
Theory of Computation 

Prof. Kamala Krithivasan 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture No. # 07 

Greibach Normal Form for CFG 

 

So, in the last class, we saw about the reduction of a context free grammar, so how to 

remove the epsilon productions, the unit productions and how to remove the useless non-

terminals. We also saw what is chomsky normal form, and what is the greibach normal 

form, and how to convert context free grammar into chomsky normal form, it does not 

contain itself. Of course, for epsilon we saw that, if you want to include epsilon, then we 

should have a rule of the forms S goes to epsilon, S this not occur on the right hand side 

of any production. 

Now, we shall see how to convert a grammar to Greibach normal form for that we saw 2 

lemmas, we will be making using of these 2 lemmas. Let us recall those 2 lemmas. 
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Lemma 1 says that define an A production to be a production with a variable A on the 

left, and if you have a grammar G is equal to N, T, P, S. Then for some reason if you 

want to get rid of the rule A goes to alpha 1 B alpha 2, where alpha 1 and alpha 2 are 

some strings. Then instead of this, you have to include a set of rules. With B on the left 

hand sides the set of B productions are B goes to beta 1, B goes to beta 2, B goes to beta 

r. Then this rule can be replaced by a set of rules, where you have that is you remove this 

rule, but instead add the rules. 
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A goes to alpha 1 beta 1 alpha 2 alpha 1 beta 2 alpha 2 and so on. So, instead of this r; 

instead of this rule, you have add r rules of this form. The effect will be the same, 

because if you apply this rule and afterwards you apply a rule B goes to beta i. Then the 

effect of applying this and then B goes to beta a. It is achieved by using the rule A goes 

to alpha i beta a alpha 2. So, the language generated will not be affected, it is the same. 

But the only advantage you have got is, you have got rid of this rule. 
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Let us see, why we need that when you convert the grammar into Greibach normal form. 

The next lemma is to avoid left recursion. This we have seen again, let G be a context 

free grammar. And A goes to A alpha 1 A alpha 2 be the set of left recursion rules with a 

on the left hand side. And A goes to beta 1 beta 2 beta r the non- recursive ; left recursive 

rules with A on the left hand side. Then this r plus s rules can be replaced by 2 r plus 2 

rules of this form. 



(Refer Slide Time: 03:14) 

 

A goes to beta i, A goes to beta i is that Z is a new non-terminal introduced and i varies 

from 1 to s, and Z goes to alpha i Z goes to alpha i Z 2 r rules. So the r plus s rules are 

really replaced by 2 r plus 2 s rules. In order, when we do this, the left recursion is 

removed, but a right recursion is introduced. But the language generated is not affected, 

this also we have seen. So, we will make use of these 2 lemmas, to convert a given 

grammar into greibach normal form. 
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So, let us take the simple example, we have started with the simple example S goes to a 

S b, S goes to a b. The language generated is a power n, b power n. So, for convenience 

we can take languages which do not contain epsilon. So, the first step will be like in 

Chomsky normal form. Every terminal symbol will be replaced by a non-terminal 

symbol. So S goes to a S b, S goes to a b will be replaced by S goes to A S B, S goes to A 

B, where the A and B are new non-terminals introduced. A corresponding to small a, and 

B corresponding to small b. 

Now, the capital A goes to a, Capital B goes to b will take care of the fact that. This A 

and B are ultimately converted into small a s and b s which are terminal symbols. We can 

very easily see that, this grammar generates a power n, b power n, this also generates A 

power n, B power n. Initially it generates capital A power n capital B power n. Then all 

the A s are made into are converted into small a s and all capital B s are converted into 

small b s. So the language generated, it is not going to be affected. 
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That is a first step. Then the second step is you, among the non-terminals, you introduce 

an ordering call them as A 1 A 2 A 3. So, in this example; for example, you can take S to 

be A 1 A to be A 2 and B to be A 3. Then the rules will be of this form, A 1 goes to A 2 A 

