

Computer Graphics
Prof. Sukhendu Das

Dept. of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture # 26
Visible Surface Detection

Hello and welcome everybody to the lectures on computer graphics. Today we are going
to discuss algorithms on VSD or Visible Surface Detection. Visible Surface Detection is
a very key step in the process of the 3D viewing pipeline along with rendering or
illumination. Later on we will see what shading is. But if you talk about the 3D viewing
pipeline, if you remember, there were four broader steps starting from normalizing
transforms and then clipping and then of course mapping to view port and finally the
process of rendering. So finally you have in the last stage of the 3D viewing pipeline after
you have a model is solid object given to transformation provide the clipping all that
before the rendering you need to find out how many of these polygons which are binding
the solid are visible to the user and what are there corresponding shades. And it is
necessary to do that because definitely when an object is bound by polygons or surfaces
there will be a few surfaces which will be behind the viewer and some in the front.

Let us taken example of you viewing me, it is definite in the case that you are able to see
my front face and the front side of my body and not on the back side. Similarly, I am able
to see you on what ever is available on the front but not on the backside of the solid
object, that is true so you do not need to basically render the various polygons on the
surface of solid or more than one solids if they exist in the view. This is required because
it will save lot of computational time for you and you will be unnecessarily rendering
some surfaces which are not visible or going to be at least partially occluded or obscured
by certain polygons on the front side. So let us back into the basic concept of Visible
Surface Detection which deals with trying to identify which are the polygonal surfaces of
the objects which are visible to the viewer or the user.

(Refer Slide Time 3:25 min)

Let us take a simple example, this is a 3D wireframe diagram of a curved surface. It is
basically a two dimensional Gaussian surface something like in warded exponential
function which we have. So the function 1D will be exponential minus of x square. You
can try to view that in 1D or 2D this is an example in 2D. In fact this function is used in
many stochastic processes in even in image processing concepts where the function
basically is also called as a temple bell. As you can see this structure is appearing like a
temple bell and or a mountain type of a structure.

Now if you see here this surface is approximated by simple quadrilaterals generated by
the vertices obtained from the wireframe diagram process which can be generated by
simple set of points. You can actually compute the heights z as a function of x and y, x
and y at the horizontal axis and z is the vertical axis the height of a particular surface at a
center it will reach its peak and it will slowly get tapered towards the end. And if you see
here it is basically a curved surface, a bell type of structures so there are some faces on
the front and there are a few faces on the backside and you would like to view the surface
in this form before you provide rendering or shading to the surface.

I am not going to discuss rendering right now I will not provide you a rendering of this
diagram but if you see this wireframe diagram itself I would like to view this rather than
the original diagram which is this. This contains the lines corresponding to the visible
surface which are on the back side with respect to the viewer. So you need to eliminate
those surfaces and only view the surfaces which are on the front.

So, if you see very carefully here in this particular example it nicely illustrates that when
you see on object you do not need to provide the surfaces which are on the front with
respect to the viewer to the user and also on the back and that is true in reality that unless
of course the object is transparent in that case the concept will be slightly different
otherwise typically you will see only the front side of the particular object. So you need

to display the visible surfaces, the name is Visible Surface Detection or Visible Surface
Determinations. Henceforth we will call it as the VSD algorithm. There are various types
of algorithms, VSD algorithms which are used and we will see them one by one. But if
you look back into the diagram just to visualize that this is what we need to see and not
this one (Refer Slide Time 6:51 min) because it is the same diagram as you can see, the
visible surface or not eliminated here all the polygons all the quadrilaterals are drawn for
this wireframe diagram here and only the visible surfaces are displayed and the back side
ones are eliminated.

(Refer Slide Time 6:16 min)

So that is basically the task and this explains the problem of what you mean by trying to
eliminate the surfaces which are not visible to the camera or not visible to the user or
with respect to the viewing direction. You do not need to display the surfaces which are
on the back side but only on the front side. So that is Visible Surface Detection for you.

(Refer Slide Time 6:48 min)

Let us go deep into the problem. So it is basically a problem of visibility and we are
trying to deal with occlusion where the frontal faces of the solid which hide or occlude
the surfaces which are on the backside should be eliminated and those which are on the
front side and visible should only be detected and should be displayed on this screen. So
you need not display all the polygons for a particular object. You need to draw the line
diagram either or even shade those polygons which are on the frontal face or on the front
side of you. So the problem definition states that given a set of 3D surfaces to be
projected onto a two dimensional screen obtain the nearest surface corresponding to any
point on this screen.

I repeat again, given a set of 3D surfaces to be projected onto a two dimensional screen
obtain the nearest surface corresponding to any point on the screen. It is possible that
along the viewing direction you may have more than one polygon which lies on a
particular line drawn from a particular pixel or within a certain small area through which
you are viewing and definitely you will be able to see the frontal face only.

Of course you will be able to see some faces which are on the backside provided they are
not of course completely occluded or obscured by the frontal polygon or the polygon
which is closer to you and that is true.

