
depth for each position (X, Y) on the polygon. And then if you find that depth is less than the
initialized value or the current value of the buffer at (X, Y) point and if it is so remember we are
looking into the negative Z direction then depth of (X, Y) is equal to Z.



(Refer Slide Time 03::08 min)

depih( X, Y] = £
xy epth(X.Y) = Z__

I, = background refresh(X.}) =1,
intensity

We actually assign the depth at that particular point (X, Y) with the value of the depth computed
at that particular point of iteration and the intensity is used to update the refresh buffer at the
same point. So these are the steps for processing and we will revisit it again during this class. But
before going forward we also discussed in the last class the concept of computing depth. As you
can see here the computation involved and the complexity basically once is the number of
polygons multiplied by the depth calculation of the size of each polygon sort of a thing. So if you
see the depth calculation is the key step in this process which can overburden your CPU or
computational time then we need to devise a mechanism by which we can simplify this
computation of depth. We have studied that in the last class and we will go to that quickly once
again. Before that of course is the projected intensity value at each position XY for which we are
not interested in the calculation of the intensity at this point of time.

We leave it to the future classes and it is at that corresponding minimum value of Z at the current
stage of iteration. So calculation of Z is our interest as mentioned just before and we see that the
equation of the surface is given by AX plus the equation of the planar surface and the depth
value is obtained by simplifying the equation and that is expression of Z.

Now, if you repeat this calculation for each (X, Y) point assume that the parameter of surfaces
are known, we know how to do that as we had seen that equation couple of classes back; that if
you are given a set of n vertices of a polygon then we will able to calculate the surface normal n
based on that expression of a summation of the product terms and that gives us the coefficients A
B C and D then on the right hand side you can also substitute the values of X and Y at a
particular pixel on the image plane and calculate Z. But these calculations which you have do for
all polygons and all points for each polygon then that is going to be a very huge computational
load on the processor and it will take lot of computational time because in a typical complex
scenario as mention earlier forget about few hundreds to a few thousands of polygons in a very
complex picture you may have about a million polygons to be rendered or shaded and you have



to apply this VSD algorithm, back face culling on so many polygons and imagine so many
polygons each of those having few tens or hundred pixels each coverage in terms of a two-
dimensional coverage you can visualize the amount of computational time you need to calculate
Z for each of these points. So we need a mechanism by which we can calculate this Z in a
simplified manner.

So we look back, that is the expression of Z which we have and what we are interested to know
is as we traverse using a scanline based method this scanline polygon filling algorithm if you
remember then the equation of Z can be simplified by remembering the scanline polygon filling
algorithm where we are using the edge coherence. If you remember the edge coherence property
of a 2D scanline polyfill algorithm for the next scanline the corresponding point X prime that
means given a point (X, Y) at the edge of a polygon for a current scanline Y the same edge will
intersect the next scanline y plus 1 at the corresponding point X prime which is given by X
minus 1 by the slope of that line.

(Refer Slide Time 07:02 min)

Equation of the surface:
AX+BY+CZ+D=1;
AX-BY-D

£
0

So we know that from the edge coherence which we used in the scanline polygonal algorithms
all those concepts are valid as per 2D is concerned. Of course there was no depth which we
consider there, | repeated this in the last class but we use all the concepts of 2D here as well.

All the concepts about scanline, fill in between pairs, detect vertex processing and concepts such
as integer based calculations to obtain the next increment for the next scanline are valid here as
well. So just remember this formula. If you remember this formula we are trying to visualize the
scenario where if depth of this particular point say (X, Y) is known what should be the Z of this
point and the same scanline for that next X plus 1, Y and also for these corresponding edge when
you move from scanline Y to Y minus 1. If you do that and the next intersection assuming it to
be known by as X prime which is X plus 1 by M depending upon the 1 by M you will increment
it here or there may not be any increment depending on Bresenham’s concepts here on line
algorithm but typically use integer based calculation to get to the next increment point.



If these X and Y point are known the Z also can be obtained very simply as a simple calculation.
That means Z, and Z, are nothing but at this particular point the value of Z is known, the Z or
Zy which is depth at this particular point (X, Y) is known then the depth of the next point X plus
1is represented as Zx pius 1 Which is given by the next expression and the Y plus 1 or Y minus 1
depending upon whether you are incrementing or decrementing the Z value with respect to the Z
Y the previous one will be available in this particular form. That is very simple and of course if
you have a vertical edge and the value of slope is infinity you can substitute the limiting case of
n terms to infinity this expression will become Zy piys 1 Will be Z plus B by C factor.

(Refer Slide Time 08:27 min)

So if these are the three simplified expression which you see are much simpler to compute and
calculate than the expression for the Z. That means you can apply some incremental method by
which for a current point if the depth value is known either it is on the edge of the polygon for a
particular scanline or if it is any point with in the polygon itself then the corresponding depth for
the next X plus 1 point which is the next point on this scanline or the point just below this
scanline when you traverse to a scanline and moving to the next point depth the corresponding Z
can be easily obtained without doing the calculations entirely once again if you remember this
formula.