1 A 3, A 1 goes to A 2 A 3 and then A 2 goes to a, A 3 goes to b. This is you introduce an 

ordering among the non-terminals, again this is just renaming of non-terminal so, the 

language generated is not going to be affective. 
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Now, after doing this third step is use lemma 1 and 2 and convert the rules in such a way 

that at the end of this step, the rules are of the form in G N F or of the form A i goes to A 

j some gamma, where j greater than i. You may also have some Z rules that is a Z, the Z s 

are the new non-terminals introduced. So, you use lemma 1 and lemma 2 in an 

appropriate manner, we can take an example and see. And at the end of this step, either 

the rules will be in greibach normal form or the A i rules will be of the form, A i goes to 

A j gamma, where j is greater than i. This is the first symbol on the right hand side, the A 

j is such that j will be greater than i. When you do this, you may introduce some Z rules 

also, Z is the set of Z 1 Z 2 you may be introducing. 

Let us see, How to do this? For this, you go from actually A 1 to A n. First you convert 

the A 1 rules, then you convert the A 2 rules and so on. Actually in the example which we 

have considered, this step is not necessary. Look at the rules at the end of the second step 

A 1 goes to A 2 A 1 A 3. This is 2 is greater than 1, A 1 goes to A 2 A 3, this is greater 

than 1, A 2 goes to a, A 3 goes to b are in Greibach normal form. So, the third step in this 

example is not necessary. Some other example, it may become necessary. 
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Then the fourth step is convert the A i rules into greibach normal form. In this step you 

will go from A n to A 1. First you will see the non-terminals are A 1 A 2 A n, then by this 

condition the last A n rules will be in greibach normal form. Because you cannot have 

something greater than that on the right hand side. At the end you will find that the A N 

rules will be in greibach normal form. So, make use of them in A n minus 1 rules, then 

make use of them, A n minus 2 rules and so on, keep on back substitute and at the end of 

the fourth step, all the A i rules will be in greibach normal form. 

So, let us take this example, which we have been considering. Look at this rule, you have 

to the fourth step, you have to go from A n to A 1. So, look at A 3, this rule is in greibach 

normal form. Look at A 2 this is in greibach normal form, the A 1 rules are not in 

greibach normal form so, you have to convert them to greibach normal form. Use the 

lemma 1 so, you want to get rid of this rule so, instead of A to wherever there is A 2 rule 

you have to use them. That is lemma 1 instead of A 2, you use this rule that means 

instead of this rule you will be writing A 1 goes to small a a 3. Similarly, in this rule use 

lemma 1, you get rid of this rule, but substitute for this A 2, A 2 goes to A is a rule you 

are having. 

So, here also this A 2 you will be replacing by the right hand side that is A. So, these 2 



rules will be replaced by replacing the A 2 by A. So, this example, the fourth step 

becomes A 3 goes to b will be there, A 2 goes to a will be there. Then A 1 instead of A 2 

you write a A 1 A 3, A 1 goes to a A 3. Now, throughout the conversion either you will be 

using lemma 1 or lemma 2. And we have already seen that those 2 lemmas the language 

generated it is not affective. 

Now, you find that this grammar is in greibach normal form this rule on the right hand 

side. You are having only a terminal symbol, these 2 rules we are having a terminal 

followed by a string of non-terminals. So, the grammar has been converted into greibach 

normal form, with these 4 rules. But you can easily see that, this useless symbol A 2 is an 

useless symbol. Now, because A 2 we have already replaced so, this rule is useless and 

symbol is also replaced useless. So, 1 2 3 rules are enough, after conversion you may end 

up with some useless symbols, useless productions. You can remove them in the usual 

way so, this is the fourth step. 

The fifth step, which is not necessary in this example, is convert the Z rules into G N F. 

By the way, the Z rules are, they will be of the form. Z goes to some A i, something Z in 

the n Z or Z goes to some A i they will be of this form, the first symbol will not be A i 

anyway. So, again making use of lemma 1, at this stage all the A i rules are in greibach 

normal form. So make use of them and make instead of this A i put the right hand side of 

those rules. So in that case all the Z rules will be converted to greibach normal form. In 

this particular example, it is not necessary at the fourth stage itself, it is converted into 

greibach normal form. 
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Let us take one more example, where this fifth step will be necessary. So, let us take as 

almost similar example, (No Audio From 14:26 to 14:40) what is the language 

generated? The language generated is the dyke set, which is the well formed string of 

parenthesis. Now, let us convert these, the earlier one we had only these two rules, now 

we have one additional rule S, S goes to S S. So, the first step is, what is the first step? 