You can have two surface as you can see this surface is in front of you, this is on the
backside and it could be totally obscured or a part of it could be obscured so you need to
detect and find out that you basically do not draw the full surface which is not visible to
you but you basically need to draw the frontal surface which is visible to you. So there
could be two or three surfaces facing you and you need to basically or definitely draw the
frontal surface and some surfaces on the backside if some part of that is also visible you
need to draw that as well.

We will look into those special cases later on. So, there are two types of methods which
are typically used to solve the problem, there are two broad categories. We will look into
the names of the algorithms later on but they fall under two types of categories so two
broad categories or methods which are used to solve the problem are one is the object
space method which we will call as the continuous domain, continuous operation which
compares parts of objects to each other to determine which surfaces should be leveled as
visible.

(Refer Slide Time 8:53 min)

That means typically you use some criteria like bounding boxes and check the limits
along each of the direction x y and z and find out which part of the object should be
leveled as visible and which part should be detected as occluded or obscure should not
maintain.

So, that is object space method where you looked into a solid object and you know using
a bounded representation it is bounded by a set of polygons. so you look at those set of
polygons and find out which of these polygons or you compare these polygons of a
particular object and find which of the polygons are completely in front you mark them
as visible and you need to paint them or draw them completely whereas there are some
polygons which are completely obscured and you no need to draw them at all.

Of course there could be a few polygons which could be partly visible, that could be a
partly visible and in those you need to find out which part of that is visible and paint only
that part and not the whole part because you will be wasting lot of time. As you could
have seen in the case of that Gaussian surface the wireframe diagram which I showed you
about a couple slides back we had seen that if you do not draw the visible surfaces
typically an average case you are saving about 50% of the computational time if you do
not draw the surfaces which are obscured or occluded.

Typically if you take a cube and view from all different angles and take average of all
different cases of the number of surfaces which are able to see you will see an average of
about 50% of the polygons winding the surface around the backside approximately.

This is a very qualitative figure and so if you detect the surface which are visible that
means throw out those polygons under any given condition of viewing are not visible to
the viewer and you do not paint them, do not share them, do not draw them then you will
be saving about 50% of compression sign. That is why Visible Surface Detection
algorithms or VSD algorithms are very useful and you need to use them. So, coming back
to the two broad categories one is the object space method or the continuous domain
which compares parts objects to each other to determine which surfaces should be leveled
as visible and typically you use the concepts of bounding boxes.

When we go into the algorithm we will see how you use bounding boxes and check the
limits along certain directions along all the directions to find out which surfaces are
visible and which surfaces are not. Then after doing that you order the surfaces being
drawn such that it provides the correct impression of depth, variations and positions. That
is what typically you need to do in a VSD type of an algorithm. Any VSD algorithm
needs to order the surfaces so that it provides the correct impression of depth variations
and positions of the polygons binding the solid object. The second category of VSD
algorithms works in a discrete environment and hence they are called the image space
methods.

(Refer Slide Time 11:55 min)

They work in the image domain where the visibility is decided point by point at each
pixel on the projection plane and this screened resolution can be a limitation in this
particular case.

As you can see here of course we have to go back the object surface to find the depths no
doubt about it but in the previous category of object space based methods we were
comparing polygons with depths, here we work mainly at the image level where basically
we almost go to each pixel and find out that at a particular point in the image which is the
polygon which you are seeing right now, is it the background at this point or is it some
part of the object which you are seeing, you basically find out whether that point belongs
to a an object at the back or the front and depending upon that you need to occlude.

So you work on the image space method and since you are working pixel by pixel we
will see later on using algorithms but you can visualize now that the resolution of the
image screen the television screen or the monitor which you are using to sort now that
becomes a big limitation. That means if you have a very small image resolution of 100 by
100 the quality of the picture which you will be getting will be very different from a very
large image resolution of typically 640 by 480 or 1024 by 1024. So, image resolution is a
big factor which plays a very important role here and that dictates the quality of the
image which you will get invariant of your the model which you have chosen for
representing these solid objects. Whereas the object space method the solid object
modeling becomes an important criteria whereas in the image space method in the
discretised domain here the image solution can be a serious limitation.

(Refer Slide Time 13:43 min)

And of course the other way of looking at this is that when you are talking of hidden
surfaces you are trying to find out the surfaces which should be rendered or should not be
rendered and along with that it could be a line drawing. So you need to find out which of
this line drawing which at the outlets of the polygons which should be either rendered or
should not be rendered. So it depends upon whether you are giving a shaded picture or a
wireframe diagram output so hidden surface algorithms are applicable for both. Either
you are giving a picture with painting or a simple line diagram the concept of VSD
algorithm holds good for both.

