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We continue the discussion on 3D viewing pipeline and projection transformations under 
the category of 3D viewing. And in the last hour of lecture, you remember that we have 
discussed basically the viewing pipeline in terms of four different stages of transformations. 
And in fact within those four we exclusively discussed only one of the stages, the important 
stage of normalizing transformations.  
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So if we look back into what we were doing in the last one hour, the implementation of 3D 
viewing, the input to that is 3D world coordinate output primitives and which passes 
through four stages of transformations; the first one is to apply the normalizing 
transformation, the second is to clip against the canonical view volume. So you know what a 
canonical view volume is now. And then of course comes the projective transformation 
projection into projection plane which we will actually take 3D to 2D coordinates and then 
transform into view port in 2D device coordinates for display. And so output of this entire 
set of operations or in some sense the viewing sequence of pipeline is the 2D device 
coordinates.  
 
And if you look, out of these four stages we mainly discussed the first one which is applying 
normalizing transformation which consisted of five different steps of operations or five 
different matrices which were doing the operations on the 3D world coordinate output 
primitives. Now we knew what a canonical view volume is. When we read, understand and 



discuss about clipping we will see how the clipping operation could be done because when 
you have a graphics display or in fact seen through your eye you always have a finite 
amount of display and you need to clip and show out the world which is outside the range of 
viewing either through the camera or through the eye. And of course in 3D transformations 
we have also studied projection geometry in generalized matrix so we apply that. And the 
last step is a two dimensional simple transformation which we will also see today.  
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So the first stage if we look which is applying the normalizing transformation and we had 
seen two different projection transformations; one under the category of parallel 
orthographic projection, orthographic or non-orthographic in case of parallel and perspective 
and these were the five different stages for the normalizing transformation in terms of 
parallel and perspective. So, just to have a comparative study, you remember we had a 
translation matrix first because the operation is going from left to right. So we are talking 
about pre-multiplying the matrices or coordinate points by these operations, so translation 
minus VRP, then a rotation, then again a translation or a shear and then a scale ultimately. 
That is the combination, the sequence is very important, we cannot jumble up because we 
have studied under transformations that order is very important.  
 
The sequence of operations has to be kept unaltered to have the correct projections or the 
transformation done. And out of these five operations the most crucial one was throughout 
the rotation matrix are where we first transformed a coordinate system, a view reference 
coordinate system onto a world coordinate system, we knew how to align that using the 
property or orthogonal property of the rotation matrix and also we discussed about shear and 
scale, the form of those matrices. 
 
Couple of exercises was given to you during that time to identify the parameters of shear 
based on the direction of projection vector and scale parameter, parameters of the scale 
matrix for parallel and perspective as well. Both are of similar types. The shear matrix is 



optional in the case of parallel projection if it is pure orthographic because the direction of 
projection in the case of orthographical projection is aligned with the view plane normal so 
you do not need a shear but if it is not then you typically will need a shear. So this is the first 
stage of that pipeline, the viewing sequence of five different steps of first stage and then of 
course after the clipping has been done you can apply the projective transformation.  
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This also we have seen a few classes back when we were discussing about three 
dimensional transformations. And I talked about the generalized expression of 
transformation matrix in general and it depends on basically mainly three key or four key 
parameters; one is the Zp or the distance of the projection plane from the origin and also the 
direction vector dx dy dz which consists of the direction of projection vector and the length 
of the point COP or PRP from the point (0 0 Zp) is q we know that and we have seen the 
derivation of this matrix a few classes back as well. So first, second, third stage is clear and 
the fourth stage of course is a simple 2D transformation.  
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So we look into the pipeline, the pipeline is slightly a different frame work now. We look 
through a slightly different frame work where we talk of coordinate systems and matrices 
together for this entire 3D viewing pipeline, a sequence of projective transformations and 
world coordinate systems moving together and we see how we move from the 3D object 
coordinates situated somewhere in space and then you have a camera looking through it, 
your world coordinate system could be somewhere here, right hand or left hand system, 
your object points could be somewhere at this point, the camera is focusing this way, so 
what will you see in the graphic screen when a camera is located at an arbitrary point, you 
will be looking at some arbitrary direction, you have set of objects at this point and the 
world coordinate system is somewhere here.  
 
VRC is aligned with, the camera is looking done and the objects are somewhere here. 
Objects could be outside, away from the camera and will not be in the field of view because 
your finite zone or a field of view both for the case of parallel as well as the perspective 
projection geometry is that you need to transform all these points from 3D into the canonical 
view volume transform the VRC into world coordinate system then do the projection 
geometry from 3D to 2D and get into the view port. So there is a sequence of operations 
which are taking place for a generalized scenario. Of course you can have a very simple 
scenario to start with, if you say my camera is looking in such a manner that it’s pointing 
towards you towards me and world coordinate system is also align with the camera.   
 
It becomes very easy because most of this transformation matrix will be unnecessary, will 
not need them to be used in your normalizing transformation and you can simply worry 
about the camera parameters and the world coordinate points which are to be displayed on 
the screen. Of course we will see such a simplified model which is only based on the 
camera. But generalized scenario is very very important because in a generalized scenario 
most of these graphical software based on PHIGS or OpenGL will ask you to specify the 



viewing scenario where you have to specify what is world coordinate system, it could be 
somewhere based on the earth or on the universe or in the sun wherever it is.  
 
