
Theory of Computation 
Prof. Kamala Krithivasan 

Department of Computer Science and Engineering 
Indian Institute Of Technology, Madras 

 
Lecture No. # 40 

Grammar Systems 
 

(Refer Slide Time: 00:29) 

 

Today, we shall study about grammar systems. What is the motivation for this? Today 

the idea of distributed computing plays an important role. Different problems of high 

intensity computation time; they are process using distributed computing, and parallel 

computing. So, how do you abstract these models? So, from a formal language theory of 

point of view, this was model using the idea of a grammar system. In classical formal 

language theory, a language is generated by a single grammar or accepted by single 

automata, but in a grammar system, several grammars join together and generate a string; 

and in the automata several automata joined together and process a string. So, single 

grammar corresponds to a single processer, they are centralised; you can say them they 

are centralized.  



 (Refer Slide Time: 01:32) 

 

But in distributed computing, you have several processes and the processes are all 

communicating with each other. How do you capture this? With the idea of a grammar or 

a grammar system that is what we are going to study today. 

 (Refer Slide Time: 02:00) 

 

So, in grammar systems, we have two models; the blackboard model which is a 

sequential model and the classroom model, which is a parallel model. What is a 

blackboard model or a sequential model? You have a problem to be solved and the 

students are going to solve that in a class. There is a blackboard one student comes and 



write something on the board. He solves part of the problem, he goes back. The second 

student comes and continues with the solution tries to work out a few more steps. And 

then he goes back then the third student comes he tries to work a few more steps and so 

on. 

This continues until the whole problem is solved. So, the idea is that of a sequential 

processing all the students do not solve the problem simultaneously one by one they 

come and solve the problem. A portion of the problem and then the next student takes 

over. So, that is why this is called the blackboard model. So, let us see how it works the 

first student goes and he write something on the blackboard. 

He comes back then the second student goes he continues with the solution writes a few 

more steps comes back, then the third student goes continues with the solution he comes 

back and then it is continued with the next student. So, this type of a model is called the 

sequential model or the blackboard model. The grammars one by one they generate the 

sentential form and ultimately lead to the string generator. 

(Refer Slide Time: 03:56) 

 

In contrast to that you have the classroom model; in classroom model what happens is it 

is like a program. You have a main program and in the main program you have sub 

routines each student is given one portion of the program. And they have to find the 

routine they have to write down the solution for that particular routine and the main class 

leader. He is the main person he is writing the main program or trying the main solution. 



So, when he executes, he want some answer at some point he has to make a function call 

it is or a sub routine call at that stage he makes a query and the sub routine corresponds 

to the problems solve by another student. And she or he provides the corresponding 

answer to that this sort of a processing goes on until the whole problem is solved. So, let 

us see how this works this each student is trying to work out some portion of the problem 

and then this person gets a query. This answer is provided by this person after some 

instance this is the class leader. 

He is trying with the solution and he may get another query for which the answer may 

come from this person it is like making sub routine calls this person. When he calls a sub 

routine it answer is given here then he makes another query. The answer comes from 

here and this person himself, he may ask for a query and then the answer may be 

supplied by this portion this person. So, this sort of a thing may continue and this sort of 

a thing is called a parallel model, because all of them are working on their sub problems 

simultaneously and one person has a query means he asks and another person provides 

the answer this is called the parallel communicating model or the classroom model. 

(Refer Slide Time: 06:11) 

 

So, let us see the formal definition now. So, the first model is called CD grammar 

systems or co operative distributed grammar system. The definition is like this A CD 

grammar system of degree n is a construct G S N T S P 1 P 2 P n where n is the set of 

non terminals, t is the set of terminals S is the start symbol and P 1, P 2, P n are n sets of 



productions they are finite sets of rewriting rules over N union T. You can have them as 

type 0, type 1, type 2 or type 3 or you can also specify the grammar system like this N T 

S G 1, G 2, G N where each grammar G i is specified like this. You have the set of non 

terminals, you have the set of terminals for each grammar and you have the start symbol 

S and the set of productions are given by P i for G i either way it can be specified. It is 

easier to specify this way. We can specify this way also does not matter. 

(Refer Slide Time: 07:29) 

 

Let G of S is equal to N T S P 1 P 2 P n be A CD grammar CD stands for cooperative 

distributed grammar system. We now, define different protocols of cooperation what do 

you mean by different protocols of cooperation. Now, we have seen that CD grammar 

corresponds to blackboard model one student works out a few steps and then he goes 

back. Then the next student comes. Now the question is at what time does the first 

student go back and the second student comes. And at what time does the second student 

go back and the third student comes. 

There can be several protocols for that one is any time the student can go back and the 

next student can come in that is called the star mode in the formal definition. Another 

thing is a student proceeds as much as possible that is he is trying to work out a solution 

and he proceeds till at a certain stage he is not able to proceed further then at that stage. 

