Theory of Computation
Prof. Kamala Krithivasan
Department of Computer Science and Engineering
Indian Institute Of Technology, Madras

Lecture No. # 40
Grammar Systems

(Refer Slide Time: 00:29)

Grammar Systems and Distributed Automata g

With the need to solve different problems within a short time in an
efficient manner. parallel and distributed computing have become
essential. Study of such computations in the abstract sense . from
the formal-language theory point of view. started with the
development of grammar systems . In classical formal-language
theory. a language 1s generated by a single grammar or accepted by
a single automation. They model a single processor or we can say
the devices are cenfralized. Though multi tape Turing machines
(TMs) trv to introduce parallelism in a small way . the finite control
of the machine is only one.

MPTEL

Today, we shall study about grammar systems. What is the motivation for this? Today
the idea of distributed computing plays an important role. Different problems of high
intensity computation time; they are process using distributed computing, and parallel
computing. So, how do you abstract these models? So, from a formal language theory of
point of view, this was model using the idea of a grammar system. In classical formal
language theory, a language is generated by a single grammar or accepted by single
automata, but in a grammar system, several grammars join together and generate a string;
and in the automata several automata joined together and process a string. So, single
grammar corresponds to a single processer, they are centralised; you can say them they
are centralized.

(Refer Slide Time: 01:32)

But in distributed computing, you have several processes and the processes are all
communicating with each other. How do you capture this? With the idea of a grammar or

a grammar system that is what we are going to study today.

(Refer Slide Time: 02:00)

Sgsf'mn §

Layammay

The Ha,gh..bomrl nodel

:;;;quenkal

The classvoum fode |

Pa.m“e(

So, in grammar systems, we have two models; the blackboard model which is a
sequential model and the classroom model, which is a parallel model. What is a
blackboard model or a sequential model? You have a problem to be solved and the
students are going to solve that in a class. There is a blackboard one student comes and

write something on the board. He solves part of the problem, he goes back. The second
student comes and continues with the solution tries to work out a few more steps. And
then he goes back then the third student comes he tries to work a few more steps and so

on.

This continues until the whole problem is solved. So, the idea is that of a sequential
processing all the students do not solve the problem simultaneously one by one they
come and solve the problem. A portion of the problem and then the next student takes
over. So, that is why this is called the blackboard model. So, let us see how it works the

first student goes and he write something on the blackboard.

He comes back then the second student goes he continues with the solution writes a few
more steps comes back, then the third student goes continues with the solution he comes
back and then it is continued with the next student. So, this type of a model is called the
sequential model or the blackboard model. The grammars one by one they generate the
sentential form and ultimately lead to the string generator.

(Refer Slide Time: 03:56)

In contrast to that you have the classroom model; in classroom model what happens is it
is like a program. You have a main program and in the main program you have sub
routines each student is given one portion of the program. And they have to find the
routine they have to write down the solution for that particular routine and the main class

leader. He is the main person he is writing the main program or trying the main solution.

So, when he executes, he want some answer at some point he has to make a function call
it is or a sub routine call at that stage he makes a query and the sub routine corresponds
to the problems solve by another student. And she or he provides the corresponding
answer to that this sort of a processing goes on until the whole problem is solved. So, let
us see how this works this each student is trying to work out some portion of the problem
and then this person gets a query. This answer is provided by this person after some

instance this is the class leader.

He is trying with the solution and he may get another query for which the answer may
come from this person it is like making sub routine calls this person. When he calls a sub
routine it answer is given here then he makes another query. The answer comes from
here and this person himself, he may ask for a query and then the answer may be
supplied by this portion this person. So, this sort of a thing may continue and this sort of
a thing is called a parallel model, because all of them are working on their sub problems
simultaneously and one person has a query means he asks and another person provides

the answer this is called the parallel communicating model or the classroom model.

(Refer Slide Time: 06:11)

CD Grammar Systems
Definition

A CD grammar system of degree n 1. is a construct.:
GS=(N.T.S.R......P))

Where N and T are disjoint alphabets (non terminals and terminals) :

S e N is the start symbol and £.......F, are the finite sets of
rewriting rules over NUT . £........P, are called components of the
svstenn.
Another way of specifving a CD grammar system is :
GS =(N.T.8.G,........G,)
@ where G =(N.7.P.§).1<i<n

RIPTEL

So, let us see the formal definition now. So, the first model is called CD grammar
systems or co operative distributed grammar system. The definition is like this A CD
grammar system of degree nis a construct GSN TSP 1 P 2 P n where n is the set of
non terminals, t is the set of terminals S is the start symbol and P 1, P 2, P n are n sets of

productions they are finite sets of rewriting rules over N union T. You can have them as
type 0, type 1, type 2 or type 3 or you can also specify the grammar system like this N T
S G 1, G2, G N where each grammar G i is specified like this. You have the set of non
terminals, you have the set of terminals for each grammar and you have the start symbol
S and the set of productions are given by P i for G i either way it can be specified. It is

easier to specify this way. We can specify this way also does not matter.

(Refer Slide Time: 07:29)

Definition

Let GS=(N.T.5.P......P,) be a CD grammar system. We
now define different protocols of co-operation.