Then you have the camera looking at the some point with respect to the world coordinate 
system, the camera is looking at a particular direction, you have a set of objects somewhere 
positioned here, a set of points, lines, surfaces, curves, text or whatever the case may be. 
And you like to have this generalized scenario such that you can handle all sorts of 
environment. It is not only the simplest case. The simplest case cannot handle generalized 
scenarios with respect to a camera model which we will see later on and most graphical 
software.  
 
When we talk of the programming language layer or the high level PHIGS standards it will 
ask you to specify certain parameters for the viewing pipeline or the projection geometry. 
So we will come back of course you always keep in mind that there are two main types of 
projection geometry; one is the perspective geometry and another is the parallel geometry 
and again we start with the 3D modeling  object coordinates. The 3D modeling object 
coordinates start and they go through a modeling transformation and that is the first stage. 
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You have the modeling transformation where basically what you do is, it generates the 
corresponding 3D world coordinates for the object model because you may have 3D 
modeling object coordinates with respect to objects center and you need to position them 
somewhere in the world and that is what we call as the 3D world coordinate generated by 
the modeling transformation. In this case the modeling transformation talks of positioning 
those objects, points and lines, curves and surfaces of the objects somewhere in the universe 
or somewhere in the world. So you get 3D world coordinates and then you probably start to 
give the transformation which will call the normalizing transformation. 
   



We break it up in two or three different parts; the first part of that is called the view 
orientation matrix where you can see the expressions that are given on the left hand side 
corresponding to perspective and parallel, they are basically the same, in fact nothing but the 
first two steps of the first stage of the normalizing transform that is the translation vector, 
put the VRP to the origin T of minus VRP and in the rotation matrix which will align view 
response coordinate system with respect to the world coordinate system which is the origin 
of the overall system. That is a view orientation matrix which takes the first two steps of the 
overall five different steps of the normalizing transform. And the flow chart is not complete 
here it is so big that I split it into two parts, so after the view orientation matrix we move on 
to the next slide which talks of the remaining stages.  
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So the view orientation matrix has the R and T matrices and it will generate what we call as 
the view reference coordinates. So the dark black boxes talks of the matrices and the 
electrical areas talks about the coordinates at different stages, the output at different stages. 
So if I go back, you started with the modeling object coordinates you moved to world 
coordinates, after that the view orientation matrix will generate what we call as the view 
reference coordinates and then on the view reference coordinates we apply what is called the 
view mapping matrix.  
 
We apply the view mapping matrix which has all the remaining three steps of those five 
different steps of the first stage of normalizing transform. That is the translation, shear and 
the scale. So you have the T, you have the Sh and S matrices. Now in terms of perspective 
and parallel if you see I have tried to minimize the difference by saying that I will have a M 
matrix which will probably make my Spar is equal to appearing like Spar that the scaling 
could be little  different in case of perspective and parallel transformation because the 
canonical view volume is different. That is why the extra M has taken care of the same and 
gives you the difference between perspective and parallel otherwise the shear and translation 
are typically of the same type. 



So after the view mapping matrices is being applied from the view reference coordinates 
you get the normalize projection coordinates. A view orientation matrix generated the view 
reference coordinates and the view mapping matrix generated the normalizing projection 
coordinates. In fact the view orientation matrix along with the view mapping matrix were 
those five different steps of the normalizing transform which we have discussed in the last 
hour. Those five steps have been split into two parts; three matrices, three steps and one in 
two steps and they are called here as the view orientation matrix and view mapping matrix 
respectively. Expressions are given for the view orientation matrix here in this slide that is 
the T and the R and the rest of the translation shear and scale is a part of the view mapping 
matrix and it has generated the normalize projection coordinates. 
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These normalized projection coordinates are still in 3D. You are still in 3D but now what 
you have done basically is, if the objects were somewhere here, this was the world 
coordinate system, the camera was looking here and you have actually done the following 
by transforming the camera, getting in aligned with the world coordinate system so the 
objects now also follow the same path and you have actually shrunk the entire view volume, 
the projection geometry into the small canonical unit view volume which is bounded by the 
six planes. 
 
We know the CVV canonical view volume bounded by six planes; top, bottom, left, right 
and front and back planes. So now the entire world which we are supposed to see through 
the camera at some point is now all aligned and kept with the world coordinate system and it 
is all inside the canonical view volume or inside the CVV but the points are still in 3D, they 
are still in 3D but in a well bounded and well defined normalized projection geometry and 
basically you have to apply two or three different steps.  
 
The first step is clipping, first you have to clip with respect to the canonical view volume 
then apply the projective transform and then do a transformation in 2D. That is all put under 
one category in the last stage of the viewing pipeline which I will call as clip, transform into 
2D screen coordinates, transform into projective from 3D to 2D and then shift it to the 2D 
coordinates and all those put together except the clipping part if say is all handled by one 
particular big matrix called Mcvv3dvp.  
 