He goes back and the next student who is capable of proceeding further comes and takes 

over and this is called the terminating mode. Because the first student spends time on the 



board as long as possible and goes back only when it is not possible for him to proceed 

and the next student comes in formal model this is called the t mode or the terminating 

mode. 

There are other modes let k be a finite integer and when that finite integer is there the 

first student comes and he works out for k steps in the solution. He continues for k steps 

then he goes back whether he is able to proceed or whether he is not able to proceed. He 

just goes back and then the second student comes and continues with the next k steps. 

So, each student spends exactly k steps on the board that is he writes just k steps on the 

board and then he goes back this is called the equal to k mode for k is equal to 1 2 3 

etcetera then you have what is known as greater to or equal to k mode less than or equal 

to k mode. 

(Refer Slide Time: 10:15) 

 

So, let me write down the modes. We have seen what a star mode is any time the student 

can go back t mode the student goes back when he is not able to proceed equal to k 

mode. These are all modes each student writes k steps and greater than or equal to k 

mode, each student spends k or more steps on the board. That is he comes and works for 

k steps he may continue for some more step, but minimum is k. So, minimum k steps, 

but it can be more also then he goes back the next person comes and so on. Similarly, 

you also have less than or equal to k mode. That is each student spends k or les number 



of steps on the board he can start 1 step or 2 steps up to k steps he can go, but he cannot 

go beyond that. 

So, you have 5 modes of cooperation in this grammar then star mode is called the normal 

mode and the definition of derivation is like this normal mode the i’th component. It is 

defined by from x you can derive y without any restriction any number of steps. You can 

spend on the i’th component or the i’th grammar you can have a derivation any number 

of steps in a (( )) manner. When you say the student works on the blackboard as long as 

he wants terminating mode for each i belonging to 1 to n the terminating derivation by 

the i’th component that is denoted by this symbol double arrow. 

This denotes the component in which the processing is done t denotes the terminating 

mode that is defined like this. That is you are able to derive from x the string y and from 

y you cannot proceed in the same component that is there is no z such that from y you 

can derive is z then this is called the terminating mode. 

(Refer Slide Time: 12:42) 

 

Then you have the equal to mode equal to k mode k is an integer i denotes the 

component number the k steps derivation by the i’th component is denoted by this from 

x. You can derive y in this if, you have x 1 x 2 x k plus 1 where x is equal to x 1, y is 

equal to x k plus 1 and from x 1 you can derive x 2 in 1 step, x 2 from x 2 you can derive 

x 3 and so on. In general from x j you can derive x j plus 1. So, you have k steps deriving 

x 2 from x 1, x 3 from x 2, x 4 from x 3 and so on. So, in k steps you derive x k plus 1 



from x 1 and all of them take place in the same component P i and less than or equal to k 

mode you have k or less than or number of steps that is x less than or equal to k y if and 

only if it is done in k dash number of steps where k dash is less than or equal to k. 

(Refer Slide Time: 13:56) 

 

And similarly, greater than or equal to k mode that is you derive y from x in greater than 

or equal to k mode in the component P i if you derive y from x in k dash number of steps 

where k dash is greater than or equal to k. So, these are the modes and so, the mode you 

can denote as D is equal to star t star you can have the star mode, you can have the t 

mode, you can have the less than or equal to k greater than or equal to k equal to k mode 

where k can be an integer it can be 1 2 3 etcetera. 



(Refer Slide Time: 14:39) 

 

The language generated by the grammar system with N components in the mode f f 

belongs to D. We have seen what is D earlier it is L of f G of f is equal to a terminal 

string, which belongs to T star such that from S you derive the sentential form alpha 1 in 

component i 1 in the f mode and from alpha 1 you derive the sentential form alpha 2 in 

component i 2 in the same mode proceeding like this. You derive alpha m from alpha m 

minus 1 in component i m using the same mode. So, m is greater than or equal to 1 and 

these are all one of the n components. 

So, each i j is within 1 and n it is one of the components after k if it is equal to k mode 

after k steps it has to switch component similarly, if it is a T mode when it is not able to 

proceed further it switches component. 



(Refer Slide Time: 15:56) 

 

Let us consider some example consider the following CD grammar system, where you 

have these are the non terminals S, X, X dash Y; Y dash terminals are a b c S is the start 

symbol. You have two components, in one component you have these set of rule the 

other component you have these sets. So, these are the rules in the first component in the 

second component you have the following set. 

Now, what is the language generated and their different modes suppose you consider the 

star mode any time you can switch from one component to another. You have to start the 

derivation which is S so, S goes to S you can use any number of times you want then you 

have to go from S to X, Y. Now, when you go to X, Y you cannot proceed in this 

component, because there is no rule with X on the left hand side or y on the left hand 

side here, and you have to use either this or this. 