So, if you keep this formula in mind and keep this coefficient which is A by C on the right hand
side in this factor also and then B by C then you will remember that to implement the algorithm
you just have to remember these constants for each particular surface. And these are constants
for a particular surface because given a particular polygon with n Z of vertices n could be 3 in
the case of triangle or it could more for any other polygon arbitrarily these coefficients A B C are
related to the direction cosines of the surface normal which can be computed straight away and
of course M is the slope of the particular edge which you bothered about to compute the
intersection of the edge with the next scanline. In that case you need the slope of the line N. M of
course could be infinity if the line is vertical then of course you need this particular coefficient B
by C.



Also, of course the special condition when C is equal to 0 you cannot use this coefficient. | hope
you understand the scenario when the C is equal to 0. What is C? We did these in this case of
back face culling. You remember back face culling? C is the Z components of the direction
cosine of the surface normal. | repeat again, C is the Z component of the direction cosine of the
surface normal. And if you remember back face culling also we discuss that when C is equal to 0
we do not need to actually bother about painting the surface normal we do not neglect that
particular condition when C is equal to 0 because if you use that suddenly what will happen is
this coefficient will vanish. In fact they will probably shoot up to a large value. So avoid that
condition when C is equal to 0 and move ahead.

So using these above three constants we can keep calculating successive depth values along and
for successive scanlines as well. | repeat, using the above three constants, these are the three
constants here we can keep calculating successive depth values along and also for successive
scanlines. Similar approaches can be used also for curved surfaces. Z is equal to function of X,
Y. This is very interesting here because this incremental algorithm can be applied for a planar
surface may be for a curved surface also. | leave it as an exercise for you to find out that if you
have a curved surface then given the depth of particular point the next point also if the surface
properties are known that is the surface curvature or the properties which the define the curve or
the surface instead of a polygon you should be able to obtain this side.

Of course when you deal with curves and surfaces we will see nonlinear equations which are
used to represent curves and surfaces. But you can visualize a typical case like a cone or cylinder
or even a sphere, that is the simple example and you know the equation of a sphere. Z square is
equal to a function of X and Y X square plus Y square is very simple scenario if you take SV
around at the origin. And what will happen if at a particular point X and Y the Z can be
computed in fact the next point also could be computed as a function of the previous Z without
using this square. | leave it as an exercise it is such a simple task.

(Refer Slide Time 12:07 min)




This is what you have for the incremental calculation which can be used to simplify the
computations of Z for a particular polygon, successive depth values for a particular scanline and
for successive scanline the intersections of the edges is what you need. If that can be obtained by
incremental calculation then the calculations can be simplified. So we will re-look at the Z-buffer
algorithm now. Since we know the method to simplify the calculations of Z we must always
keep in mind that the calculation of Z involves not the equation which was given as numerator
divided by a denominator term that is not the way. Henceforth we will do which was basically
given as X plus b Y divided by C, no. We do not do that because the computational burden will
be quite large. We will use the computational of successive depths that is the current Z value is
known the next value can be immediately obtained using one of those three constants which we
just discussed about. So keep that in mind.

(Refer Slide Time 16:55 min)

e-Buffer Algo:

for all (x,y)
dapth(x,y) = =02 /* Watch this change *
refreshixy) = I

for each polygon P
for each position (%,y) on polygon P
calculate depth z

if z > dapth(x,y) than
1. depthi{x.y) =z
1. rafrashixy) = L.{x,¥)

Whenever this algorithm comes we calculate Z basically we use the, of course you need the first
Z value at the initial point at some point of this scanline the initial value you need as to when the
scanline starts whether from the top or the bottom depending upon whether you are going up or
coming down. But once the initial value is given the next successive values for the entire
polygon is computed by incremental calculation based on these three constants of the surface.
Keep that in mind whenever we mentioned said we talk of this incremental calculation.

Let us go to the Z-buffer algorithm here where we initialize as mentioned earlier the depth values
for all (X, Y) as well as the refresh buffer with the background intensity. You just watch this
change here where we change the Zmax value to a minus infinity. We change this depth value to
minus infinity. In the previous case we were looking into a scenario where we were looking into
the minus Z axis or you assume a positive Z axis looking towards origin or from origin towards
minus Z. So initialize to Zmax which is typically minus infinity type of scenario is what we are
typically doing Zmax is now minus infinity is what we are looking at and we are looking for
values which will now greater than instead earlier we were looking towards positive Z and
assigning a positive value then we are looking for negative or lesser values in the previous



algorithms. It is a question of implementation, the way your viewing axis is whether you are
looking towards positive Z or minus Z the initial value could be a large positive value or a large
negative value.

It is something like you are assigning a value beyond the back clipping plane. You remember the
back and front clipping plane of a viewing pipeline. So what you basically do is initialize Z
beyond the back clipping plane depending upon whether you are looking towards positive or
negative Z axis will have a certain value. So that is the change | am pointing out here which is
we are looking towards negative Z axis so we are assigning it to a minus infinity, typically it is a
large negative value beyond which there will not be any depth values for the polygons you are
analyzing.