I will expand what this means but after clipping if this matrix is applied it will basically give 
you a 2D device coordinates. Now the Mcvv3DVP is basically meaning canonical view 
volume 3D view port. That means it is the transformation matrix M which transforms the 
canonical view volume into your 3D view port for projection. So these has to be done after 
clipping which will transform and then you can apply a projective geometric matrix M 
general also to get the 2D points from the 3D and give you the 2D device coordinates. Of 



course we may do a little bit of scaling and translation at the end to get the 2D device 
coordinates within the view port we are talking about. You need to map everything into a 
view port which we talked about earlier and these are all coming under the category of 
MCVV3D view port. That is the terminology used in one book by Foley Van dam, Rogers 
etc where they will say that we have this matrix called MCVV3DVP which means canonical 
view volume 3D view port and the expression of that matrix is given here.  
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And this matrix you should apply after clipping when the entire 3D canonical view volume 
has been generated to all points and that you basically apply clipping and then apply this 
matrix. As you can see from the expression the MCVV3DVP canonical view volume 3D 
view port consists of a translation scale and a translation. So basically what it is doing is that 
it is trying to adjust the canonical view volume to your 3D view port such that you can 
actually apply the M general projection matrix to get the 2D points out of 3D. Remember it 
is a 3D matrix again the world is still 3D.  
 
Now, after doing all the necessary 3D manipulation you basically apply the projective 
transform to create your 2D coordinate points from 3D. So clipping, apply MCVV with 
3DVP then applying a general to create your 2D coordinates and then of course you have to 
do a little bit of scaling and translation to position whatever you want to see in a particular 
view port. This is the screen which you are seeing right now and you will say you do not 
want to see all the text in the entire screen but would like to select a small portion here or 
may be some portion here. So that is what a 2D view port is; I will say all I want to display 
on this particular graphics package to be positioned here or somewhere here. That is what 
we call as a view port. And what you may need to do is the 2D device coordinates which 
will be generated with respect to the whole setup. You need to scale it down and then 
translate it in a position in the view port which you demand or the user asks. So you need to 
map it into a two dimensional view port. Those expressions are very simple and since you 
know how to do three dimensional transformations, 2D transformation should be very 



simple. A simple scaling on a translation brings you from this entire screen down to a small 
view port because if you have a big screen then you basically do a small scaling operation to 
bring it down and then you can position it anywhere in the screen basically the view port in 
which you are viewing the world that you decided to and that is a simple translation 
operation.  
 
So basically at the end you will require a scaling and translation in 2D which is not there in 
the expression. You can visualize that it comes at the end after all the projection geometry is 
done, after all the operations of normalizing transformation of the viewing pipeline and after 
the clipping and after the MCVV with 3D view port and then after you do the projective 
geometry M general matrix to transform from a 3D to a screen 2D and then you want 
position this screen because you may not like the entire display screen to be covered by just 
one window of graphics screen. You may need have a graphic screen here, you may have 
multimedia operations, some text running here and some other operations at the bottom.  
 
So obviously you will not ask one particular application to cover the entire screen. So the 
entire device coordinates where you want to display will be generated by a 2D scaling 
operation and then positioned by a suitable translation. So that is the viewing pipeline which 
we have discussed now and again I will repeat these steps to complete the entire 3D viewing 
pipeline. We can also take a scenario where it involves not only this transformation but of 
course you need to generate pictures with the help of different algorithms which will come 
due course of time as we go long in terms of shading, drawing, lines and things like that. 
And we will discuss in general now the various steps of what we have seen. Now we will 
see a very elaborate or a very general 3D viewing pipeline. And most of these operations 
you know, the objects are modeled in object modeling space that is the first step and you 
know that.  
 
(Refer Slide Time 18:38) 
 

 
 
 



So you can have a object center coordinate system and a object centered or modeled or kept 
somewhere in the object space and then you have to actually apply transformations which 
will be applied to the objects to position them with respect to the world space or the view 
reference coordinate system at least with respect to the camera coordinate system or world 
space or world coordinate system WC or VRC that is view reference coordinate system, you 
would have to apply transformations to keep this object.  
 
The second stage says: transformations are applied to the objects to position them 
somewhere in the world space so that is important. View parameters are specified, we have 
seen in the earlier class, a table with a few examples of what are the different view 
parameters you need. A typical set of example you can think of R yes you need to specify 
the view plane normal, which direction you are looking, you need to specify the view up 
vector. Let us say you will also need to define other parameters for the viewing system but 
typically at least you need have the view up vector and view plane normal to specify the 
world coordinate system and the others. As we look back into the table which was given in 
the previous class to have examples of different types of perspective and parallel projections 
and view specifications and that is all necessary for now. The third step as we say the view 
parameters are specified to define the view volume of the world, a projection plane. Of 
course you need to tell where is the projection plane and also the view port, the two 
dimensional view port on the screen.   
   