1. Normal mode (* mode):=> is defined by . x=>y without
any restriction. & 3

The student works on the blackboard as long as he wants.

2. Terminating mode (7 mode): for cach ie {L....n}. the

r
terminating derivation by the ith component . denoted by =P> L is

defined by :r=f>_1- if and only i .\'=P>_1f and there 1sno z e (\ ur)

o o
"\gf)mh y=z. "

MIPTFEL

LetGof Sisequalto N TSP 1P 2P nbeA CD grammar CD stands for cooperative
distributed grammar system. We now, define different protocols of cooperation what do
you mean by different protocols of cooperation. Now, we have seen that CD grammar
corresponds to blackboard model one student works out a few steps and then he goes
back. Then the next student comes. Now the question is at what time does the first
student go back and the second student comes. And at what time does the second student

go back and the third student comes.

There can be several protocols for that one is any time the student can go back and the
next student can come in that is called the star mode in the formal definition. Another
thing is a student proceeds as much as possible that is he is trying to work out a solution
and he proceeds till at a certain stage he is not able to proceed further then at that stage.
He goes back and the next student who is capable of proceeding further comes and takes
over and this is called the terminating mode. Because the first student spends time on the

board as long as possible and goes back only when it is not possible for him to proceed
and the next student comes in formal model this is called the t mode or the terminating

mode.

There are other modes let k be a finite integer and when that finite integer is there the
first student comes and he works out for k steps in the solution. He continues for k steps
then he goes back whether he is able to proceed or whether he is not able to proceed. He
just goes back and then the second student comes and continues with the next k steps.
So, each student spends exactly k steps on the board that is he writes just k steps on the
board and then he goes back this is called the equal to k mode for k is equal to 1 2 3
etcetera then you have what is known as greater to or equal to k mode less than or equal
to k mode.

(Refer Slide Time: 10:15)

So, let me write down the modes. We have seen what a star mode is any time the student
can go back t mode the student goes back when he is not able to proceed equal to k
mode. These are all modes each student writes k steps and greater than or equal to k
mode, each student spends k or more steps on the board. That is he comes and works for
k steps he may continue for some more step, but minimum is k. So, minimum k steps,
but it can be more also then he goes back the next person comes and so on. Similarly,
you also have less than or equal to k mode. That is each student spends k or les number

of steps on the board he can start 1 step or 2 steps up to k steps he can go, but he cannot

go beyond that.

So, you have 5 modes of cooperation in this grammar then star mode is called the normal
mode and the definition of derivation is like this normal mode the i’th component. It is
defined by from x you can derive y without any restriction any number of steps. You can
spend on the i’th component or the i’th grammar you can have a derivation any number
of steps in a (()) manner. When you say the student works on the blackboard as long as
he wants terminating mode for each i belonging to 1 to n the terminating derivation by

the i’th component that is denoted by this symbol double arrow.

This denotes the component in which the processing is done t denotes the terminating
mode that is defined like this. That is you are able to derive from x the string y and from
y you cannot proceed in the same component that is there is no z such that from y you

can derive is z then this is called the terminating mode.

(Refer Slide Time: 12:42)

3. =kmode : Foreach ie{l.....n{ the k-steps dcrl\ntwn by the
-k

ith component. denoted by :> . 18 defined by \‘=>1 if and only

if there are x.....x, (N UT) such that x=x,.y=x,,

and for each j . 1<J<;;

.‘{':>I
P .

4. _k mode : For each component P, the _

k — steps derivation

<k
by the ith component denoted by = is defined by :
i

<k =t :
x= v if andonlyif x=y for Somek <k.
rid Yy +3

Then you have the equal to mode equal to k mode k is an integer i denotes the
component number the k steps derivation by the i’th component is denoted by this from
X. You can derive y in this if, you have x 1 x 2 x k plus 1 where x is equal to x 1, y is
equal to x k plus 1 and from x 1 you can derive x 2 in 1 step, X 2 from x 2 you can derive
x 3 and so on. In general from X j you can derive x j plus 1. So, you have k steps deriving
x 2 from x 1, x 3 from x 2, x 4 from x 3 and so on. So, in k steps you derive x k plus 1

from x 1 and all of them take place in the same component P i and less than or equal to k
mode you have k or less than or number of steps that is x less than or equal to k y if and

only if it is done in k dash number of steps where k dash is less than or equal to k.

(Refer Slide Time: 13:56)

5. ~kmode : The _ k steps of derivation by the ith component .

2k
denoted as =, is defined by
4

=k =k
x=> vif andonlvif x=y for somek = k.
; Yy x=2V.

Let D={*fU{sk.2k =k |k21}.
b

And similarly, greater than or equal to k mode that is you derive y from x in greater than
or equal to k mode in the component P i if you derive y from x in k dash number of steps
where k dash is greater than or equal to k. So, these are the modes and so, the mode you
can denote as D is equal to star t star you can have the star mode, you can have the t
mode, you can have the less than or equal to k greater than or equal to k equal to k mode

where k can be an integer it can be 1 2 3 etcetera.