For every terminal symbol, introduce the new non-terminal. So, the rules will become S 

goes to S S, S goes to A S B, S goes to A B, A goes to a, B goes to b, this is the first step. 
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Then the second step is introduced an ordering among the non-terminals. So, make S as 

A 1, A as A 2, B as A 3. So, the rules will become now, A 1 goes to A 1 A 1, A 1 goes to A 

2 A 1 A 3, A 1 goes to A 2 A 3. Wherever you have S, you have put A 1, wherever you 

have capital A you have put A 2, wherever you have capital B you have put A 3. Then 

these rules will become A 2 goes to a, A 3 goes to b. Now, the third step becomes 

necessary. Because the condition that A i goes to A j, where j is greater than i is satisfied 

by these 2 rules, but not by this rule. 

This rule left hand side, you have A 1 right hand side also the first symbol is A 1. So you 

have to use something to convert this, now what do you do for that? Now, you note that 

this is the left recursive, which one you will use? Sometimes you have to use lemma 1, 

sometimes you have to use lemma 2. At this stage to convert the A 1 rules since, such a 

way that, the first symbol on the right hand side is A 2 or A 3. You have to use A lemma 

2, because there is a left recursive rule A 1 goes to A 1. The first symbol is again the 

same as A1 so, there is a left recursive rule. So, how do you go about doing this? 
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Now, you have A 1 goes to A 1 A 1 as a left recursive rule. And the non-recursive left 

recursive rules are A 1 goes to A 2 A 1 A 3, A 1 goes to A 2 A 3. In the lemma if you put 

alpha 1 is this, beta 1 is this, beta 2 is this. So, there is 1 plus 2 rules here, instead we 

have to replace them by 2 plus 4 rules, 6 rules. So, what are they? The rules are A goes to 

beta i and A goes to beta i Z. So, you will have A 1 goes to, you will be introducing the 

new non-terminal Z. So, A 1 goes to A 2 A 1 A 3, A 1 goes to A 2 A 3. This is of the form 

A goes to beta i. Then you have A 1 goes to A 2 A 1 A 3 Z, A 1 goes to A 2 A 3 Z. 

So, instead of these two rules, you are getting four rules now, instead of this one rule you 

must get two rules. What is alpha 1? Alpha 1 is this A 1, not this together A 1 alpha 1, is 

it not? It left recursion. So, alpha 1 is A 1, the rules will be of the form Z goes to alpha 1, 

Z goes to alpha 1 Z, but what is alpha 1 is A1. (No Audio From: 19:53 to 20:04) A 1 (No 

Audio From: 20:12 to 20:21). So, instead of the three rules, we have six rules. Apart 

from that the other two rules will be there, A 2 goes to a, A 3 goes to B. So, at the end of 

step 3, we have 8 rules. The A i rules satisfy the condition that they are of the form A i 

goes to A j something, this is 2 is greater than 1 2, is greater than 1, and so on here, they 

are in greibach normal form. Apart from that we are having 2 Z rules also. 

Now, the step four, you convert the see in step three; we have gone from A 1, then A 2 



then A 3. A 1 we have done so that, it is converted into the required form, A 2 and A 3 are 

already in greibach normal form, so we did not have to do anything about that. In step 4, 

we have to convert all the A i rules into greibach normal form. For that first we start with 

A 3, then A 2, then A 1. So, at the end of step three, all the A n rules will anyway be in 

greibach normal form. So, See A 3 will be in greibach normal form. A 2 also is in 

greibach normal form. Now, we have to convert this into greibach normal form. Again 

for this, which one you will use lemma 1 or lemma 2? Lemma 1, because on the right 

hand side, you are having A 2, this could be easily replaced by the small a, so, in each of 

this four rules, you can replace A 2 with A. 
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So, at the end of step 4, A 3 goes to b, will be there A 2 goes to a, will be there then A 1 

goes to a, we will see the rules and then write. A 2 A 1 A 3, A 1 goes to, instead of A 2 

you write a A 1 A3, A 1 goes to a A 3, A 1 goes to a A 1 A 3 Z, A 1 goes to a A 3 Z. The 

two Z rules will be there, Z goes to A 1, Z goes to A 1 Z, those two rules will be there. 