In both cases of course you are trying to find out which polygons are visible and which
polygons are not. And again of could the third category which polygons are partly visible
also could be there. But among all these VSD algorithms there could be two types again
where you will say I will find out the hidden surfaces or the hidden lines. In the case of
hidden lines you are giving the outlets of the polygon boundaries but not shading the
polygon boundaries. These are the two broad categories one is object space image space
methods another could be of course classified based on surface for rendering or line
drawing. But of course the classification is mostly based on image and object space based
methods. There are quite a few coherence properties which are used for Visible Surface
Detection algorithms which helps you to do the computation much more faster.

Now some of these concepts of coherence can be correlated with the concept of
coherence which we used in 2D scanline polygon filling algorithm. If you remember 2D
scanline polygon filling algorithm some of those equations will comeback. Although the
main difference you must keep in mind is when we talked about a scanline poly fill
algorithm, polygon filling algorithm or poly fill algorithm or scanline drawing whatever,
these are the terms which are used interchangeably, we had seen those algorithms in two
dimension.

So for x1 y1 x2 y3 and so on up to x1 y1 there are N vertices for a polygon, it was all in
2D and you have to shade that. Now, the concept there was you need to find out if a pixel
is lying within a polygon or not. And of course we used inside outside test and then form
pairs fill in between and all that, you remember the key words used in scanline polygon
filling algorithm. If you have not read it recently please go and read that again. Now
when you are filling in between pairs if you remember when we were talking about that
algorithm we did not talk about what would be the color of that algorithm.

Of course you did not even think whether that algorithm, whether that polygon the part of
this scanline which will be filled is either visible or not. We will talk about this because it
was entirely two dimensional and there was just one polygon and we have to fill that. But
this is not the case any more. Now the polygon should be viewed as lying on the plane in
three dimensions. Earlier it was on a plane which was orthogonal to the viewing
direction. This was the polygonal plane this was your viewing direction. So it is
absolutely all in 2D now the polygon could lie on any arbitrary three dimensional surface
and you have to render it with a color which will be processed depending upon various
factors like illuminations, surface normal and all that which we will be talking later on.

But first of all you need to find out whether this surface itself is visible or not. Entirely or
in part or not at all visible that is number one and second even if it is visible when you
need to shade it with a certain color assume it from one point to another in fact you will
find during shading algorithm that the shading code also vary. So there is lot of
computation at each point to compute the depth of a particular surface. So if you look at
this particular polygon let us say my hand could be represented as a polygon and then if
you think of a scanline filling algorithm which you will be filling some parts here each
point could have a different depth if it is inclined. If it is inclined each point will have a

different depth on top and different depth at the bottom and the surface normals also
could vary if the surface is curved like say in the Gaussian function.

In the case of a Gaussian function the shading could also vary from the top to the bottom
or from the left to this right and hence you need to compute the depth even for all points
in a particular polygon. A polygon could be very large or small but it could be an
accumulation of a set of points on at each point you have a different depth. You could
have a different surface normal depending upon the surface you are handling and then the
shading varies. But the key feature is the computation of the depth at each point and then
the computation of the surface normal at each point at the key factors which load your
computational time requirement or computational complexity of the algorithm. That
means you need to use some property somewhere even of the polygon if it is not in 2D
but also in 3D. You need to use some coherence properties extend that concept of
coherence from 2D to 3D now to see if you can simplify those calculations.

You remember, we also simplified some calculations earlier when we were moving from
one scanline to the other and trying to compute what should be the next exceeding
intersection for the next wise scanline and things like that. You use this scanline h
coherence and the scanline coherence also. So we will use similar coherence properties
here extendable from 2D to 3D to see later on how we use these concepts to minimize the
computations. What are the two computations, do you keep in mind? At each point x y
for a polygon there is z value now unlike the 2D polygon filling algorithm that was
completely in 2D now we have 3D so this x y z for each point you need to compute the z
and if you do that computation and again and again for all the z points the computational
burden on the system will be very fast you cannot draw your picture at a very fast rate. So
you need to use some coherence properties to see how you can compute this z value very
fast and also if necessary compute this surface normal at each point.

Of course you need not compute to surface common at all points of a polygon typically
but in certain occasions for reality, good visual realism of pictures you need to often
compute the surface normal if not at all point but at least more than one point of a
polygon although that polygon could be approximating a planar it is lying on a plane but
it could be approximating a curved surface or it is a representation of a planar surface.

In case of a planar surface you do not have a problem but in curved surface you need to
compute the surface normal at a each point as well as the z. So we will see what are the
coherence properties used in VSD algorithms now which are extensions of and of course
many more. We had only two scanline properties giving scanline polygon in the
algorithm there were just two coherence properties here there are quite a few.

So we look at the first case of the coherence properties which is called the object
coherence which says that if one object is entirely separated from another do not
compare. This is a very interesting observation we are talking about trying to compare
different polygons with one another to find out which one is visible and which one is
obscuring the other and so on.

You need to do that but if I talk of a polygon here another polygon there and they are
completely well separated out whatever be their orientation, depth and all that one could
be in front the other could be at the bottom it does not matter basically.