(Refer Slide Time: 14:39)

Definition

The language generated by a CI) grammar system

GS =(N.T.S.F,.....P,) in derivation mode fe€D is:

i I
o W el |S2a>a,..=a,=w.m2l,
L (GS)= L o

B<i smlsj<m

The language generated by the grammar system with N components in the mode f f
belongs to D. We have seen what is D earlier it is L of f G of f is equal to a terminal
string, which belongs to T star such that from S you derive the sentential form alpha 1 in
component i 1 in the f mode and from alpha 1 you derive the sentential form alpha 2 in
component i 2 in the same mode proceeding like this. You derive alpha m from alpha m
minus 1 in component i m using the same mode. So, m is greater than or equal to 1 and

these are all one of the n components.

So, each i j is within 1 and n it is one of the components after k if it is equal to k mode
after k steps it has to switch component similarly, if it is a T mode when it is not able to
proceed further it switches component.

(Refer Slide Time: 15:56)

Example

1. Consider the following CD grammar system :

GS, =({s.x.X'.Y.1'}{a.b.c}.5.B.P,).

R={S>S8>\ . X' > X1 5T}
P,={X >a\" .} > bl'c.X »a.} - bc)

If f=%* mode. the first component derives § = \T the second
component derives from 1'.01 ¢, it can switch to first component or
derive aX” from X.

In the first component -\ can be changed to .\ or J'can be
ged to Y or both . The derivation proceeds similarly.

Let us consider some example consider the following CD grammar system, where you
have these are the non terminals S, X, X dash Y; Y dash terminals are a b ¢ S is the start
symbol. You have two components, in one component you have these set of rule the
other component you have these sets. So, these are the rules in the first component in the

second component you have the following set.

Now, what is the language generated and their different modes suppose you consider the
star mode any time you can switch from one component to another. You have to start the
derivation which is S so, S goes to S you can use any number of times you want then you
have to go from S to X, Y. Now, when you go to X, Y you cannot proceed in this
component, because there is no rule with X on the left hand side or y on the left hand

side here, and you have to use either this or this.

Now, if we use this the star mode after once step again you can come back here, if you
use this again, you can come back here or you can use both and come back here, then X
dash and Y dash can be turned into X and Y. You can just turn one of them and again go
back or turn both of them and go back all possibilities exist, because of that you find that
this rule along with X dash goes to X will generate number of a’s. So, one a will be
generated again you can repeat this process any number of times. So, as many a as you
want you can generate similarly, you can use this rule and again change Y dash to Y and

then use this rule any number of times you want.

So, with this sort of a thing any number equal number of a’s and b’s will be b’s equal
number of b and c will be generated. And that can be done any number of times finally,
you end up the derivation with this rule or with this rule both X and Y have to become
terminals as long as there is one non terminal the derivation continues. So, in the
sentential form you will have either X dash or Y dash or both or X or Y or both you can
have X dash and Y are X and Y dash and so on. So, it is possible to derive any number of
a’s and any numbers of b’s and ¢’s, but the number of b’s and c¢’s will be equal, because

this is the linear rule.

(Refer Slide Time: 18:44)

It is not difficult to see that the language generated is

{a’"b"c" mnz I}.

The same will be true for
tmode.=l mode.z1 mode.< k mode fork z1.

But. if we consider = 2 mode . each component should execute two
steps . In the first component § = § = 171" In the second
component , \'V = a\'l = a\'bl c.

Then control goes back to component one where Y and [are
changed to X and Y in two steps. The derivation proceeds in the
similar manner.

So, the language generated will be equal number of b’s and ¢’s and any number of a’s of
course, there is no connection between m and n except the they are greater than or equal
to 1. So, the same idea you can also consider for t mode e equal to 1 mode greater than or
equal to mode less than or equal to k mode etcetera, but if you consider the equal to 2
mode there is a difference. So, if | consider equal to 2 mode (No audio from 19:13 to
19:21) in each component there should be 2 steps taking place.

So, what you have is you start here 1 step second step. So, X and Y you have and now,
you switch to the next component and the next component you have this rule and this
rule. So, when you have this rule 1 a is generated when you apply this rule 2 steps have

to be performed in this component and the only way you can do is this and this. So, 1 a

will be generated 1 b will be generated 1 ¢ will be generated now, after applying 2 steps
you go back to the first component change the X dash to X, Y dashto Y.

So, 2 steps are over here come back again generate 1 a 1 b and 1 ¢ go back and. So, on
this you can continue and every time you come to the second component 1 a, 1 band 1c
will be generated and when you go to the first component X dash and X, Y dash will be
change into X and Y finally, you have to terminate the derivation with this rule and with
this rule if you use just one of them and go back there will be problem. What is the
problem you are spending only one rule here and it is not possible you have to use two
rules. So, when you want to use this rule and then if suppose you use this rule and go
back here you can use only one rule and that is not allowed you have to use two rules in

each component.

(Refer Slide Time: 21:04)

It is easy to see that the language generated by G, in the = 2 mode
is {a"h"c" |2 l}. A similar argument holds for ~ 2 — mode also
and the langeage generated is the same .

At most , two steps of derivation can be done in each component .
Hence . in the case of =k or ~ k mode where k ~ 3 . the language
generated 1s the empty set.

So, when you have equal to 2 mode the language generated will be a power n, b power n
c power n, which is a context sensitive language. Now, the rules in each component can
be type O, type 1, type 2 or type 3, but of interest is type 2, because when you have

context free rules the power is increased.