So, at the end of step 4 you have these rules. Now, note that all A i rules have been 

converted into greibach normal form. 

Step 5 is to convert the Z rules to greibach normal form. So, step 5, these 6 rules will be 

there, and maybe I need not write them again. These 6 rules will be there. These rules we 



have to convert to greibach normal form, again you have to use lemma 1 in this for this a 

1 you have to substitute from these 4 rules. Whatever is on the right hand side, you want 

to get rid of this rule so, Z goes to instead of A 1, use this right hand sides. Z goes to A 1 

Z instead of A 1, use these right hand sides. So, you will get Z goes to a A 1 A 3, Z goes 

to a A 3, Z goes to a A 1 A 3 Z, Z goes to a A 3 Z. Now, for this rule if you do the same 

thing you will get, Z goes to a A 1 A 3 Z, Z goes to a A 3 Z, Z goes to a A 1 A 3 Z Z for 

this A 1. 

I am substituting all these four, right hand sides Z goes to a A 3 Z this Z comes here. So 

for this A 1 you can substitute all the four. For this A 1 also you can substitute all the four 

so, you get 8 rules. But note that this is the same as this, it is getting repeated. These two 

rules are repeated so, need not have that, it is the same. So at the end, you are getting 6 

plus 6, 12 rules. Now look at these 12 rules. At the end of fifth step you are having 12 

rules. These rules are all greibach normal form these rules are also in greibach normal 

form. So, you have converted the given grammar into greibach normal form. So, the 

steps involved in conversion to greibach normal form are first step will be for every 

terminal symbol introduced a new non-terminal symbol. 

Then, rename the non-terminals and introduced an ordering among them, call them as A 

1 A 2 A 3, this is just to bring the A i rules into greibach normal form. Then the third step 

you can use lemma 1 and lemma 2, and convert the rules in such a way that at the end of 

the step you will all the A i rules will be of the form, A i goes to A j gamma, where j is 

greater than i. While doing this, you may introduced some Z symbols, new symbols you 

may be introducing and in this step, first you will convert the A 1 rules then the A 2 rules, 

then the A 3 rules and so on up to the n th rules. 

At the end of this step all the A n rules will be greibach normal form. So, in step 4, what 

you do is convert the A i rules in the greibach normal form, for which you will go from A 

n to A 1. First you look at the A 1 rules then A m i A n minus 1 rules and so on. So, at the 

end of step 4 all the A i rules will converted into greibach normal form, but the Z rules 

may not be in greibach normal form. So, the fifth step is use again, lemma 1 to convert 

the Z rules into greibach normal form, use substitution. So, this is what we have done in 

this example so, at the end this converted into greibach normal form. The language 



generated it is not affected; see it is easy to see in this example. 

Look at this example, this one, this is the dyke set. It is easy to see that dyke set, is it not? 

It has got three simple, three rules, and it is very simple. Whereas, at the end you are 

ending up with that 12 rules and by looking at these twelve rules, it is there is no way 

you can immediately say that it is dyke set, is it not? You would not know, what is the 

language and it is a slightly complicated. So, but how can you prove that the language 

generated is the same as the earlier 1? Because throughout the conversion, what have we 

used? We have used only lemma 1 and lemma 2, nothing else. And we have already 

shown that, if you use 2 lemmas, those 2 lemmas the language generated is not affective. 

So, at the end, you end up with the greibach normal form, it generates the same rule 

same language. Now, what is advantage? Why should you convert something into 

greibach normal form? As I told you, the thing is it is easier to for parsing. And when 

you want to show the equivalence between pushdown automata, and context free 

grammar, taking the grammar in greibach normal form helps. Also when you write a 

grammar for a compiler as far as possibly, if you write the rules in greibach normal form 

that parsing portion will be easy. There are construction of the table will be easy. So, we 

have seen two normal forms. 