Of course the back ground intensity could be black or white depending upon whatever you want.
For each polygon P for each position (X, Y) on the polygon calculate depth Z this is again based
on a incremental algorithm.

Expect the first point on the (X, Y) on the polygon you need to calculate the Z using the formula.
the rest of it is all incremental algorithm and now look at this change which also has happened Z
is greater than depth (X, Y) because it is initialized to minus infinity. This change is coincident
with this. Remember in the previous algorithm presented in the beginning of this class today and
the previous class we put a Zmax instead of minus infinity and this condition was Z less than,
now both have to be changed together. This will go hand in hand whether you are looking
towards the positive Z or negative Z.

Please be careful that you are assigning the initial value and the condition also correctly. | repeat
again; that means if you assign it to a positive Zmax then you are putting a condition Z less than
depth (X, Y) whereas in this case as | am presenting right now if | am looking towards negative
Z and the initial value is minus infinity then we are looking at depth greater than. So come back
and watch this change that | have put a comment here for you to visualize and then we talk of
depth (X, Y) is equal to Z and the refresh buffer will be assigned with the corresponding
intensity which has to be computed at point (X, Y).

So let us take an example to visualize this scenario. A very simplified example is what | can take
with may be two or three different polygons in a very simplified and limited number of pixels is
what | can take and let us take a few examples. Let us start with one example here as you can
see. Well we will update the Z-buffer values to start with and then will of course look at
intensity. Let us take a simple 4 into 4 frame buffer.

I am taking a 4 into 4 pixel and you have to visualize that this is in general will be a very
simplified scenario which is what | can accommodate on the screen because you have seen this
show and also what the individual pixels are and they are being operated with the certain Z-
buffer or a particular color. So simple 4 by 4 of course you can take a slightly larger one 8 into 8
or maximum 16 by 16 but four 4 by 4 is even visualized very easily. And the first polygon which
has come is a 2 into 2 polygon it is a square shaped polygon with depth buffer 4 and it occupies
the lower part in the screen that means the corresponding (X, Y) values of each pixels are
occupying the lower right corner of the frame buffer.



These are the four pixels it will occupy so the Z-buffer values will be updated with those because
the initial values will be some Zmax and background intensities will be there, you do not worry
about the intensity for the time being. Depth buffer values were found to be greater than or less
than the initial value which you have put and in this case that is updated by the Z-buffer values
here. So let us look at the next polygon. The next polygon having the values are given as 9, 8, 8
and 7. So we follow the previous algorithm where the depth value is more, depth value at a
particular pixel overlapping with another pixel is more we will update. Otherwise we will replace
the background depth value with the corresponding values.

Hence, if you look here these values again of a similar polygon has come as 2 into 2 and the
depth values are 9, 8, 8 and 7 and they will sit here at the center of the frame buffer. If you see
the first row 9 and 8 since you have the background depth values they will just be replaced by 9
and 8 respectively. Look at the lower row 8 and 7 values have to be occupied here, 8 will not
have a problem it will come and sit here because the background depth value will be minus
infinity so 8 will be more than that. You have to only compare 7 and 4.

When you compare 7 and 4 you will find that the 7 is more than 4 so the value 4 at this point
which is the top left corner of the previous first polygon and the lower right pixel of the second
polygon will be compared and the 4 will be replaced by 7 and hence you will have the current
depth buffer values as this. | hope these two steps if you have followed is very crucial. Although
| bring in a third polygon I hope you understand that | have initialized with a background depth
values and of course intensity. All the intensities are not shown here that will come in the next
slide. But the depth values are set to minus infinity and whenever you start comparing you are
looking for a value which if it is more we just substitute it.

(Refer Slide Time 21:39 min)

So let us take the third polygon which is a 2 into 3. It has two rows and three columns and let us
say these are the values 7 6 5 and 7 6 5 are the depth values of each particular point (X, Y). So
you see that this is a planar type of a structure all these are plain of course the first one did not



have depth variations it is almost orthogonal to the viewing direction but the second one is
second and third polygons do have such variations. And if you look here I am saying that this (X,
Y) coordinate of the 2 into 3 sized polygon which is rectangle is coming and sitting in the lower
left part. So you have to make lot of comparisons now. Not in all cases but three pixels are still
having the background depth so the left column 7 and 7 will come and sit here that should not be
any problem. Follow my cursor on the screen; | hope you are able to see that. The left column of
the third polygon which is under processing 7, 7 will come and sit her that is not a problem.

If you compare the second column which is 6 and 6 the lower 6 value will come and sit here
because the background depth is still around here, 6 compared with 8, 8 will be more than 6 so 8
will still be here and 6 will not be visible. Last column 5 and 5 will be compared with 7 and
4respectively. Since 7 is more than 5 so 7 will be still be here. The last column, last row 5 depth
value will replace the value 4 so four will be replaced by 5.