You are able to generate context sensitive languages with context free rules in a grammar
system whereas, if you use just type 3 grammar regular rules then the power will not
really be increased you will be able to get only regular sets. Now, suppose k is greater
than or equal to k mode or greater than or equal to mode you consider where k will be 3,

4 or 5 then look at the rules here, I can have only 2 steps | cannot have more than 2 steps.
So, if it is equal to k or greater than or equal to k mode where k is 3, 4 or 5 or etcetera no

derivation is possible the language generated is empty.

(Refer Slide Time: 22:15)

2 GS,=({S.4}.{a}.5.P.P,.P,)
B={S—> A4}
P,={4-S}

P,={4->a}

In the * mode {0‘" |n2 2} is generated as the control can switch
from component to component at any time.

Asimilar results holds for =1.<k(k = 1)modes. For =1.= k.

2 k(k= 2).the language generate is empty as § — 4.4 can be used
only once in P, and 4 —a can be used once in /i

Another grammar let us look into this. So, this is a grammar with three components there
are two non terminals, one terminal and three components the rules are like this. In the
star mode we can use this rule and then again you can make it go into this you can
generate A, A, A anytime you can convert the A into small a or convert it into S and
generate 2 more A S and you can see that you can generate 2 A S, because first time you
have to use this rule 1 A it is not possible to generate it is possible to generate 2 A S or 3
A S and so on. So, the language generated will be this a power n, n greater than or equal
to 2 which is a regular set now, similar a cell holds for equal to 1 great equal to k and. So

on.

(Refer Slide Time: 23:13)

In thcj mode in [} .S = A4 and if the control goes to Py from AN\ |
aa is derived . If the control goes to P from AA . SS is derived .
Now the control has to go to £} to proceed with the derivation

S8 = A441 . and if the control goes to P, . 8" is derived : if it
goes to Py, a'is derived . It is easy to see that the language generated
in rmode is

{cf" |nzl}.

What is the language generated in the t mode, if you have greater than or equal to k, k
greater than or equal to 2, then the language generated is empty as this can be used only
once in P 1 and a goes to a can be used only once in P 3 for 3 equal to 1 mode. Now, in
the t mode what is the language generated go back S goes to A A then suppose | start
using this rule then I have to convert both the a into S S then | go back here then both the
S I have to convert into A A.

So, I will get 4 a. So, the derivation would be like this either I will get 2 a and the a can
be converted into small a. Where | will get a square or they will get converted to S S and
again, I use the rule S goes to A A it is a terminating mode | should proceed in the same
component as long as possible. So, again this S also will be converted into 2 a. Now, |
have a chance to go to component 3 where all the 4 a will be converted into small a. It is
not possible to just convert portion of it and leave the other, because it is a terminating
mode as long as it is possible to apply the rule a goes to a I will have to use it then if I
use the rule a goes to S all the 4 a will be converted into 4 S S.

And so, 4 S S will be there they will be converted into 8 a using the first component and
again | have the choice of making them into small a or proceeding further. So, you will
find that you can generate a power 4. We can generate a squared you can generate a
power 8 and so on. So, the language generated in the t mode is a power 2 power n
another grammar let us consider this also has three components the first component has

rules like this the second component has rules like this and so on. There are three non
terminals, two terminals and so, what happens when you have star mode equal to 1 mode
less than or equal to k mode.

So, you have to apply this rule to proceed further then I can just proceed with this X 1 in
the star mode and generate something | want turning into X 2 and then again going back
to X 1 going back here and so on, anything | can derive. So, from X 1 | can derive some
string of a and b I can do the same thing with this X 1 have derive some string from the
second X 1. So, | can clearly derive two different strings from the 2 X 1’s, but minimum
is one symbol. So, the length of the string will be generated the length of the string
generated will be greater than or equal to 2 minimum length is 2 and actually w will be
of the form w 1, w 2 where w 1 and w 2 are any strings of a’s and b’s.

So, that is why you just have any string of a’s and b’s generated where the length of the
string will be minimum 2 it can be anything, but what happens when you use equal to 2
mode. So, at each component you have to use 2 steps the derivation in each component
consists of 2 steps in that case what happens you use 2 steps S goesto S, S goes to X 1 X
1. Now, from this X 1 if I use this rule and from the second X 1 if I use this rule I can
derive 1aand 1 a but if | go here X 2 can be converted into X 1, but here I have to spend
2 steps right that is not possible. So, if I use this rule for this X 1 | have to use the same
rule for this X 1.

(Refer Slide Time: 28:01)

So, the derivation will be like this in the first component starting with S 1 get S in 1 step
actually the rule S goes to S is just added. So, that you are able to get 2 steps in the first
component then from this you get X 1, X 1 this is done in 2 steps then you have to go to
another component. If you go to P 2 and apply the rule you will get a X 1 you have to
use the same rule here a X 2, a X 2, a X 2 then you go back to the first component and
convert thisintoa X 2 into X 1, X 2 into X 1.