One could be in front, the other could be at the bottom. But if they are very well
separated out you do not need to compare these because they are very well separated.
There is no way by one could completely obscure or occlude the other like this. So there
are two polygons well separated out and hence you need to visualize that either does not
matter one of them is very close to you the other one very close to you, you are far away
it shows no need to compare if these polygons belong to the same object or different
object they are well separated out. Please do not compare to same time so that is what it
means by object coherence which tells that if one object is entirely separated from one
another object in this case could be either a polygon or polygon to polygons belong to
same object or definitely to two different objects.

(Refer Slide Time: 22:06)

So you are talking of object coherence there. Now we talk about face coherence where
we know that there are smooth variations across a face and you need to only
incrementally modify. this is same like the two d polygon filling, extension of 2D to 3D
where for a polygon face as you keep a minimum of a 3D structure like this it could be
inclined like this and you are moving over a scanline from left to right we will see that
using figures and diagrams but I am just trying to give visualization for you.

Let us say it is inclined and you are moving along a scanline. When you move on a
scanline of course from left to right or move down from one scanline to the other also
you will find that when you are moving across adjacent points. Since the polygons will be
approximated planar objects or curved objects whatever the case may be they are small
units together which bind this solid.

So the cover has a small area the next pixel will not be so far away from the previous
pixel that the change in the depth and the surface normal will be only a small incremental
quantity which could be computed. Remember the integer based algorithms for
Bresenham’s, ellipse line drawing, circle drawing or even scanline and everything the
computation was done first by an integer base incremental algorithm in some sets. So we
will try to see if the similar thing can be done in 3D where remember I did say that the
computational burden of VSD algorithms and shading are involved in computation of
depth one and the surface normal.

So there are two parts one is a depth another is of course the surface normal. These are
the two quantities which have to be computed. so when you move from one pixel xI yI to
the next pixel xI plus 1, yI with the two coordinates differing by just one pixel then the
difference in the depth values of those points on the three dimensional polygon surface or
the change in the surface normal if at all it comes, change in the surface normal comes
only when the polygon is approximating a curved surface otherwise if it is a planar
surface definitely there is no point in computing the surface normal at each point.

But however, if you still need that or definitely you need to compute to depth the depth
will in general vary. If you spend time computing the depth again by the same formula
which you did earlier then you will spend lot of time.

Can we device or come up with a formula which talks of an incremental algorithm which
says that if you have this depth zI at a particular point xi yi on this screen for a particular
polygon then for the next point xi plus 1, yi just the next point on the same scanline we
get zI plus 1 could be represented in terms of the previous depth zi and a small change
delta depending upon the surface orientation parameters we will see that later on.

So that is what is being talked about of face coherence. So smooth variations across a
face and we typically assume that except when you are reaching the end of a face the face
ends there so we can look at algorithms which can incrementally modify the depth values
and may be if possible the surface normal itself. But typically the depth value is what is
incrementally modified in VSD.

(Refer Slide Time 25:16 min)

We will look at the next coherence property based on edge coherence which we will say
that of course the visibility changes if a edge crosses behind a visible face. This is nice
and very interesting. I should probably pick up an object to illustrate let us say if you
have an object in front and there is an object sitting behind and it is not visible to you.
But if that object comes from behind and rises like this then there could be a case where
the part of this planar surface of the polygon will be visible.

It may be completely hidden or it could be partly visible if it comes from behind. So
visibility changes across if an edge crosses behind visible face. You have visible face in
front and a partially occluded face comes from behind a visible face then of course the
visibility changes otherwise from one scan line to the other of course if you travel along
on edge of a polygon most parts of the edge which are behind an occluding face,
occluding face is the term used for the face which is in front because this is occluding
something which is at the behind and the one which is behind this one is called the
occluded or obscured face because this is obscured or occluded by the occluding face.

So be careful with this terms which will I will be using so this occluding or obscuring
face in the front towards you or closer to you and there is a one which is in the behind
which is obscured or occluded. So this occlude or obscure face comes from behind the
visible one then of course parts of those edges and other scan line become visible. You
just be careful about that and that is what is the edge coherence so visibility change could
occur.

(Refer Slide Time 26:57 min)

Implied edge coherence means the following, line of intersection of a planar face
penetrating another. In this case it can be obtained from two points of the intersection. I
repeat this, if a line of intersection of a planar surface in case of one plane penetrating
another one this can be obtained from the two points of intersection. That means if there
is a face here and there is another face which penetrates adapted it could happen,
although we discussed about this when we talked about solid objects and visibility and
trying to regularize objects and in solid objects modeling we discussed about Euler’s
equation constraints about polyhedrons to validator, bounding solid objects but still there
could be scenarios where there could be planes getting inside and part of it is here, it is
totally visible and when it gets inside a part of it is visible.

So you need to find out from these two faces which is the additional line which comes
when a face penetrates another one. You can do that easily of course we need to basically
find out the intersection it is basically almost clipping problem where you need to find
out an additional set of vertices and lines which will be generated due to intersection.
Hence, that is what you find out and that is what you use for the edge coherence.
Remember the previous edge coherence we were talking about an obscured coming out
here and it is getting in and partially getting occluded, so that is the difference between
the edge coherence and implied edge coherence.