If you have followed this analysis | repeat 7 and 7 on the first column, 8 and 6 in the middle
column and third column will have 7 and 5. So if that is the thing this is what you will have. This
is the change which will happen after the Z-buffer values after the third polygon is applied. |
hope you have followed this logic by which the depth buffer values or Z-buffer values are
updated. You can take this example take a fourth polygon any arbitration anywhere within this 4
into 4 and take triangular type of a structure in a arbitrary polygon put some arbitrary depth
values within this range and try for yourself and also ask your friend or colleague to work it out
and then compare your values to ensure whether you got the correct result. 1 hope you have
followed; I will roll it back once again.

If you see this was the first polygon so that will be filled up here so all the values are 4. A second
polygon is sitting in the center of the image raster frame buffer so the 4 value will be replaced by
7, the rest of the value 9, 8, 8 will occupy the respective positions compared with the background
depth buffer intensity depth buffer basically. And then the third polygon here has to come and sit
here in fact wherever you have background depth they will come and sit here only one such
value will be changed here because the value at 5 will be more than the value 4. | believe that
you have followed this logic about how to update the depth buffer value using the simple
example.

Now what I will do is I will try to use this same example again and put intensity and see how this
will look like in terms if you have these polygons to be shaded with certain intensity do not
worry about the intensity value because that computation will be done later on. What | have done
is taken exactly the same example and | will now paint the frame buffer with certain color
distributions. So let us go forward and look Z coordinates of the values here, that value will
come and sit here if you remember since the background intensity is black or if it is green you
are able to see through that and this is what will happen after you paint it with a corresponding
intensity.

Do not worry about the intensity which | have put as a texture instead of using a constant color |
have purposefully put a texture on that to just give a better visibility and good visualization
because that is the key for computer graphics. Although you have to put realism on that at every
point of time do not put texture everywhere but here | purposefully put texture and that is what |



say in this case my image is rendered by a pseudo texture. That is natural not the intensity value
which may be computed it could be but in this case what |1 am saying is | am trying all that and
an entire polygon is rendered by a particular texture to give it a good visualization so that portion
is rendered and that is the depth buffer currently which is active. That is what you have and then
you have the second polygon which is coming here and the second polygon comes and sits here.
You know what will happen that the second one will come and occupy even this portion. So
when you update depth buffer values the corresponding intensity values will also be updated in a
similar manner.

Again | repeat; these images are rendered with pseudo textures that means | have assigned a
particular texture for each polygon instead of the constant intensity purposefully just for the sake
of visualization. Otherwise the intensity probably does not have any key role to play in updating.
Remember, intensity of whatever constant shade or texture or whatever you are going to give
does not have any role to update. The update is basically only happening based on depth
comparison. You compare depth Z with the corresponding depth of (X, Y) at a current point of
iteration for a polygon at a particular point (X, Y) and that is what you use to update. You never
use intensity to update intensity could be any constant color or suited texture as given here for a
particular polygon. So let us move ahead and there was a third polygon which was here and it
has to sit here.

Now this is an interesting part because the depth values at the first column 7 and 6 and this 7 and
7 and this 6 will come and sit here. So wherever you have background intensity you will have the
color of those new polygons coming and sitting here. Whereas the three other values 6, 5 and 5
will be compared with the corresponding depth buffer values here. And if you remember | will
bring in the depth buffer values and the intensity will appear to be something that is sitting here.
This is the depth buffer values which we got finally and if you remember carefully now these are
the three polygons one in turn based to the other that means you have one in the front other
somewhere in the middle of the first and the third one.

(Refer Slide Time 26:45 min)




So I hope you definitely have an idea. The interesting one is the third polygon. If you understand
how the third polygons squeezes itself between first and second one with respect to its depth
values also remember 7, 7, 6, 5 so if these depth values are the current ones the corresponding
intensities also will be visible here. Whereas in this case 8 and 7 it corresponds to the second
polygon hence we have the shade here and of course in other parts we have the intensity of the
first and the second polygon.

I hope this gives a visualization of how the image will look like after rendering based on depth
comparison and gives you a true feeling because it is a case where we had three polygons the
first one came at the back side, the second one came which was on the front and the third one
which came was in middle. | will roll the values back for you once again. This was the first
polygon which will be rendered, the second polygon will come and sit here and it will be
rendered in the front then you have a third polygon which comes and sits here basically and that
is the location of (X, Y) pixels, it is between the first and the second and that is what it will
occupy based on the depth buffer values here. This is what you have as an example of Z-buffer
Visible Surface Detection algorithms depth values and intensity for the case of three polygons
here. You can take a fourth polygon and compare the depth buffer values yourself.

Let us take another example from a slightly different view point. Now here if you see | have
taken an example of about 6, there are of course couple of polygons very closely aligned here
and the intensity values are painted. You are actually looking into a ZX or ZY plane. So the three
dimensional scenario is what you are looking at and you are looking into the ZX or ZY plane.

So view direction is towards negative Z and the XY plane is in such a manner that it will be
along your view direction so you will actually have the projection as a line and now what you
can basically do is compare this depth by depth. You can compare this depth by depth at each
particular point here and if you see the first pixel it will be blank, the second row of pixels you
be compared you have that which is a brown color polygon then you just have to visualize that
the first part of the polygon which is in front of you, will be used to paint the refresh buffer.