So, from here to here there are 2 steps this X 1 derives this X 1 derives this and here
again 2 steps X 2 goes to X 1, X 2 goes to X 1 then | can proceed using the rule by going
to the third component b X 2 a then using the same rule | can get b X 2 and so on, then |
can terminate the derivation using something. So, | can get something like a b b again
note that you are using two rules in each component suppose at this stage | tried to use b
X 2 here, but just b here what happens when | go to the first component to convert X 2 to

X 11 can use only 1 step and that is not allowed I have to use 2 steps.

So, when I use the rule it has to be a repeated twice and I get strings of the form w w. We
know that this is a context sensitivity language, but note that each component has only
context free rules. So, with context free rules you are able to generate context sensitive
languages. In fact, the 3 languages a power n, b power n, ¢ power n, w w and a power n,
b power m, a power n, b power m they are called they have some features, they are
useful for defining what is known as mildly context sensitive languages. And usually
when you consider a context sensitive language means usually consider these three
languages and show that they can be generated of course, a power n square does not
come under this. (No audio from 30:51 to 31:05)

(Refer Slide Time: 30:51)

A similar argument holds for 2 steps . For = korzkmodes(k 23).
the language generated is empty . as each component can use at
most two steps before transferring the control.

We state some results about the generative power without giving
proof. The proofs are fairly simple . and can be tried as exercise . It
can be easily seen that for CD grammars systems working in any of

the modes defined having regular | linear . context — sensitive . or
fype 0 components . respectively . the generative power does not
change : 1.e.. they generate the families of regular . linear, context —
sensitive , or recursively enumerable languages . respectively .

Now, what can you say about the generative power. It is interesting that context free rule
with context free rules you are able to generate context sensitive languages. But what
happens if you use type 0 or type 1 rules actually type O or type 1 it can be seen that the
CD grammar systems working in any of the modes. It can be star mode, t mode or
anything, but if you have regular rules or linear rules or context sensitive rules or type 0
rules then the generative power does not change it does not increase whatever you can do

with n components you can just do with one component.

We can re-write the rules in such a way that you achieve the same thing with one
component they if generate the families of regular linear context sensitive and
recursively enumerable languages. The power is not increased where as when you use

context free rules the power is increased.

(Refer Slide Time: 32:07)

But by the example given . we find that CD grammar systems with
context — free components can generate context — sensitive languages.
Let(’D, (f) denote the family of languages generated by CD grammar
svstems with & — free context free components . the number of
components being at most n . When the number of components is not
limited . the family is denoted by C'D_(f) if &= rules are allowed
the corresponding families are denoted by

CD;(f)and CD:(f). respectively .
ke

So, this is seen by the examples which you have just now, seen by the examples given
you find that the CD grammar systems with context free components can generate
context sensitive languages. If, you denote by CD n () the family of languages generate
by CD grammar systems, which epsilon free context free rules and n maximum n
components then you also denote why CD infinity (f). If you do not put that restriction
on the number of components and if you are allowing epsilon rules you also use this and
this and there are several results related to their power. We will not go into the details of

them.

(Refer Slide Time: 32:56)

PC Grammar systems

Definition
A PC grammar svstem of degreen.n | .isan(n+3)—tuple :
GP=(N.K.T.(S,.5)
Where N is a non - terminal alphabet . T is a terminal alphabet .

K ={0,.0........0, } are query symbols . N.T.K are mutually

disjoint . P, is a finite set of rewriting rules over N UK U7
and S, e N forall 1Z2isn.

Let1,=NUKUT

Now, let us come back to the other model PC grammar systems or this is called parallel
communicating grammar systems or the classroom model. So, what happens here is you
have a set of non terminals the formal definition is this. You have a set of non terminals,
you have a set of terminals and you have another set which is called the set of query
symbols. If, there are n components you have n query symbols and corresponding to
each component you have a start symbol, you have a set of productions, start symbol a
set of productions and so on. Now, in this you have n components. So, there are n start
symbols and n production sets now, without loss of generality we assume N T K are all
mutually disjoined and the total alphabet is denoted by N union K union T and we denote
itas V GP is N union K union T.

(Refer Slide Time: 34:11)

The sets I, are called components of the system. The index i of O,
points to the ith component £, of GP .

An equivalent representation for GPis (V. K.T.G,..........

where G, =(NUK.T.S,.P).1<i<n.

The sets P i are called the components of the system the index i for Q i Q a is the query
symbol for the i’th component. So, when Q i appears the answer has to be provided by
the 1’th component the equivalent representation is also like this instead of P 1, P 2, P n,
S1,P1,S2,P2 Sn Pnyoucanalsohave G1,G 2, Gnwhere GiisGiisN union K
TSIiPi.

(Refer Slide Time: 34:50)

Definition
Given a PC grammar system

GP=(N.K.T(5,.B)...(S,-,)).

as above for twon — tuples (. Xy,) o ()
Ny, €15, 0<i<n. where x, £T " . we write
(el T e |

ifone of the two following two cases holds.

1. Foreachi l=isn|x|.=0 (ie., no query svmbol inx;) . and
either x, = 3, byanlein Porx =y,el" .

2. There is 7, 1 €7 < n. such that|x, [>0 . (i.e.. x; has query symbols).
| QL% tfor each such i.x, =20, 2,0, ...z0,z,, 121 for
ZE(NUT) 1< j<t+1.