Scanline coherence, of course this is known to you because you have seen this earlier
which says that successive lines have similar span. This is same as in 2D, 2D scanline
polygon filling algorithm had the exactly same property scanline coherence typically
when a part of a scanline is visible due to a polygon then of course the next scanline
should almost have the similar in general have the same amount of visibility or similar
spans.

We look into the next coherence property which is based on the concept of area
coherence which says that span of adjacent group of pixels is often covered by the same
visible face. I repeat, span of adjacent group of pixels is often covered by the same visible
face. Well, as you can see here this is similar to the scanline coherence. We also talked
about this in scanline polygon filling algorithm, you take a group of adjacent pixels it is
typically offered covered by the same visible face unless you are at somewhere near the
edge, edge of a polygon.

(Refer Slide Time 29:16 min)

Then of course you will probably see a background or an obscured face coming out.
Otherwise, if you take on group of pixels and another adjacent one and the next scanline
or the scanline prior to that then those adjacent set of group of pixels will be covered by
the same visible face.

So this concept can be extrapolated from these scanline coherence properties. Then the
next coherence property is based on what is called the depth coherence. This is probably
the most important coherence property of Visible Surface Detection algorithms VSD
algorithms used this for incremental depth calculation which says that we can use
difference equations to estimate depths of nearby points on the same surface.

(Refer Slide Time 30:10 min)

I repeat, use difference equation to estimate depths of nearby points on the same surface.
This is the key idea of coherence in VSD algorithms because polygons are in 3D and I
just mentioned this a few times as to why we talk of coherence and how can we speed up
the calculation. Definitely when you move from a point xi yi to the next point xi plus 1or
move to the next scanline even.

So if there are adjacent group of pixels just nearest neighbors in fact, the most nearest
neighbors if you go either moving from left to right or top to bottom just the next
adjacent pixel to the right or to the bottom the depth of that point typically if it is on the
same surface typically it will be on the same surface except when we are talking about
the where you are on an edge you can visualize that in that case things will change. But
those are very few edges and very few and far between mostly you will find pixels within
the polygon and then within a polygon when you move from left to right or from top to
bottom adjacent near to nearest pixel you will find that the z value the depth value will
not change much. It will change by a very small amount and to compute that change if
you can known that change that means the previous z value is known you can apply that
incremental value delta z if it can be computed then you can use that incremental value
and add it or subtract it from the previous value to get the new depth of the next adjacent
point and that is the key idea.

How to compute that incremental depth value delta z? We have to use the difference
equations. Use difference equation to compute this delta z and use the delta z add it or
subtract it to the previous z value of xi yi zi and when you are moving to the next point xi
plus 1 and yi plus 1 add that delta z to the zi to compute the next zi plus 1, z zi plus 1
means z of xi plus 1 or yi plus 1 whatever the case may be. This is the most important
property which we will use in VSD algorithms all through out.

We will see how this calculation gives us a small constant value based on, it is something
like Bresenham’s line algorithm Bresenham’s mid point circle ellipse which is at the
scanline. All those were in 2D but still we use some integer based incremental values to
increment and find out the next point. In that case of course you are finding out points in
2D there was no depth value incurred or involved in that process. Here our main concern
is of course we need go to the next value using integer algorithm if necessary but that
same concepts hold good. But to compute the depth of the next point which is essential
here we use there also the integer based increment.

It cannot be an integer but we will use incremental algorithm possible. So use difference
equation to estimate depth of nearby points on the same surface is what we talked about
depth coherence. I read that again before leaving it, we will use difference equation to
estimate depths of nearby points on the same surface.

(Refer Slide Time 33:30min)

The next one most likely the last one the coherence properties is called the frame
coherence. Of course we will not have an example of this in this lecture or in the next
successive once may be towards the end when we talk a little bit about animation
sequence we will know that pictures of two successive frames of an animation sequence
are quite similar and that involves only small changes in object and view point. So we
talk about frame coherence when pictures of two successive frames are displayed one
after another and the amount of the time difference between two successive frames is so
small that either you are changing the object or the viewer location in your 3D viewing
pipeline whatever the case may be.

If you have a set of several polygons the typical object can have a few tens to few
hundred polygons and you may have a few objects in the scene very complex structures if
you visualize animation pictures, movies of a star world, the dinosaur pictures which may
have a million polygons available at any given point of time but between two successive

frames if an object either moves or the view point moves or may be both, the amount of
time interval between two successive frames is very small. If you remember a movie or
video rendering shot or it is being played to you it is played at about the rate of 25 frames
per second. Of course there are high frame rates available these days but typically you
should play it about 20 or 25 frames per second or even that is a normal video rate and so
you are talking about 40 or 50 milliseconds time interval between two frames.