The refresh buffer is now painted on the right hand side column of pixels which is some
background intensity and when you do this Z-buffer rendering I will give you the final answer
straight away this is what you will get. When you blow it up this is what you will get and the first
row was still with background intensity, the last row of pixels also with the same and you have
the second one with brown, the third one with blue and the fourth, fifth quite a lot of them with
this pink color and so on. This was the previous scenario. You have to just look into scenarios
where which of the polygon occurs first when you are looking from the left hand side towards
the right hand side.



(Refer Slide Time 30:42 min)

So at the very top you have the brown color here, the blue color here lot of pink again a blue
again a little bit of pink and then quite a lot of here along the bottom that is what you have. This
is the scenario which will happen in the sense that it is not that the polygons are purposefully
split into several parts. | have just given you a section of that of a particular polygon is used to
render a particular portion of a row of pixels.

Again you have to visualize this scenario where you are looking into this plane the Z X or Z Y
plane and this is the viewing axis and this is the XY plane and they require a lot of different
polygons aligned in a different manner and you are looking towards from your left to the right
and when you see that you will have to just check for each row which is the first polygon you go
and strike and that is what will be used to render the particular color. This was the scenario
which we have with the background intensity at the initial phase on the right hand side. This is
what you have on your extreme right column the image buffer painted with background intensity
and then this is what you will have after rendering.

At each row the corresponding polygon is rendering the corresponding refresh buffer. You do
have background intensities at certain point one at the top, one at the bottom, one at the middle
where there are no polygons which are along the viewing direction. You do not have polygons
obscuring that particular pixel. This is what we have finally as the examples of refresh buffer
being painted with depth values and this is what we discussed about the Z-buffer not depth buffer
based method for the first of the VSD algorithms.

So, in the remaining time we move on to the next algorithm for VSD which is called scanline
algorithm. And it will be closer to the polygon filling algorithm which we discussed earlier and
in fact we will see that the scanline polygon filling algorithm which we discussed in the class
earlier in 2D these scanline algorithm for Visible Surface Detection or VSD or the other name
called Hidden Surface Elimination we can also call as HSE algorithm which is the Hidden



Surface Elimination algorithm. But typically VSD algorithms are Visible Surface Detection is
the common term which is being used.

In fact when we talk of hidden lines which we are not discussing here, the Visible Surface
Detection or VSD algorithms become Hidden Line Elimination algorithm or HLE algorithms.
So, hidden lines can be easily eliminated once you know how to eliminate hidden surfaces. So
we are discussing Visible Surface Detection algorithms and after the Z-buffer which we have
discussed yesterday in the previous class and also in part of this current class now.

We move on to the second algorithm which is called the scanline algorithm. If you look it is
basically an extension of 2D scanline polyfill algorithm as | mentioned earlier and here we
simply deal with a set of polygons but of course in 3D and view the same data structures as we
used for the scanline algorithm you also got a edge list or edge table which was bucket sorted.
We studied data structure, we had an active edge table or active edge list, we also had the
additional one which will handle the depth which is called the Polygon Table or PT so we have a
ET and PT and edge table, active edge table and a polygon edge table, polygon table as a data
structure to be used and the edge table entries contain information about edges of the polygon
bucket sorted based on each edges smallest or smaller Y coordinates so this is the same as we
have done earlier.

You need to have a static structure as your edge table which will be bucket sorted and it will
store the information about not just one polygon but several polygons in this case but each
polygon will have this particular data structure made active. Let us see how to bring in several
polygons which have to be compared with Z. So entries within a bucket are ordered by
increasing X coordinate of their endpoint. | repeat entries within a bucket are ordered by
increasing X coordinate of their endpoint that is what you have.

(Refer Slide Time 33:38 min)



The structure for each entry in the edge table this is what you have. | think this structure is also
known to you. You have the X coordinate of the n point with the smaller Y coordinate, you have
the Y coordinate of the edges other endpoint, you have the delta X value which is 1 by n and you
have the polygon id that is the extra which you have. This was the edge table entry structure
which we talked about earlier but the only extra entry which will come along with X value Ymax
delta X is the polygon id. And of course you have a pointer which will point to the next edge of
that scanline or it will point to null if there is only one edge or if it is the last edge in the list.

Structure for each entry in the polygon table this is the new structure which you have. Structure for
each entry in the polygon table will be coefficients of the plane equations so you need that to
compute depth. So somewhere you have to store that so it is stored in the polygon table structure.
So you have the coefficients of the plane equations, you have shading or color information of the
polygon and you have a flag which is initialized to false. And that is the key part we will see the
significance of this flag which is a Boolean value it could be set in or out or true or false, out
means false and in could be true either way. So 0 and 1 and this is the structure which you have.