These are some of the parameters that could be optional but you need to specify at least 
minimum some of these parameters to specify where you are looking. You can have a 
world, you can have a virtual reference coordinate system, but you can have a camera 
looking from this angle onto the object or from this angle or from here. So you need to 
specify where your camera is and what direction it is looking at. Of course the object is here 
the camera could be looking somewhere else, you will not able to see anything unless the 
object is somewhere there. But typically you need to position it so that you want to see what 
sort of view you would like to have. Would you like to have the top view or the bottom view 
of an object? If this is an object let us say the side view and the front view etc. So you need 
to position a camera here to specify the viewing reference coordinate system with respect to 
the world coordinate system. Here you know where the object is placed. Hence, all these 
viewing parameters are very very important which talks of a general three dimensional 
viewing pipeline.  
 
So I again repeat the steps, the first step was the objects were modeled in the object space or 
object modeling space, second you apply your transformations which are applied to the 
objects to position them somewhere in the world space and then you specify the view 
parameters which are specified to define the view volume of the world and the projection 
plane and the view port on the screen. So these are the first three stages of the viewing 
pipeline. Then once the transformations are applied of the projection geometry and all 
normalizing transforms are available the five different steps which we talked about rotation, 
transactions, shear, scale and all that in 3D you need to clip this object with respect to the 
view volume now.  
 



Actually sometimes the objects are often clipped with respect to the canonical view volume 
because the expressions for clipping actually become very simple when we use with respect 
to the canonical view volume. You remember the expressions of the six planes which bind 
the canonical view volume both in the case of perspective and parallel, there were six planes 
and there were six different simple expressions. You can almost visualize it as x equal to 
plus 1, x equal to minus 1. x equal to y, x equal to minus y, z equal to minus z and z equal to 
1 and so on.  
 
So the expressions on those planes are so easy. It helps you to make the clipping algorithms 
work very fast. Almost you can get a close form, can get a very nice expression to obtain the 
clipping. Clipping means what? You have a line and you have a bounded volume within 
which you are seeing a line. So of course what it means is, if this is your view volume and 
the line is somewhere inside you will not be allowed to see the outside, the view volume or 
whatever the line is. Remember, a virtual world, a line or a rod can actually go through any 
particular material.  
 
Thus, if you have a virtual volume you will be allowed to see only the inside of it and that is 
why you require to clip the line and come out with only that section of the line which should 
be displayed on the graphics screen not the outside. And the expression for the clipping 
becomes very simple when you operate with a canonical view volume because the canonical 
view volume has very simple expressions for the planes which bind the canonical view 
volume. But of course generalized expressions available for clipping in which you can 
actually clip in any 3D space with any arbitrary view volume and that is also possible. So 
you either clip with respect to the view volume prescribed by the viewing geometry are you 
clip with respect to canonical view volume. 
 
So, after the clipping is done the results are projected onto the projection plane window. So 
this is still in 3D and it is mapped in to the 3D view port. So this is something like, the 
canonical view volume comes into the picture and it defines a small 3D view port through 
which you are able to see the entire world where the entire world is squeezed into a 
canonical view volume and 3D view port. 
 
 In this 3D view port you are still in 3D remember. Before going to 2D if it a simple case 
then you slightly apply the projection geometry and go from 3D to 2D. Otherwise what is 
done is, in the case of a complicated structure like a house or a unique complex building or 
environment where there are lots of objects and each object has lot of surfaces in the front, 
back, side and all that, you need to remove certain hidden objects.  
 
Now this is a special case, there are very good algorithms to do with this particular task of 
removing hidden objects, hidden surface removal algorithm which you can see. So we will 
see what is this hidden objects removal? For the time being you can assume that if the 
camera is looking towards me let us say in the specific example you are not able to see your 
back. When I am looking at you I am able to see your front or face or may be the side but 
may not be the back side. So my backside and the backside of yours or all objects on the 
back of mine are all hidden. They are all hidden then notionally you can visualize that there 
is no point drawing those on the screen because anyway I will be overlapping these objects 



and you will be overlapping what is behind you. So you need to eliminate those or remove 
those hidden surfaces from the screen in terms of drawing it on the screen because otherwise 
you will spend a lot of time, waste a lot of time in drawing those. So hidden surface removal 
algorithms are very very essential, very important to reduce the compression complexity of 
drawing objects. In fact typically what is found that in most of the cases 20 or 30 percent or 
at the maximum on an average 50 percent of the surfaces what you need to draw for a 
general three dimensional scenario and that is why it is made possible with the help of 
hidden surface algorithms where all the hidden surfaces are removed. So you need to have 
that in the graphics viewing pipeline as well and so the hidden are then removed. And then 
the hidden objects or the hidden surfaces, lines etc all are removed, now you are only left 
with objects which are visible to the camera, visible to the user and you want to show those 
objects rendered them, so the objects are what are called as the scan converted and then 
shaded if necessary. 
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That means we are talking of two more types of sections, methods or algorithms which are 
dealing with scan conversion and shading. So in along with hidden surface removal, after 
that we have to study about scan conversion and also shading algorithms to find out how to 
effectively not only shade objects but if possible and necessary create shadows, that is very 
very important. So we will study about that but we can say that this is under the general 
category of 3D viewing pipeline to which rendering algorithms are necessary under the 
category of general viewing pipeline as well.  
 