One is the Chomsky normal form and another is the greibach normal form. There are 

other normal forms something is called operator precedence normal form, binary 

standard form. There are other things also, but we will not go into that. Each one has its 

own advantage, because something will some for some theorem that may be helpful and 

so on, even greibach normal form for proving some theorems. If you assume that the 

grammar is in greibach normal form, it is very easy. We will; we shall see where it is 

used in due course. Now, coming back to ambiguity, we have seen, what is an ambiguous 

grammar? What is the ambiguous language? What is an inherently ambiguous language? 

And so on. 
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So let me take this example, which we have already considered S goes to a B, S goes to b 

A, B goes to b, B goes to b S, B goes to a B B, these examples we considered earlier in 

the class. A goes to a, A goes to a S, A goes to b A A, the language consisted of since 

having equal number of a(s) and b(s) epsilon is not included, is this grammar is 

ambiguous or not. Consider the string aa bb ab, we can see that this particular string can 

be generated in two different ways. Start this S now, there is one thing which will make 

use of later see when you have S and A combination that is S you have, and you have to 

generate the three (( )). When you have S and A, you must use this. When you have S 

and B you can use this rule that is fixed. 

Similarly, when we have B and A, we have to use this rule. If you have B and B, you can 

use either of them. If the non terminal in the first symbol they tell you by looking at the 

first symbol in this, you can able to say which rule is used. Then such a grammar is 

called LL one grammar and that is very useful in recursive decent (( )). This is not a LL 

one I hope you have (( )) problem, but S and a combination this is the string to be 

generated so, first you have S and a. So, you have to rule, use this rule then B and a next 

symbol to be generated is a so, you have B and a combination so, we have to use this rule 

only a B. 



But for this B, you can either use b and terminate or in another way this two steps are the 

same, you can use b S here. Then from this b you have to generate b a b so, you will get 

b S a B b. Now, here from this S, you have to generate B so B a, this will go to a, this 

will go to b. So, the string generated is a a b; a a b b a b here also, a a b b a b, but the 

derivation trees are different. So, this grammar is ambiguous, but this language is not 

inherently ambiguous. You can give an unambiguous grammar for this we can consider 

how to give an unambiguous grammar like this. Now, the first as I told you at this stage, 

first 2 steps are the same, you generate a a and then capital B B, a a B B you generate. 

Then from these 2 b (s), you have to generate this. 

We know that if, a string is derivable from S, it has got equal number of a (s) and b (s). If 

a string is derivable from B, it has got one more B then it has a (s). If a string is derivable 

from a, it has got one more a, then it has b (s0. Now, from this B, you have to derive a 

string which is got one B more than a. And from this B also you have to derive a string 

which is got one more B then it has c's. Now, this b b a b portion, you can split like b 

bab. That is, this also has one b and zero a's, and this has got 2 b (s) and one a (s) or you 

can split it as bba b. This portion will have two b (s) and one a (s) this has one. 

So, this b b a b, we can split in two ways, two substrings, each one of them having one b 

more than the number of a (s). And because of that possibility, this derivation from b b is 

done in two different ways. Now, if you want to construct an unambiguous grammar, you 

must avoid that, just think about how to do that? 
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Now, as in expressions like you have E goes to E plus E, E goes to E star E, E goes to E, 

E goes to identifier. Now, let me take the identifier, we will keep it as it is. So, 

expressions of the form i d plus i d plus i d can be generated by this, but they will be 

ambiguous you can have two different derivation trees like, you know E goes to E plus E 

E plus E i d i d i d. Or E goes to E plus E, this goes to i d, this again goes to E plus E and 

this goes to i d, this goes to i d, can have two different derivation trees. And so, there will 

be problem, but if you keep a method that you will have to have only the leftmost. The 

first this has to be the evaluation is from left to right, then this will be performed first and 

then this with a result, this will be added. So actually, this will be the one with that will 

be taken. These two will be added first with the result, this will be added, this will not be 

taken if, the evaluation is from left to right, you have to do that. 
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If, you have something like i d plus i d star i d, then E goes to E plus E E star E and E 

goes to identifier, identifier, identifier. You can also have E goes to E star E, E goes to 

identifier E plus E identifier, identifier, which one we will consider? Here, even if you 

take the evaluation from left to right usually star has a higher precedence. So, this will be 