And if it is that small the change due to transformation which will be there in an
animation sequence, the change in the position of this structure or the view point so in
you are 3D viewing pipeline there will be some changes which will be happening that
will be so small and negligible that most of the visible surfaces which were visible in the
previous frame is also visible now. And those which were hidden in the previous frame or
what we will soon come across is the term called back faces they were on the back side
the face or they were hidden they will also remain hidden from one to the next immediate
successive frame where the time difference is just a few milliseconds, few tens of
milliseconds.

What is the change? There will be change in terms of a just a few polygons and it is very
difficult to say how few it is because it depends upon the type of transformation which
the objects are going through and the complexity of the object structure and all that.

But just a few polygons definitely which were visible in the previous frame might
become back faces are obscured or invisible. And those which were back faces are
occluded or obscured might become visible. If an animation sequence causes a little bit of
change of course not even that much just a small change you can see there is a slight bit
of visibility change from one frame to the another with respect to in this case even just
two polygons but you have to visualize lots of polygons some of them become visible
which were invisible some of them which where visible become invisible but those are
very few compared to the total number of polygons.

The change which occurs that is the number of faces which were visible earlier almost all
of them remain visible. Even if you talk of very high speed motion typically it will
remain and major part of the picture does not change between two successive frames. and
those which are invisible most of them remain obscured or invisible, a part of those, a
very small fraction of visible faces become occluded or invisible or back faces as they are
called and a few of them which were occluded or obscured may become visible. So that
is what we use in terms of frame coherence. Since we are not going to discuss frame
coherence now in VSD but when you talk of animation pictures you have to this frame
coherence concepts to minimize your computation time and when you use a VSD
algorithms from one frame to another you can use concepts to minimize the computation
time to find out which of the faces were visible or not.

There are a whole lot of Visible Surface Detection methods and we will try to cover as
many as possible in the next few lectures. And of course we will cover one or two today
itself in the lecture. And the first one of them which is the most common is called the
back face just talked about the back face a few minutes back. And we will see the major

preliminary are the front end processing done for any VSD algorithm is called back face
detection.

(Refer Slide Time 39:50 min)

You just go through the names then we come across one of the most popular methods
called the depth buffer method or the z buffer method or the zee buffer method. That is
one of the most common limits used. Remember, back face detection is the one which we
will cover next and that is the one which has to be used in all cases. Then of course we
will also see in the next lecture probably the scanline method. We will also see the depth
sorting method, remember, this is different from the depth buffer method.

We have a depth sorting method also. We will also see a concept of area subdivision
method which is not that popularly used but the concept is very good and nice so we will
look at area subdivision method. We will also see Octree based methods. Although we
might just skip this method which is also not very popular since we have already studied
about Octrees you can visualize how VSD could be done.

Of course another method is a buffer method and we will also study BSP trees Binary
Space Partition trees, you can note it down. This expansion of BSP is Binary Space
Partition trees. And finally of course, probably the most popular sophisticated method
any method use is called the ray casting method. Ray tracing method or ray casting these
terms are use interchangeably it is either called ray tracing or ray casting. And we know
that Visible Surface Techniques or VSD algorithms are 3D versions of sorting
algorithms. Remember sorting algorithms, so these are 3D versions of sorting algorithms
because they compare depth.

So based on depth as a key or queue you sort polygons and that is what you do. That is
what you need to do in all these algorithms. But of course you study back face which is a
something like a pre processor, it is done at all algorithms to first throw out the back

faces and then find out which are the visible ones and among the visible ones some of
them may be partly occluded and all that which has to be found out and determined by
the help of the other method. So coming back to this slide you will learn about back space
detection method which is used first as a pre processor for different VSD algorithms.

We will go through most of these depending upon the time available to us. Definitely Z
buffer method and ray casting method will be covered along with a few others. But Z
buffer and ray casting are the most popular ones and in fact most sophisticated methods
based on even sophisticated rendering or shading and illumination models which of
course we will see much later on or based on a combination of Z buffer and ray tracing or
ray casting so these algorithms are very popularly used.

Coming back to the last point in this slide which says that basically we are looking at 3D
sorting algorithms which basically compare depth and first of all among this we look at
back face removal, back face detection or the most popular term called back face culling.

We look at back face culling or back face removal or back face detection methods where
we say a polygon in 3D is a back face if the dot product of 2D of these vectors we have to
define them, we will define them very soon but you know these vectors already. The dot
product of this is positive, what are these two vectors? They are V and n.

You can almost guess right now these are vectors not scalar quantities V is not vertices
which we discussed in solid modeling. V is the view vector, V is the view vector and N is
the surface normal of the polygon. This we have also seen when we talked about
constructive solid geometry the equation of the surface normal which will come back
again. So the dot product of view vector which you have seen in the polygon and the
polygon here the surface normal will be coming out in the view vector.

We will see that if the dot product of these two very interestingly is a scalar quantity the
dot product of two vectors is basically a projection of one vector onto the other one and
the dot product which is a scalar quantity gives some unit measure scalar quantity again if
it is positive then the polygon is a back face we do not need to draw, it we do not need to
shade it and we do not need to worry about it just forget it. That is what you compute the
dot product and if you see if it is positive we will look at pictures back.