MEPIEL

Given a PC grammar system like this how do you define derivation in this case? So, you
have n strings and from this is an ID instantaneous description it consists of n strings
from this the next ID isy 1y 2 y n. How do you get this there are 2 steps two different
types of steps? you can use one is the actual derivation another is the communicating

step.

Now, there are two possibilities here, none of the exercise contain the query symbol this
tells you that X i does not contain any query symbol no query symbol in X i and then
there is a non terminal. if there is a non terminal you can use a derivation step and get y i
from X i. If, there is no non terminal it is only the terminal string. You have to keep it as
it is the other one is the communication step that is X i has a query symbol. This denotes

that this sort of notation denotes that X i has a query symbol.

In that case suppose X iislikethisZ1Qil1,Z2Qi2,ZtQit, ZtQipluslwhereZ
1, Z 2 they do not contain any query symbols the query symbols appearing in X i are Q i
1, Qi 2, Qirthen what happens is the next stage X i is replaced by putting the value of
the corresponding string in the i 1’th component here, the corresponding string in the i

2’th component here, corresponding string in the i t’th component here and you get y i.

(Refer Slide Time: 36:55)

if |xij |X:0- forallj, | < j<f, then y, =ZX.2.%, ...ZXZ,

+1

and y, =38,

(in returning mode) and ¥, =X (in non returning mode) | < j< ¢,
if for some j 1< j<s|x |, £0.then ¥, =X, Foralli.l<i<n.

such that y;is not specified above . we have y, =x,.

An n-tuple (\’,T,,) with x € l'(;,, 1s called an instantaneous
description (ID) (of GP).

So,theyiwillbe Zi, Xi11,Z2etceteraZ1,Z2,2Zt, Ztplus1remain as they are, but
the query symbols are replaced by the strings provided by the corresponding
components. Now, after this is done from X i you have got y i in the i’th component
what happens for the i j’th component. The i 1’th component provides this string to the
i’th component the i 2’th component provides the string for the i’th component, but what
happens to them what happens to the i j’th component it starts again once again it start
from S j that is called the returning mode. So, it returns the start symbol in the non

returning mode it keeps the corresponding string X i j as it is and proceeds further.

Let us see one example and this is achievable only if these strings do not contain query
symbols if, they have query symbols there will be problem you cannot do this. So, you

have an instantaneous description like this.

(Refer Slide Time: 38:12)

Thus an ID (xl.,‘........\'n) directly gives rise to an ID (}'l Vi LHE
either

(a)Component wise derivation: No query symbol appears in X;.........Y,
< then we have X, = ¥, using arule in P . if x, has a non
terminal. If x 7" .y, =x,

(b) Communication step : Query symbols occur in some x;. Then, a
communication step is performed . Each oceurrence of O, in X, is
replaced by X, . provided X, does not contain query symbols . In
essence a component Y, containing query symbols is modified only
when all occurrences of query svmbols in it refer to strings without
oceurrences of query symbols .

So, an ID is a n tuple like this each is a string over the total alphabet and it can give rise
to the next IDy 1,y 2, y n if you can have component wise derivation that is no query
symbol is there from X 1 you derive y 1 from X 2 you derive y 2 and so on. Each X i has
a non terminal if there is no non terminal it is a terminal string you keep it as it is. So,
you either use this rule or you keep it as it is then you have the communication step in
the communication step. You have query symbols suppose Q j appears in X j then Q j

will be replaced by X j provided X j does not contain any query symbol.

In essence the component X i contains query symbols is modified only when all
occurrences of the query symbols in it refer to strings without the occurrence of the
query symbols. The communicating step X j replaces the query symbol Q j after that the
system assume starting from the x m that is the i’th, j’th component goes back to the start
symbol means it is called the returning mode or if it continues from where it was it is

called a non returning mode.

The communicating step X j replaces the query symbol Q j after that the system assume
starting from the x m that is the i’th, j’th component goes back to the start symbol means
it is called the returning mode or if it continues from where it was it is called a non
returning mode. And always communication has priority over rewriting only when there
is no more communication possible you will use the derivation step, but there should not
be any circular question, query symbols. We will see what a circular query symbol.

(Refer Slide Time: 40:24)

Now, you may not be able to replace X j by the corresponding string suppose at some
stage | have X 1, X 2, X nand | also have say this has Q j, but X j has this symbol Q k

say then | cannot replace it like this, but the k’th component suppose this is k component

this is the k’th component this may not contain any symbol. So, first replace this with
this then you use this to replace X i, Q j in X i. So, this can be done when it is not
possible to do something like that it is called circular query. And the derivation stops at
that stage if some query symbols in a component cannot be replaced in a given

communication step.

It may be possible that they can be replaced in the next step that is what we can do when
the first component first component is called the master of the system or the central
centralised system. It has the terminal string when the first component derives the
terminal string no more derivation takes place the derivation stops the double arrow is
used to denote both the rewriting step and the communication steps, as usual double
arrow star is the reflexive transitive closure of double arrow. When you use returning

mode you use R below that when you use non returning mode you use n R below that.