Of course you have a polygon id as you had in the case of an edge table and then of course you
have the plane coefficients of the plane equations used to compute the Z value, you need the
shading information of the polygon we will not worry about these coefficients right now in terms
of shading algorithm of information we will keep those coefficients of shading till we discuss
concepts about shading algorithms and concepts about illumination and shading. And of course the
last flag which is the in or out or the true of false you can have a single bit there which could be 0
or 1.

(Refer Slide Time 35:03 min)

Plane Shading
Coaffs. Info. INJOUT

ID

So this is the structure for each entry assuming that you keep this structure in mind and copy it in
your notes. Here we look at a typical example where we compare two polygons. If you feel to
compare two polygons successfully you can compare any number of polygons. So this is a case of
two polygons A B C is one polygon of course we have taken a simple case of a triangle AB Cisa



triangle and D E F is a another triangle. And | have taken examples of five different scanlines
which pass through this particular polygon.

(Refer Slide Time 37:15 min)

e B e == == ===

And we will consider only one of these scanlines and analyze that and if you are able to analyze
once such scan line in that case | have take L3 then you will able to analyze the other scanline as
well. Let us analyze scanline L3 which intersects the triangle ABC or the polygon ABC at two
points here and also the triangle DEF at two points that is what you have. So we will enlarge that
particular scanline L3 which has four intersections two each with each of the two triangles or we
will land up two pairs of intersections and of course you have to fill within the pairs there is no
doubt about it. But the question is how you do and where do you fill between polygons and that is
what you have.

And as you see for the line L3 as you move from left to right for this scanline initially you will
have the background and there is no polygon and you will mark and level these X structures saying
that between the first pair of intersections for which the scanline is within the triangle ABC and it
is out of the triangle it is not yet in or within the triangle or polygon DEF. So the corresponding
flags which you have seen earlier for the polygon table as you keep scanning a scanline the
polygon entries and edge table entries are updated. So what you will have is when you are at a
particular point of a particular scanline and depending upon the number of polygons which you
have the polygon table structures for some of the polygons will be in that flag that right hand side
bit or the flag true or false in and out which we talked about. It will be in for a certain polygons
and it will be out for a certain polygons. So for this scanline as you move from left to right both the
flags will be set out first then between the first pair of intersections the flag for the polygon ABC
will be marked as in and for the polygon DEF will be out. And when you are between the second
and third intersections the flags for both these polygons ABC and DEF will be set in whereas in
between the last pair of intersections here which is the case between this you will have the flag
marked for ABC as out and DEF also.



Now if you look here it means that when you have to shade the left hand side of the scanline L3
with a particular intensity and the extreme right hand side use paint with the background color
between the first pair of intersections you paint with the intensity for the polygon ABC for the last
pair of intersections here you have to paint with the shading of the polygon DEF which is light
grey in color and for the first pair it is light blue. Only when you are in between the second and
third intersection point when both the polygons show that the flags are in you have to compare the
depth values of ABC and DEF so that is what you mean.

You just go through all the polygons for a particular point on a scanline and check how many flags
of how many polygons are set to in. So for those many polygons you basically compare depths for
a particular scanline as those polygon table entries will be marked as in and only for those
polygons you compare depth and the minimum depth which you have will dominate and for that
intensity of that polygon is with you used to label or mark or shaded color that particular pixel. So
this is the logic which goes through for each particular scanline.

And of course you can use a concept like incremental computational depth and all that but to
compare depths of particular polygons as you go through but here once you use those depths mark
the particular polygons as in or out and then use them of course you do not use depth to mark the
flags in or out. You basically go and check whether that polygon is covering that particular you
can use inside or outside test that is what you do and then the polygon table entries are marked for
X as in or out as you move from left to right for the polygon and you just compare the depths of all
the particular polygons which are marked as in for a particular point (X, Y) and then use the
minimum depth.

Again it is the depth sorting which you always use. It is a question of how you compare these
depths and at what point you compare depths and what you update. Here you update when you
move along a scanline from left to right for a particular scanline from increasing X coordinates
then you are basically just checking whether the polygons are marked as in or out. That is what
you do and then you compare depths of all those polygons. | am repeating again and again, if you
compare the depth of all those polygons which are marked as in for that particular (X, Y) take the
minimum depth and for that minimum depth use the intensity or the shading of that particular
polygon to color that particular pixel.

This is the logic which is used. Again you are going back to that slide so you basically compare the
Z values only within this region to find a visible Z value where you will find more than one
polygon marked as in. This is the case of two polygons you may have n different polygons in a
particular scene which you have defined and out of those n a subset n of those let us say n of those
polygons will be marked as in within a pair of intersections or for a particular point within a
scanline. So you compare the depth of only those n polygons which are marked as in not all the n
that is the time which you save and then for those visible Z values which is the minimum Z value
that is what you use to compute the intensity for any particular point. Let us say in this particular
case when you are within the first pair or the last pair only when one of the polygon is marked as
in you do not do any depth comparison.



You just use the shading and the color of that particular polygon to shade the pixel for that polygon
which is marked as in if there is only one in. Once there are two or more polygons marked as in
there is no other choice but you have to compare depth values.