(Refer Slide Time 43:05 min)

Let us take an example now where we will see for the case of simplification, why
simplification? In fact this is done in the case of the 3D viewing pipeline where at the end
basically the V vector looks along the positive and negative z direction.

So let us say that the V vector is 0 0 Vz. It is looking along the positive direction. You
can take negative z direction also it does not matter much, only the expression of the back
face culling will change a little bit but it could be 0 0 plus or minus Vz does not matter.
We will take positive Vz in this case. You can take even 0 0 1 Vz could be one you take
any vector on.

And you take the surface normal of the polygon as Ai plus Bj plus ck I j k but what are
they, you need vectors along the three orthogonal axis x, y and z respectively. So the
surface normal a b c at the corresponding direction cosines of this surface normal of the
polygon we are testing whether it is a back face or a front face now you can visualize
already that a polygon could be facing you in that case it becomes a front face or it could
be a back face where you are unable to see it.

So what is the dot product of these two vectors? Take a dot product of these two vectors
V dot N you know how to take a dot product of these two is you have to multiply the
corresponding coefficients and in this case the dot product is so easy because there are
two elements which are already 0 here so the dot product of V dot N will be Vz dot c.

In fact if you take Vz equal to one it will be only c it will be the z component of the
direction cosine that is playing a very important role z component of the direction cosine
of the surface normal of the polygon, polygon face N is the surface normal and the
direction cosines of the surface normal is a b c and c is the z component of the N which is
the z component of the surface normal n.

So that is playing a very important role. Of course you multiply that with Vz but Vz could
not be visualized to be 1, you can visualize it to be any vector. So, if Vz dot c is the
important part that is the scalar quantity this dot product in this case the dot talks about
dot product this dot just indicates a scalar multiplication, we should not have used this
sign but do not worry this does is not applicable to similar operations this is a dot product
of two vectors this is a scalar multiplication because Vz and c are scalar quantity so just
multiply them.

Let Vz be positive as we are talking about so assume that the view is along the positive z
direction but do not worry if it is negative which his often the case we will see what
should be done. And in this case you have to just check the sign of c because as I said
before Vz can be taken to the unity plus 1 and if that is the case you checked the sign of c
because V dot N will be Vz dot c Vz is 1 then it is a just c.

Depending upon the sign of c you will get the dot product to be positive or negative and
you want the dot product to be positive for a back face. So condition for back face is just
so simple now that the sign of c should be equal to or more than 0. It should be a positive
quantity. So the condition of back face has become so simple. This is why you need
algorithms to simplify your computations where you can handle why hundreds and
thousands of polygons you basically want to handle millions of polygons in a very
complex scene. And that too when you talk of animation few of those millions must be
processed millions of polygons must be processed from one frame to another and all that.

But even in a static picture you want to draw it very fast you need optimal algorithms,
integer based if possible, incrementally possible very simple conditions to be checked
such that you can process not one or two not ten but more than few hundred or thousands
up to a million polygons if possible within a certain amount of time frame to give real
time and if possible on line performance.

That is what computer graphics is and these days if it is on systems both in hardware and
software which takes lot of time to compute, lot of time to draw your picture because the
computational time involved is very large to draw lines to render people will not accept
and purchase your system, you need to have things which are efficient and fast that is
what of course gets things involved in research in computer graphics to generate complex
which has to bring into reality visual realism.

You need to bring in concepts of reality both from the point of structures and physics of
objects but even simple pictures when there are so many polygons to be drawn, animated,
rendered and things like that you need to make your computations very very simple.
You can see now that the back face culling algorithm has been made very very simple.

(Refer Slide Time 47:48 min)

Look back into this slide as you can see that the back face culling or removal algorithm is
a condition for back face which has come down very simple. So do not worry if your
direction of view vector is along the positive z direction compute the direction cosines of
N and look at a sign of c.

In fact it says that for back face culling you do not need the other direction cosines at all.
You just compute this c, that means you compute if possible the a b c are three different
computations for you if at all to compute this direction cosines of the surface normal of
the polygon face you need to compute just this z component in this case the c value just
compute the z component of the direction cosines of the surface normal and when that is
done you just do not even need the value you just need the sign of that direction cosine,
check if it is positive or negative if it is positive label it as a back face and if it is negative
it is visible, it is visible to the viewer and you should be able see it. So that is the
condition of the back face.

Remember that just compute z component of the direction cosines of the surface normal
n, look at its sign by and at a logic, decide whether it is the back face or a front face and
go ahead so that is very simple. Of course the other small condition of course when the
dot product is equal to 0 then you get the c component also equal to 0 and it is a case the
dot product of two vectors which are orthogonal. If you take two vectors let us one here
one there and take a dot product this will be equal to 0 and that is the condition which
you will have when the dot product V dot N will be equal to 0.