(Refer Slide Time: 42:08)

Definition

The language generated by a PC grammar system GP
1. In returning mode 1s :

3 .a,-.IL,.,..?stn}

s @y) €V p 2 S ﬂn]

If'a query symbol is present . rewriting is not possible in any
component. If circular query occurs . communication will not be
#Pigsible and the derivation halts without producing a string for the
Kﬁuag& J

WFFEL

The language generated by the PC grammar system in the returning mode is L r (GP) the
first component derives a terminal string. So, you start with a n tuple S 1, S 2, S n and
you arrive at x alpha 2, alpha 3, alpha n these may be non terminals or terminals does not
matter, but the first component derives the terminal string in the non returning mode you
use the non returning derivation steps. So, starting from the n tuple S 1, S 2, S n the first
component derives the terminal string and that is the string belonging to the language if a
query symbol is present rewriting is not possible.

So, you have to finish all the query symbols before further rewriting takes place. If a
circular query occurs communication will not be possible and the derivation halts

without producing a string for the language.

(Refer Slide Time: 43:07)

Circular query means something like the following

component 1 has query svmbol o

component j has query svmbol O .

and component k has query svmbol g :
this is an example of a cvele query

The first component is called the master and the language
consists of terminal strings derived there.

Generally . any component can introduce the query svmbols . This is
called non centralized system . [f only the first component is allowed
fo introduce query symbols . it is called a centralized system .

@ 8

RIPTEL

What do you mean by circular query component | has Q j and j has Q k and k component
k has Q i. So, when it is asking for Q j, X j it has Q k and when it is asking for the i’th
component it will have Q i. So, this way you will never be able to get out of all the query
symbols the first component is called the master of the system. And the language
consists of terminal strings derived there generally any component can introduce query
symbols. So, you do not put any restriction any component can generate a query symbol
and the corresponding component can give the answer. We saw the several students
working in a classroom any student can ask a question if he does not get have the answer
for that.

And the student who has the answer for that should produce the answer this is the non
centralised version. The centralised version only class leader is allowed to ask questions.
He is proceeding with the main program and main problem or the main program and
when he gets some queries or when he wants a answer for something he ask the
corresponding student who is working that particular portion of the problem. And that
student has to provide the answer only the reader has the capability of asking questions
or only he is permitted to ask questions or in the grammar system only the first

component can produce query symbols, such a system is called the centralised system.

So, you have centralised, non-centralised returning, non-returning. So, 4 types of thing
you have 2 into 2.

(Refer Slide Time: 45:03)

A PC grammar svstem is said to be regular . linear . context
free . and context sensitive . depending on the tvpe of rules used in
components .

There are a number of results on the hicrarchy of PC grammar

systems. Csuhaj Varju etal...(1997) gave a detailed description of
these svstems.

And what is the language generated under different things that is been studied what can
the rules be it can be regular rules, linear rules context free context sensitive. What is the

class of language generated? What are the properties of them these are been studied (())
book there are books chapters on this.

(Refer Slide Time: 45:21)

Example

1. let

GP] =[{SI'S]"S:‘Si}‘{QI‘QI‘QS }'{"-h}'(‘s‘l'ﬁ)-(S:'P:)~ P]
(5:.2)

Consistsof rules:

1. 8, —» abe

2% —a'h’c’

3.8, > as,

4.8, - a0,
7 ' 2
{i&} S, = as
ML

So, let us just consider some examples. Now, consider this example you have three
components P 1 has these rules you have S1,P 1,S 2, P 2, S 3, P 3, three components.

(Refer Slide Time: 45:47)

0. S] —» ﬂl(_):
7.8, b0,
8 8, >¢c

P,={S,—bS,}

P, ={8, > cS3)

L,(GR)=L,(GR)={a"b"c" |n21}

P 1 has a number of rules like this 1, 2, 3, 4, 58 rules P 2 has just 1 rule P 3 has 1 rule
what is the language generated in the returning and the non returning mode. We will find

that the language generated is a power n, b power n and ¢ power n.

(Refer Slide Time: 46:03)

This can be seen as follows

abe

derivation stops abc € [_r (GPI) L (GP])

nr

s 85

1

a’h’c’ bS,

f;& a‘b’c*eL (GR).L, (GP,)
Lo

RMPTFEL

You canseethisS1,S 2, S3thereisonly 1rule.S2goestob,S2S3goestocS3.1In

these two components you have to apply that only, but in component one you have 8

rule, you can use any one of them if you use the first rule, you can use the second rule,
you can use any one of them. So, c if you use the first rule you get this is the terminal
string no further derivation is allowed. So, this belongs to language a, b, ¢ belongs to the
language. It can be either returning mode or non returning mode does not matter
similarly, you use the first rule you will get a square, b square, ¢ square in the first
component. It is both in the returning mode and the non returning mode it will be

generated.

(Refer Slide Time: 46:53)

¢S, inreturning mode

Now, what happens when you use the other rules suppose the fourth rule I use here. So,
if I use the fourth rule in the first component a cube Q 2 is generated here. | can use only
1rule be S2goestob, S2here, I can use only 1 rule S 3 goes to ¢ S 3. So, what | have
is this now, a communication step takes place Q 2 is there the query symbol. So, the
answer has to be provided from here. So, this is shifted here and the returning mode this

becomes S 2 this is continuing as ¢ S 3.