 
 
 
 
 
 



(Refer Slide Time 26:20) 
 

 
 
So well we will again look at it from a flow chart angle when you have the flow chart of the 
3D viewing pipeline you have the object model which create the object space and then 
under the object space you scale, rotate and translate the objects generalize transformation 
and go to the world space. In the world space you specify the view, calculate the surface 
normal, calculate illumination, remove the back faces, we have seen few of these 
terminologies now. We look into all these algorithms as we go along in the sequence of 
lectures and you still in the world space after you specify the view, calculate the surface 
normal, calculate the elimination etc. And then you apply the normalize transformation and 
clipping to create, go into the eye space, go into the canonical view volume 3D view port 
from the world space.  
 
And in the second step the flow chart is not complete. We are giving the general steps of the 
3D viewing pipeline. We gave it in steps, now I get it in the flow chart again and you know 
where the matrix is to be put after each matrix operation which space you are talking about.  
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Therefore, you move from world object space to world space, world space to eye space and 
from eye space is where you apply your projective transformation or projection 
transformation matrix or parallel projection transformation as the case may be. And there is 
where we move from 3D to 2D, you move from 3D to 2D and that makes you move from 
the eye space in coordinates to the image space in 2D and there is where you can apply the 
hidden surface removal algorithms in image space or you can apply in 3D space as well. 
And there you provide the shading, the texture and all that is necessary for drawing the 
objects. Then you map it into the view port and draw the screen.  
 
You talked about these view port and the screen because it may not be necessary and you 
may not want to draw the entire picture on the entire screen. Today we talked about 
dynamic environment with several users, several tasks in a multi tasking multi program 
environment where you may not be having graphics programs but other programs also 
running in a system and you may also have multiple graphics program, one of them could be 
just rendering a scene with a house or some building structures and all that. You can have 
another graphic screen displaying a movie or a multimedia animation and stuff like that, 
another could be doing something like if you are giving a visualization of a multimedia or a 
molecular biology or some other visualization of computational fluid dynamics or some 
other engineering cat game applications let us say.  
 
So you need of course not always the case that the entire screen should be completed with 
one graphics screen. You define a view port and display. Put the size of the view port 
depending on the demand of your application you can always scale the view port if 
necessary and pull it up to cover the entire screen and then bring it back that is all right. But 
you always need to put in on a view port. So you map the view port and draw the raster on 
the screen and that generates the device coordinates. As you see on the screen, as you see 
the last step of the flow chart, when you map into the view port and draw on the screen the 
corresponding device coordinates are generated and they come through starting from the 



object space. So I go again, object space, world space, eye space, image space and 
ultimately the device coordinates where within the view port you want to draw graphic 
objects is now specified starting from an arbitrary three dimensional world where the 
objects were given. The objects were here, the camera was in some position, world 
coordinate is here, somewhere it has gone through all transformations clipping 3D to 2D, 
hidden surface removal, shading and all that algorithms and finally you have it in a view 
port. You have in a view port the objects which are drawn which the camera is supposed to 
see on the objects. You change the objects, the position of the objects or you change the 
camera position by altering the 3D view specifications, whatever is been drawn in the view 
port will also change if you change any of the parameters in the corresponding viewing 
pipeline which we have seen today. 
 
This is the overall 3D viewing pipeline which talks of a very generalized scenario of 
viewing and we have discussed the first four stages in a very gross framework, in an 
approximate framework and then we looked into different steps of the 3D viewing pipeline.  
 
Finally we also came back into a very exhaustive flow chart about 3D viewing pipeline. 
Now what happens, let us say if you do not want to use, let us say you want to create a very 
simplified scenario where you know that the camera is aligned with respect to the world 
coordinate system, you have the objects in front of it and you just want to display the 
system. But of course if you are involved in using standard graphics software, standard 
graphical packages like PHIGS and OpenGL you have to specify, go to this 3D viewing 
pipeline to display in most cases, they will ask you to specify parameters.  
 
But let us say if you want to write a small program by yourself in OpenGL where it 
simplifies this entire 3D viewing pipeline and at least the first few stages of normalization 
and projection geometry of course and then you will say if I can specify what are my camera 
parameters in terms of in what view I am looking at, what is the focal length or some 
parameter for the camera in terms of its lengths and screen with something like that and 
what is the view volume I am looking at, can I not transform a point in 3D into the 2D 
screen? Yes it is possible.  
 
You may not have to go through the entire viewing pipeline to do that, you can use the 3D 
viewing pipeline there is absolutely no problem because it is so general that it can take care 
of all sorts of transformations, all sorts of scenarios which is possible. But let us say you 
want to create a simple formula one or two steps let us say where you know that I have a 
camera in a virtual reference coordinate system or VRC view reference coordinate system 
aligned already with the world and I have an object in front.  
 