performed first and then the addition so, this tree will be taken and not this tree. So, you 

can have that grammar and have this set of a thing, that is evaluation has to be from left 

to right and then there is precedence among the operators and so on. And you want to 

overwrite the precedence use the parenthesis. But you can write it the same effect by 

consider see, this is a term and then each one is a factors. So, instead of having those 

rules, you can have set of rules of this form. 
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E goes to E plus T, E goes to T expression plus term, because if the evaluation is from 

left to right, you always have expression plus the term T goes to term. I will remove this 

rule T goes to T star F, T goes to F, F goes to E, F goes to i d, F is factor. So, what will be 

the derivation tree for the 2 things? If you have E plus E plus r i mean i would i d plus i d 

plus i d, you will use E goes to E plus T, then again E plus T, T goes to F, F goes to i d, T 

goes to F, F goes to i d here, E goes to T, T goes to F, F goes to i d. This will be the only 

derivation tree and this makes sure of the left to right evaluation process. 

Then when you have that i d plus i d star i d, what sort of a derivation tree you will have? 

E goes to E plus E, this E goes to E plus E plus T, T goes to T star F, E goes to T, T goes 

to F, F goes to i d, T goes to F, F goes to i d, F goes to i d. This is the only way you will 

have, we cannot have it another way. So, for every string of this form or whatever forms 

it is involving identifiers and operators plus r star. There will be a unique derivation tree, 

this grammar with consists of this. This makes sure that the evaluation is left to right, 

here also. Because of this, the evaluation, if you have continuous star the evaluation will 

be i d star i d star i d star, the evaluation will be from left to right. 

But then star will be performed first before the plus is because the term is evaluated first 

T star F you have E is the highest one, and then from that expression you go to term 



consists of factors. So, expression consists of terms and the terms will be evaluated from 

left to right, terms consists of factors, will also be evaluated from left to right. But factors 

are evaluated, then terms are evaluated, then expression is evaluated. That gives the 

priority operation is taken, star has higher precedence that plus that is taken care of. 

So, you can split this in such a way, that you get an unambiguous grammar and this 

grammar has six rules. So you see that this is an unambiguous grammar and it is very 

convenient to use this unambiguous grammar for generating the arithmetic expression, 

because that is very convenient and for code generation also, that will be very useful. So, 

you can convert an ambiguous grammar into an unambiguous one. Provided the 

language generated is unambiguous. You can see, if you have an inherently ambiguous 

grammar, whatever grammar you give, it will be ambiguous only. But if it is a 

unambiguous language, you can convert an ambiguous grammar to an equivalent 

unambiguous. Give an unambiguous grammar for ambiguous grammar. 

But in this example, we have analyzed how the strings are formed and in the compiler, 

what do we do. The evaluation will be from left to right and star will have a higher 

priority than plus. So, we were able to give an unambiguous grammar. This any grammar 

means you have to look into the problem, there is no hard and first rule that you have to 

go like this step by step in greibach normal form, it was a step by step procedure, it is a 

very straightforward you do this step first, do this steps again and so on. Now, if you 

want to convert an ambiguous grammar into an equivalent unambiguous grammar, it is 

not a straightforward procedure. Each problem, you have to look in to that problem and 

see what can be done, convert this to that way and so on. So, is the way you can do. 
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There are as I mentioned inherently ambiguous languages like a power n, b power m, c 

power k, n is equal to m or m is equal to k. Such languages are inherently ambiguous, 

(No Audio From: 47:44 to 47:53) we have already noted that given a context free 

grammar, it is un decidable whether it is to find out, whether it is ambiguous or not. But 

if a language is a bounded language, what is the bounded language? There are fixed 

words w 1 w w 2 like that w k fixed words such that, the language will be of this form, i 

1 i 2 i k they are integers having some relationship. 

Now, if the language is of this form, it is called the bounded language. And given a 

bounded language, there are algorithms which will tell you whether it is inherently 

ambiguous not. If L is a bounded language, bounded C F L there exist an algorithm 

which tells us whether L is inherently ambiguous or not. But we will not go into the 

details of the algorithm it involves some other definitions, some other concepts and so 

on. So this is the result which will take for grant. 