(Refer Slide Time 43:33 min)

AET Contents

Scan Line Entries
LS AB AC
L4 AB AC FD FE
DE CB FE
L1 AB CB DE FE

This is the concept which you use for all other scanline as well to compare. | have taken this
scanline L3, if you remember here the scan line L2 an L3 will have almost similar scenarios but of
course the scanline L1 will have a slightly different one. We look at the active edge table structures
as you go along for the same example.

The active edge table entry is if you look at the last line L5 which intersects the polygon only ABC
at the two edges AB and AC the scan line L5 will have the active edge table contains as AB and
AC. That is what we will have and the polygon LT table will show that ABC will be in between
these two particular scanlines and when you are outside the triangle or the polygon the ABC DEF
both will be marked as out so you paint with the background for the rest. Look at line L4 which
will be interesting it will have edges AB and AC for the first polygon ABC and also it will have
the edges FD and FE for the triangle or polygon DF. Therefore, all those entries will be there in the
active edge table for L4. This concept is valid as you do for a 2D scanline algorithm. Only the
structure is similar but the entries will be more because you will have more than one polygon in
general.

There will be many polygons and this scanline might intersect several polygons several edges of
several polygons all those have to be brought into the edge table structure. The static one an active
edge table will be updated has to be updated based on the contents of the edge table brought out.
And of course you have to throughout some of the edge entries based on the concepts of what X
processing which we did. Only the point which you have to remember here is you must have the
same concept of this scanline polygon filling algorithm as we did earlier but for multiple polygons
in this case. So, coming back L4 for active edge table entry will have contents of intersection for
edge AB AC here then FD here and FE here. Look at L2 L3 said that both these lines are similar



their intersection will be AB then DE then CB and then finally FE. So L2 L3 are same as given
here AB DE CB and FE. Look at line L1 that also intersects with four edges but the order is
different because it intersects AB first then it intersects CB remember we are talking about
clockwise or anti-clockwise processing of course with leveled edges and then of course we have
DE and then we have FE. That order is very important as to how you intersect the intersections.
That will be done when you are bucket sort of edge table entries.

You have to update the vertices and then when you move from one scanline to another the
sequence of the active edge table entries with intersections pointing to one another in term of eight
entries have to be updated for each scanline. If necessary at the vertex you need to bring in a new
edge or throughout an existing edge. Those concepts whatever we studied are still valid in terms of
the Z-buffer processing, processing to compare the depth values and to shade it with the intensity
we have seen in the previous slide as to what we have to do.

You check if the polygon table entry for a particular part of the scanline or a particular pixel has
just one entry as you may use that otherwise if all of them are out you shade it with background
intensity which could be an initializing step. Then only when you have more than one that is two
or more polygons marked as in for a particular pixel or a particular section of this scanline between
a pair of intersections what you need to do is compare the depth values. Compare the depth values
and then choose the minimum depth value that is what you do. To compare the depth values there
IS one important point which we must also see, we will take this simple example of three non
intersecting polygons. This word non-intersecting is very important. We will look at an
intersecting case later on which is a special case. Scanline is not a very efficient method to handle
intersecting polygons but we will see non intersecting polygons.

There are three polygons, if a very large polygons GH iJ which is a quadrilateral basically we will
say that it is behind it is at the background somewhere. Although that is not the background
intensity but it is a background polygon. Then we have two other polygons which are triangles
ABC and DF which are in front of GH iJ that is why it is written GH iJ that polygon is behind the
other two polygons ABC and DEF.



(Refer Slide Time 48:09 min)

This is a polygon instead of a triangle although we have taken triangles and quadrilaterals to
simplify this scenario. In fact we have to visualize that DEF also is in front of ABC and ABC is in
front of GH iJ or GH iJ is at back of ABC or ABC is on the back side of DEF. And look at this
particular scanline there are so many intersections. It intersects GH iJ at two of the edges GJ and
Hi it intersects ABC also at the edge AB and BC it intersects DEF at the edge DE here and EF
there. As you can see there are six intersections of this particular scanline and you will have the
polygon entry tables marked as in and out depending upon as you traverse on this scanline. Of
course the active edge table entries will have all the edges which are intersecting.

Now let us try to visualize a particular scenario here. Concentrate on the intersection of the
scanline at this particular point where it is intersecting the edge BC of the polygon ABC at this
particular point. So when the scanline leaves the edge BC, we will go back to that figure. We are
looking into that particular scanline which is leaving the edge busy because we are traversing this
scanline from left to right and shading each particular point inside a particular polygon inside this
scanline. So let us say we are at this intersection point at the edge BC and leaving it. When it
leaves the edge BC it is still inside the polygon DEF and GHiJ. If you are leaving this point BC
and moving to the right we are somewhere here just the next pixel although it is leaving the edge
BC and the triangle ABC will be marked as out.

Remember to the left of this intersection, this intersection | repeat is the intersection of this
scanline which we are considering with the edge BC. When we were before the intersection to the
left all the edge, all the polygons ABC DF and GHiJ that is all the three polygons were marked as
in or labeled as in or true. So you were comparing all the three and at all the three points you
would have found that the polygon DEF is in front. So the depth and the shade of the polygon DF
are used to shade all the points within that scanline just prior to the intersection at BC so the
intersection at this point.