Can I pick up the 3D points on the object transform to 2D on the screen? 
We will look now, in the last few minutes of the lecture today  a camera model which gives 
a very simple formula to transform a 3D point to the 2D point, this is something similar to 
the projection geometric combined with the transformations. I am just taking a simple 
example as a case study where we specify our initial camera model by identifying the 
following parameters. So you know what is the scene which consists of polygonal elements, 
each represented by their vertices. So basically you assume for the time being that we have 



not talked of solid modeling so for, we assumed that there are 3D vertices specified in the 
world and it is in front of the camera and the camera is also defined by the following 
parameters, the camera position may be it could be the origin of the world coordinate 
systems but you can still have [Cx Cy Cz] as the position of the camera.  
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You have a point that represents the center of attention of the camera or the COA which is 
the center of attention, sometimes also called as the focus of attention FOA. In fact it is true 
with our eye that we always have a focus of a center of attention to the subject or object we 
are looking to and you have a center of attention not a focus of attention for a point for this 
camera which is also specified by a point in 3D as [Ax Ay Az] the coordinates for the point 
A.  And the last important point is a field of view angle alpha. This is something which 
gives you the canonical view volume type of a scenario. Now you specify that north east 
plane but a field of view angle alpha. I will give the diagram by meaning where is this C? 
Where is this A? What is this alpha which represents the angle subtended at the apex of the 
viewing pyramid.  
 
The last four points I repeat again which is very important. The field of view angle alpha 
which represents the angle subtended at the apex of the viewing pyramid. So you need to 
know to C, you need to know A, you need to know alpha and with these parameters can I 
take points in 3D which are the vertices of polygon elements and shift to 2D. Just a simple 
projection using these parameters which are there in points two, three and four C, A and 
alpha. We have points two, three and four and the parameters C, A and alpha. If they are 
known C and alpha where C and alpha are not scalar quantities they are 3D vectors and if C, 
A and alpha, alpha is a scalar quantity, it is angle in degrees or radians. If these three are 
known can we come up with a simple projection model?  
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Let us look at this scenario. The specification of C and A is given in this figure already. You 
have an idea what is this alpha? It is angle subtended at that vertex C of that pyramidal 
structure. Now this is similar to a canonical view volume for perspective and that is the most 
common and natural model for what is called as a pineal camera which is used for image 
processing task as well. When a camera is modeled of course there are other parameters, 
linear or non-linear parameters to model a camera but it is quit simplified and ok for a 
computer graphics point of view where I have C, A and alpha three parameters.  
 
And if look into the figure again, in addition of course we have two more surfaces; one is 
called a near plane and a far plane. Or it is also called the front clipping plane and the back 
clipping plane. You have already known about FP and BP front clipping plane and back 
clipping plane you know with respect to those six surfaces where you are clipping your 3D 
points and surfaces and lines. So, now this pyramid was infinite and I made it finite by 
putting a near plane and a far plane on the front and back side with respect to the camera 
which is looking to the center of the pyramid. You have a center line which passes from C 
to A where A being the focus or center of attention of the camera or the other binding four 
surfaces of the pyramid which defines these view volumes. So now what I say is, all objects 
which are inside this finite pyramid, I hope you can visualize this pyramid, this is infinite 
pyramid but putting the near plane or the front clipping plane or far plane is the back 
clipping plane if we put these two then you have come up with what we call as a finite 
pyramid.  
 
So the specification of near and far bounding planes must be given. And these planes are 
considered perpendicular to the direction of view vector, direction of view vector which is 
nothing but the vector going from C to A. A is marked here, C is here, A is here. C to A is a 
direction of projection or it could be even A to C it does not matter but the direction is more 
important. And these planes, near and far planes are considered perpendicular to the 
direction of view vector or direction of projection DOP. You remember this? And at the 



distance n and f from the camera respectively. So the near plane of distance n from C, so the 
perpendicular distance along this central line which passes from C to A are the direction of 
view vector or direction of projection vector along that line the distance from C to the near 
plane is n and from C to the far plane is f. 
 
So n minus f is the distance along the center of line within the finite view pyramid within 
which all these objects must lie to be viewed. Clipping will do the operation where any 
object which are outside or in front of the near plane between the camera and the near plane 
will not be viewed, anything which is beyond the far plane also will not be under the view. 
Again the viewing pyramid, the 3D viewing space again I have just added the coordinate 
system U, V and W.  
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Of course you can align the W with the center of line which is piercing through the center of 
the finite pyramids C to A. You can align the W with that but it could be very general. You 
have a near plane and the far plane. And the image space view volume is u v w which I will 
say although it is 3D ultimately when you say a three dimensional image space with u v w 
what you are talking basically is a unit cube at u v w, the unit cube or unit pyramid and very 
simply switch off w and you will get u and v. That is another way, in the case of perspective 
projection you switch of w you get the device coordinates or view port coordinates or 2D 
coordinates u and v. But of course in the case of perspective projection in which the image 
space volume is also a pyramidal structure you need to have a projection matrix. So this is 
the scenario.  
 
Let us see how we can generate the projection matrix for mapping points in 3D onto 2D. 
This is the side view of the viewing space, I was talking of its distance n and f from the 
center C to the near plane and the center is vertex bearing an angle alpha and from the center 
to the far plane the distance is f.  
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This is another side view, I hope the picture of the pyramid is getting clear and this was a 
3D picture of the finite pyramid obtained from the infinite structure which defines the finite 
view volume and the image space also defined in the coordinates of the right hand side here 
in terms of u v w. Along each access you have two minus 1 to plus 1 and this is the two 
dimensional view. It could be the side view, it could be a front or top view through which 
you can get this type of triangular structured for the near plane, far plane and the two sides 
binding along the u v axis. Let us go ahead and derive the viewing transformation matrix in 
terms of the camera parameter. And as we go ahead you note down the equations and 
matrices which comes along.  
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Let us look at this equation and the figure as given. Here you find a point p with coordinates 
u v and w which is projected on projection plane at a distance D from the COP. The 
projection plane is lying in the u v plane and the projection point is u prime v prime w prime 
and you can easily derive u prime v prime w prime using symmetry of triangles. You have 
done this a little bit earlier as well and they are nothing but d dot u by minus w, d dot v by 
minus w and minus d respectively. And minus d can easily be found out because the minus 
w coordinates is minus d. 
 