Now what is the rule for S 2, S 2 goes to b squared Q 3. So, if you use that S 2 goes to b
square Q 3 thisS2goestob S 2, S 3 goes to ¢ S 3. If you use you get this now, at this
stage again the query symbol Q 3 occurs. So, this will be transferred here. So, when you
transfer this you get a cubed c square S 3 this remains as it is you go back to S 3 here.
That is returning mode in the returning mode you get this so, a cubed b cubed then you

use the rule S 3 goes to ¢ and you get this string.

(Refer Slide Time: 48:33)

IS"
S,

&S

3

e,

¢S,

3 - .
[5 Sj in non returning mode

Similarly, you can find that in the non returning mode also the same type of a derivation
takes place, but here the components may be having something else. So, whatever it is

you can find that a power 4, b power 4, ¢ power 4 also can be generated in the returning
mode and in the non returning mode.

(Refer Slide Time: 48:56)

2.LaGP, =(18,.8,}.10,.0, } . {a.b}.(S,. B)(S.. 2,)).
where

K= {Sl =85> Q:Q:}

P,={8, —>aS,.8, > bS,.8, > a.S, > b}

1,(GP,) =L, (GP,)= {u-u-| we {a.b)' }

So, the language generated is a power n, b power n, ¢ power n consider this grammar this
is the PC grammar there are two components. This is one component, this is another

component the rules are given by this the language generated is of this form w w.

(Refer Slide Time: 49:23)

‘We see how abbabb is derived .

ahbabb S, inretuming mode

abbabb abb innon retuming mode

Howeverabbabh e Lr {UI:: }.Lm_ (GPI)

This type of communication is called communication by request. There is also another way
of communication known as communication by command. (Dassow and Paun, 1997) . A
: % icted version of this communication by command is found useful in characterizing the
\ load in computer networks (Arthiet al., 2001).

MPTEL

Because in the first component always use the rule S1 goesto S1,S1goestoS1,S1
goes to S 1 and in the second component | can use the rule agoestoa S 2, b goestob S
2 and so on, any string | can derive here. Now, once you terminate the derivation here, as
long as you can proceed here you can proceed as much as you want 1 step, 2 step, 3 step
any number of steps once you get a terminal string. You cannot derive anything further
here and from S 1 if, you use the other rule the other rule here is S 1 goesto Q 1, Q 2 it
should be Q 2, Q 2 it should be Q 2 Q 2.

So, when you generate Q 2, Q 2 here there are 2 query symbols appearing both of them
refer to the second component. So, for this Q 2 a, b, b is supplied for this Q 2 again a, b,
b is supplied. So, you get strings of the form w w here. And because you can use any
order of derivation here any w can be generated. So, the generated string will be of the
form w w in the returning mode this becomes S 2 the non returning mode. It becomes the

same thing | mean not disturbed does not matter.

We are only interested in the terminal string generated in the first component. So, the
string generated will be of the form w w. So, we have seen how context sensitive
languages can be generated using the context free components in parallel communicating
model also. This type of a communication is called communication by request there is

also, something known as communication by command. What is communication by

request? Because the query is generated query symbol is generated Q i is generated then
you ask the i’th component to provide the answer for that.

So, the request is made request is made and answer is provided. So, this sort of a
communication is called communication by request; whereas, there is something called
communication by command, what is communication by command? So, each component
is deriving some string; and when a particular type of a string occurs, with each
component, you also attach a set a regular set; and when that regular set appears when
the string generated belongs to that regular set, something is communicated to other

component.

This component at a particular stage when the string belongs to the set decides to
communicate something from here to another component. So, it is giving a command.
So, when something occurs a command is generated and some string is transferred from
this component to another component. Earlier what we have considered is query symbol
is generated as a request and something is provided for the query symbol. Here a some
command is generated here and when that command is executed this will be transferred

to some other component.

And this sort of a communication by command is also very useful in computer networks
you want to study about the design of the system you may have (()) you may have
servers and you may want to talk about congestion how the system can be uniform
distribution can be given among the servers. So, that one is not over loaded and so on.
When you want to study this first of all it is very essential to study the work load on each

server. What type of a work load is generated here?

One server may just handle one set of simple sort of a thing one client may be just using
email and another client may not communicate with the server at all some text
processing may just be going on there. So, it is very essential to characterise a work load
with each server and then arrive at scenario where the load will be distributed properly.
So, at one stage a few years back this has been important study in computer networks.
How to characterise the work load and for that a parallel communicating grammar
describing the behaviour of the system there it is a client or a server you can model it.
What is known as a parallel grammar or you can have a context free grammar with

probabilities and attribute.

(Refer Slide Time: 54:36)

v n

CFG Drobablivhic

Wrhufes

So, you can have a CFG. So, probabilistic (No audio from 54:40 to 54:47) and also it has
an attributes each client or a server may have such a system, but then you know the
whole computer networks describes a distributed environment. So, instead of modelling
each one by a separate single context free probabilistic and attributed system, if you have
a parallel communicating system it gives a very good result. And also the
communication method used for that is better you use communication by command

rather than communication by request.

So, these models have lot of practical applications the cooperative distributed model,
which is a sequential model and the parallel model is parallel communicating systems
again they have a lot of applications, practical applications where their use is very well
utilised. So, this is another model another advanced topic, which is of current interest

today.