Hence, the DEF was used to shade all these points prior to the intersection BC. But once it leaves
BC ABC will be marked as out, once you leave this point ABC will be labeled as out but DEF and
DHiJ will still be labeled as in. So when the scanline leaves edge BC it is still inside the polygons
DEF and GHiJ as mentioned just now. And assuming for the time being the polygons do not
intersect depth calculations and comparisons between GHiJ and DEF can be avoided, why? Since
we know that GHiJ is always behind the other two polygons ABC and DEF remember we are
talking on non-intersecting so it is always behind.

If you are sure of that based on the depth calculations then when you leave that point BC it would
be better that you do not start comparing the depths of the triangle DEF and DHiJ again.
Remember, at each point when two polygons are marked as in did say that you compared depth but
comparing depth at each point if the polygons are more will result in huge amount of computation
you have to bypass that to save time to reduce the amount of computational burden on the
processor you have to reduce the amount comparisons if possible.

So you use some little bit of intelligence here and if you know that the comparisons between the
polygons can be reduced if you are sure that when you are leaving a polygon and the next polygon
which is marked as in is definitely in the front of the remaining other polygons provided they are
non intersecting of course then you can avoid depth comparisons till the next intersection comes
and only use the first polygon to shade those pixels within that scanline.

So again as | said before, if polygons DEF and GHiJ do not intersect which are marked as in, after
we have left the edge ABC or after we have left the triangle ABC and moved to the right and the
polygons DEF and GHiJ are marked as in and if this polygons do not intersect and still they are
marked as in, then the depth calculations and comparisons between GHiJ and DEF can be avoided
and you use the depth of only DEF triangle and its intensity to shade those particular pixels on that
scanline after you have left the edge BC. So in other words this means depth computations are
sometimes unnecessary when the scanline leaves what is called an obscured polygon. It is required
only when it leaves an obscuring polygon otherwise it is not required.

Additional treatment is necessary when we are talking of intersecting polygons. So when we are
talking of non intersecting polygons we are talking of whether you are leaving an obscured
polygon which is obscured or it is required only when it leaves an obscuring polygon. In this case
depth comparisons are required when you are leaving obscuring polygon. But in this previous
example if you go when you are getting past this edge ABC you are basically getting past an
obscured polygon because DF is already in front.

You are leaving an obscured polygon and hence the ABC was obscured before this edge BC here
you are only involved in depth and intensity of this triangle DEF and you are leaving an edge BC
in which you have never played a role just prior to this for the depth calculations and intensity. So
if that is the case why compare again, use the same triangle and use it for shading and that will
help you to reduce the amount of comparison.



(Refer Slide Time 55:01 min)

We will read the concepts again, depth calculations are unnecessary when the scanline leaves an
obscured polygon. Remember, when you are leaving an edge BC you are leaving the triangle or
the polygon ABC which was an obscured polygon. The triangle ABC was obscured by DEF,
remember the figure. Triangle ABC was obscured by DEF so you are leaving an obscured polygon
you do not do depth comparisons. It is required only when it leaves an obscuring polygon,
obscuring means something which is hiding the other one. So, if you are leaving a polygon which
is in the front which was obscuring or hiding the other polygons on the back side of you and you
are passing through a scanline leaving a particular edge or a particular point here then what will
happen is you need to start comparing depths again, so that what it is means.

(Refer Slide Time 55:38 min)




The last point of intersecting pole is, let us take this particular example. This is a case of course of
not intersecting polygons but the polygons where it is one is obscuring the other one. If you have
visualization of three thin strip rectangles it is a case of not intersecting it is non intersecting case it
is not intersecting at all and the scanline polygon will work here. But similar treatment cannot be
done when a polygon enters a phase.

Now this is not happening in reality but you can have virtual reality when one polygon enters the
other one. So this is a case when you need additional treatment the same thing is the case here you
can visualize a triangle is lying within a cube and three portions are coming out. So in these two
cases scanline algorithms are not very efficient in handling where you have to compare depths very
carefully and to ensure that the similar concept which we treated with the previous example with
three polygons which were non intersecting this ABC DEF and GHiJ the back side were non
intersecting that is why the depth comparisons could be avoid in certain cases when you are getting
obscured or not getting obscured.

But in this case scanline algorithm need additional treatment we will not discuss that but for the
time being we will end with a short note that scanline algorithms are not that efficient as Z-buffer
especially in cases when polygons intersect. We will look into various other sophisticated methods
in the next class beyond this which are very very efficient and realistic and can handle also cases
when polygon intersect one another.

We will stop with this particular case where we will see that the scanline algorithm is a 3D version
of a 2D polygon filling algorithm but it handles multiple polygons, it can handle cases when
polygons do not intersect one another and depth comparisons can be improved. But however if the
polygons are intersecting you need additional treatment and things are not simple. We will
continue in next class with a new algorithm on Visible Surface Detection.

Thank you very much.