You can derive these three u prime v prime w prime as given here equal to d dot u by w d 
dot v by w and minus, just multiplying and dividing by w. So basically the 3D to 2D is 
nothing but representing a homogenous Cartesian coordinate form u v w and 1 is 
transformed to d dot u d dot v d dot w and minus w because if you divide the first three 
coordinates by the fourth one you are going to get your 2D coordinate which are nothing but 
your u prime v prime and w prime and anyway you know it is equal to minus d. So once you 
know I can write this in the form of matrix, express this is a transformation matrix Pd I can 
use any one of these forms as you know. 
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It is diagonally d and then minus 1 in the third element of the fourth column or you can 
write this as the identity matrix three 1’s and the 1 replaced but the 0 in the fourth row 
fourth column. But the third element in the fourth column will be minus 1 by d. Now either 
of the matrices could be used and this is absolutely not a problem because you are working 
in a homogenous Cartesian coordinate representation. And if you look back in to the 
equation again you will find that this is a post multiplication. The coordinates in 3D are post 
multiplied with one of this matrix to get the corresponding u prime v prime w prime as 
given by d dot u d dot v d dot w and minus w respectively. So if you look back into these 
equations please note down the matrix form and try both these matrices post multiply a 
point u v w in 3D space, post multiply by Pd any one of them will do and you will get this. 
So this projective transformation is fine. But you have to work with the view volume, that is 
needed to transform the finite truncated viewing pyramid to the canonical view volume of 
size u v w ranging from minus 1 to plus 1. We will do that with one axis of another but let 
us first analyze w axis only. 
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Let us say if you use a transformation matrix, basically some sort of scaling and translation 
which you have to do and if we use such a transformation matrix where the unknown 
elements are let us say a and b, why these two because the a will handle the scaling along 
the z axis or w axis, a will handle that and b will handle the transformation projection also 
minus 1 you need to provide that. Basically this helps you to transform a point 0 0 minus n 
multiplied by p to a point 0 0 1 that is the near point and it will be transformed to the front 
clipping plane in canonical view volume which is plus 1 and the far clipping plane 0 0 
minus f in 3D will be transformed to 0 0 minus 1 that is the back clipping plane.  
 
So if you know that P is able to give these transformations from 3D to 2D basically or in 
fact in 3D itself then you basically solve for a and b using the above equation. That means 
you substitute P in these two and you basically get expressions like this.  
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These are the two constraints you get for a and b. Remember n and f are known to you and 
since you have two equations with two unknowns a and b you can solve for a and b straight 
away using these two equations and to get very simple nice forms as the suggestion for a 
and b based on f and n. Remember f and n are also camera parameters in some sense 
because they are the distance to the near plane and near front clipping plane and back 
clipping plane respectively the f. So let us look back into the matrix.  
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This is the transformation matrix. Now this transformation matrix will handle the z 
transformation from the finite view parameter to a canonical view volume. What about u 
and v with respect to x and y, well we also have to go to any one of these axis and the u v 
axis transformations of the pyramid are understood by taking the side view again.  
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If I take the pyramidal side view you can see these two white lines are of length. If this is 0 
to n and then 0 to f with alpha by 2 it is because the entire angle is alpha. We are taking half 
of this pyramid which is alpha by two the angle at the vertex. So these two vertical lines will 
of length n. tan alpha by two and f alpha by 2. It has to be like that and what basically 



happens is now the points of these two at the edge of the pyramids will be having these 3D 
coordinates 0 n. Tan alpha by 2 and minus n and this point will also have 0 either u or v we 
are talking about and f. Tan alpha by 2 which is the vertical along u or v and z part is minus 
f. So these have to be transformed to correspondingly the coordinate 0 1, minus 1 and 1, that 
is desired normalized 3D coordinates for both these points. So if you employ the matrix P 
which you have seen, then you get this transformation from this point n tan alpha by 2 
minus n to a transformation matrix like this and similarly f tan alpha by 2.   
 