You know when that will happen? You can start visualizing, when will the viewing
vector and the normal will be perpendicular, if this is the viewing vector and this is N and
they are perpendicular to one another.

I repeat again, if this is the N and this is the V they are perpendicular it will only happen
when the view vector does not intersect the polygon at all. The polygon is in such a
manner that it is lying on Zx or Zy plane or in fact it is lying along a plane which includes
the viewing vector at all and that is why the surface normal is orthogonal to the viewing
vector and since you might see a line or you may not be able to see the face and that is
the case when you get it. You can almost consider that is the back face.

In some cases you need to of course draw a line if possible so that is the special case
which you need to handle when the dot product is equal to 0. Otherwise just look at a
sign of z component and see if it is positive, if it is positive then it is the back face and if
negative it is the front face or not a back face and move back so that is the key idea of
back face culling algorithm. Let us look at an example, a very simple one here. That is a
virtual camera with a arbitrary view vector in this of course it could be 0 0 Vz that does
not matter we are just looking at a scenario where we are looking at a pyramid with a
triangular base.

(Refer Slide Time 52:54)

I am able to see two surfaces for the time being assume that when you are seeing these
two faces and these triangles are the polygon faces for this structure which is a pyramid
one is the blue with the surface normal N shown here and the other is the white triangle
which is facing towards the camera.

As you can see that the blue triangle is a back face because the N is along the v. That
means if you check a dot product of this N and V you will get the dot product which is
positive. Or you can basically check the sign of the direction cosines of the N provided
Vz is looking along V 0 0 Vz and if that is positive in this case it will be so that is why it
is a dark face and I have labeled it in blue color to show to illustrate that it is a back face
in fact you do not have to show it or render it for the camera.

In your case you are seeing it but it is the back face with respect to the camera. The other
triangle which is almost rendered or shaded with white color is visible because the dot
product of that surface normal and V will be negative it will not be positive. So you can
visualize that easily that this blue triangle is a back face and the white triangle is not a
back face it is a frontal face.

Based on this you compute not only back faces or front faces this is an example where
the object has arbitrary triangles it can visualize these two an arbitrarily rocky structure
bounded with polygons which are typically triangles here, a very arbitrary crooked
structure you can visualize this to be an asteroid. And as you can see here the view vector
now looking along 0 0 Vz you will be seeing surfaces which are closer or definitely
frontal as you say are not back faces or more brightened in color because they will be
appearing much more brighter and the back faces I have put a very darkish color to show
that those parts of the object and those polygon faces will not be visible. That is what you
have with respect to the frontal and back face of this.

Of course we will talk of shading and rendering later on to see how to shade the frontal
faces which are close to the viewer and with brighter color and those at the back. The last
part of today lecture we look at a computation concept of the surface normal and for a 3D
surface polygon. Now, we know that if you take any two vectors p and q lying on a plane
this plane could be the polygon in this case. And we take a cross product p into q this
cross indicates the cross product here and p and q are two vectors lying on a plane which
could be two edges of the polygon itself and you can see that if you take the cross product
of p into q you will get a vector r which is pointing upwards.

Now, if you remember the formula for the cross product it will be p q sin of phi. So sin of
phi will dictate the amplitude of r that is true. So if the phi is 0 you get a small r or if phi
is very large you get a very larger r.

But depending upon the order you choose p into q if you take the cross product of q into
p then you will have a negative of r. Why do you talk of positive and negative r because
you will have the term direction cosines but the signs will change but this is very
important because the order of vertices which you choose for the calculation of N
assuming that you choose vertices to get edges and that will dictate whether you are
looking into the frontal side of a surface or the back side of a surface.

(Refer Slide Time 54:34 min)

Just to give an example if you look into this particular scenario then I will say the same
surfaces on the brighter side and if you looking into the back side if I turn the same object
you have a darker side of the object. Let us say if you look at my hand you will say that I
have a brighter side on the back side which is the darker side and if I turn it so there will
be only frontal part which will be visible to you, the back side will never be visible to you
because it is inside an object and a polygon remember for the 3D solid object does not
hang in space it bounds the solid.

You will have a front side which is visible back side will never be visible do not confuse
this with the back face as back side will never be visible. We need to find out the surface
normal coming out of the frontal face not from the back face. So you need to find out the
computational method by which you compute the actual line of the polygon not the back
face.

So we stop here how to come up with computations involved to calculate the actual N not
by taking just to arbitrary vectors p and q and taking cross product which could give you
a risk of having the N coming out of this surface or from the back side surface which is
never visible to you. We will see how to come up with method based on the figure which
you have seen in the last slide I got a method by which you need to compute the N from
the frontal side and not the back side and which should be used to compute the direction
cosines of a surface normal not taking any two arbitrary vectors lying on the plane and
taking a cross product it is very risky do that.

So we stop with it and will continue in the next class from this state onwards where we
looked into methods to compute the direction cosines of a surface normal N of a polygon
given N vertices. Thank you very much.