(Refer Slide Time 44:09) 
 

 
 
You please note down the equations and try it yourself multiplied by P and you get this 
point. Now if you see here, you basically need to have a transformation matrix P in such a 
manner that this becomes 0 1 minus 1 and plus 1 and similarly this also becomes 0 1 minus 
1 and that can be done by modifying P.  
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This can be done by modifying P because the P which we derive only with Z axis has these 
two terms f plus that is the third column has these two terms. If you introduce these two 
terms in the diagonal element cot alpha by 2 it will help you basically to get these two terms 
vanished and this will become 0 f minus f and 0 and minus 1 and the transformation will 
take place basically. And of course you can note down this new form of P using the matrix 
and I hope you are able to note it down. The inverse of p I leave it as an exercise for you to 
find out, a little bit of matrix manipulation.  
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You can try out the inverse of p which should be this. You can note it down for the time 
being and practice at home, 4/4 matrix not a very difficult one. This is the matrix p and this 
is the inverse of the matrix which is given as cot alpha becomes tan alpha by 2. Diagonal 
terms are very straight forward but the other matrices will also change place. So the overall 
viewing transformation matrix the product of two matrix is Pd and P.  
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And remember the Pd, you can take any one of these two forms d d, d minus 1 or 1 1, 1 
minus d and post multiplied by the P matrix which we have just seen. Remember P is this 
matrix and the Pd had diagonal elements d and the first three diagonals and it had a minus 1. 
So if you multiply Pd with that P the product of the matrix is what you will get as these. One 
of the forms of Pd gives you this, the other form of the Pd is what you also basically get in 
this particular form.  
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And please note down these forms, I am displaying it for you. This is the form of the 
viewing transformation matrix.  
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And if you look into the parameters, all the parameters are based on the camera model. If 
you take d what is the d? d is something you can visualize it to be the focal length of lens, 
camera parameter where basically the distance of the projection plane from the origin and 
that is the d. What is the alpha? That is the angle subtended at the vertex of the pyramid. 
 



We define and see a view volume as how much you are looking both sideways and from top 
to bottom. And what are the infinite? How much you are looking? You cannot look beyond 
a certain point and something very close also you cannot visualize properly which is very 
realistic. So you have a front clipping plane distance f and a back clipping distance n f, you 
have the d where you have the projection plane, you have the alpha. So all these parameters 
are there in the projection equation as you see. This is one form of the projection 
transformation matrix Pf which is Pd multiplied by P.  
 
If you take the other form of the matrix Pd which is the identity matrix type 1 1 1 and minus 
by d you typically have the nature of the expression of Pd in this form. So kindly note down 
these two matrices and I hope you start from scratch and derive this matrix expressions 
yourself. I hope you are able to copy down the expression yourself as given in the slide. 
Please copy down these expressions and try to derive these from the figure which I have 
given.  
 
I will probably jump one or two stages here, steps basically so that I leave something in this 
exercise for you to write down matrices from the expression directly because you have gone 
to the 2D transformation, gone to the 3D transformation, gone through projective 
transformations, gone through viewing pipeline and now given equations you should be able 
to write in matrix or matrix back to equations, do the manipulation and again the most 
important thing is to visualize what these transformations mean because these 
transformations are nothing but basically implementing a graphical scenario from you for 
the user for the viewer and you must know why these transformations are very important.  
 
You will have the algorithms in graphics but the mathematics part is also very very 
important which you cannot forget and along with that the geometrical interpretation which 
you must have in mind. So we will wind up this lecture today on 3D viewing pipeline. We 
have in fact discussed about general transformations of viewing pipeline which consists of 
four broad stages applying normalize transformation, clipping to canonical view volume, 
use the projection matrix and then actually scale and translate in to view port. These are the 
four broad stages.  
 
We discussed the second  normalize in the last lecture the normalizing transformation which 
have five different steps such as rotation, translation, shear, scale and finally a scale again at 
the end. And those were the five different steps for the normalizing transformation which 
helped you to bring the view reference coordinate and the entire objects, align them with 
respect to the world coordinate system for proper viewing then of course you need to scale it 
down the canonical view volume or 3D view port clip. You have the clipping done which 
we will discuss later on. And then of course do the perspective projection from 3D. That 
was the general viewing pipeline and then of course we went through an example case study 
where, what about for a simplified situation? Let us say only camera model parameters are 
given is it possible to generate a view? Yes it is possible, you can by pass if not necessary 
the entire general 3D viewing pipeline and if the camera parameters are given.  
 
What are the camera parameters given? The d which is the distance of the projection plane 
from the center of the camera, the angle subtended at the vertex alpha which defines the 



pyramidal view volume and n and f the distance of the front and back clipping plane. If 
these parameters are given you can also define, come up with a projection transformation 
matrix which will take you from 3D to 2D.  
 
We have seen the last two expressions in the two different forms, almost similar expressions 
which take you from 3D to 2D and without in fact going to the extensive pipeline. But you 
must also note that the extended viewing pipeline which helps you to understand the 
generalize scenario which all graphic standards and packages mostly follow. So if you are 
using standard graphics packages and software and graphical standards let us say the PHIGS 
is an example which we have been following in this course.  
 
But extensively we have not come up with the specific examples but will devout one hour at 
least for certain examples of PHIGS and OpenGL together. We may need to follow such 
graphic standards. You have to follow a 3D viewing pipeline. But of course if you want a 
small software interface which is based on simple camera parameters or camera models, 
what you can basically do is use such a transformation matrix and get the transformation 
done from 3D to 2D which includes the canonic concept or even canonical view volumes 
and helps you to even clip if necessary. So that is the last slide and we wind up this lecture.  
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End of the lectures on 3D viewing projection transforms and viewing pipeline. Thank you 
very much.  