Now, if we use this the star mode after once step again you can come back here, if you 

use this again, you can come back here or you can use both and come back here, then X 

dash and Y dash can be turned into X and Y. You can just turn one of them and again go 

back or turn both of them and go back all possibilities exist, because of that you find that 

this rule along with X dash goes to X will generate number of a’s. So, one a will be 

generated again you can repeat this process any number of times. So, as many a as you 

want you can generate similarly, you can use this rule and again change Y dash to Y and 

then use this rule any number of times you want. 



So, with this sort of a thing any number equal number of a’s and b’s will be b’s equal 

number of b and c will be generated. And that can be done any number of times finally, 

you end up the derivation with this rule or with this rule both X and Y have to become 

terminals as long as there is one non terminal the derivation continues. So, in the 

sentential form you will have either X dash or Y dash or both or X or Y or both you can 

have X dash and Y are X and Y dash and so on. So, it is possible to derive any number of 

a’s and any numbers of b’s and c’s, but the number of b’s and c’s will be equal, because 

this is the linear rule. 

(Refer Slide Time: 18:44) 

 

So, the language generated will be equal number of b’s and c’s and any number of a’s of 

course, there is no connection between m and n except the they are greater than or equal 

to 1. So, the same idea you can also consider for t mode e equal to 1 mode greater than or 

equal to mode less than or equal to k mode etcetera, but if you consider the equal to 2 

mode there is a difference. So, if I consider equal to 2 mode (No audio from 19:13 to 

19:21) in each component there should be 2 steps taking place. 

So, what you have is you start here 1 step second step. So, X and Y you have and now, 

you switch to the next component and the next component you have this rule and this 

rule. So, when you have this rule 1 a is generated when you apply this rule 2 steps have 

to be performed in this component and the only way you can do is this and this. So, 1 a 



will be generated 1 b will be generated 1 c will be generated now, after applying 2 steps 

you go back to the first component change the X dash to X, Y dash to Y. 

So, 2 steps are over here come back again generate 1 a 1 b and 1 c go back and. So, on 

this you can continue and every time you come to the second component 1 a, 1 b and 1 c 

will be generated and when you go to the first component X dash and X, Y dash will be 

change into X and Y finally, you have to terminate the derivation with this rule and with 

this rule if you use just one of them and go back there will be problem. What is the 

problem you are spending only one rule here and it is not possible you have to use two 

rules. So, when you want to use this rule and then if suppose you use this rule and go 

back here you can use only one rule and that is not allowed you have to use two rules in 

each component. 

(Refer Slide Time: 21:04) 

 

So, when you have equal to 2 mode the language generated will be a power n, b power n 

c power n, which is a context sensitive language. Now, the rules in each component can 

be type 0, type 1, type 2 or type 3, but of interest is type 2, because when you have 

context free rules the power is increased. 

You are able to generate context sensitive languages with context free rules in a grammar 

system whereas, if you use just type 3 grammar regular rules then the power will not 

really be increased you will be able to get only regular sets. Now, suppose k is greater 

than or equal to k mode or greater than or equal to mode you consider where k will be 3, 



4 or 5 then look at the rules here, I can have only 2 steps I cannot have more than 2 steps. 

So, if it is equal to k or greater than or equal to k mode where k is 3, 4 or 5 or etcetera no 

derivation is possible the language generated is empty. 

(Refer Slide Time: 22:15) 

 

Another grammar let us look into this. So, this is a grammar with three components there 

are two non terminals, one terminal and three components the rules are like this. In the 

star mode we can use this rule and then again you can make it go into this you can 

generate A, A, A anytime you can convert the A into small a or convert it into S and 

generate 2 more A S and you can see that you can generate 2 A S, because first time you 

have to use this rule 1 A it is not possible to generate it is possible to generate 2 A S or 3 

A S and so on. So, the language generated will be this a power n, n greater than or equal 

to 2 which is a regular set now, similar a cell holds for equal to 1 great equal to k and. So 

on. 



 (Refer Slide Time: 23:13) 

 

What is the language generated in the t mode, if you have greater than or equal to k, k 

greater than or equal to 2, then the language generated is empty as this can be used only 

once in P 1 and a goes to a can be used only once in P 3 for 3 equal to 1 mode. Now, in 

the t mode what is the language generated go back S goes to A A then suppose I start 

using this rule then I have to convert both the a into S S then I go back here then both the 

S I have to convert into A A. 

So, I will get 4 a. So, the derivation would be like this either I will get 2 a and the a can 

be converted into small a. Where I will get a square or they will get converted to S S and 

again, I use the rule S goes to A A it is a terminating mode I should proceed in the same 

component as long as possible. So, again this S also will be converted into 2 a. Now, I 

have a chance to go to component 3 where all the 4 a will be converted into small a. It is 

not possible to just convert portion of it and leave the other, because it is a terminating 

mode as long as it is possible to apply the rule a goes to a I will have to use it then if I 

use the rule a goes to S all the 4 a will be converted into 4 S S. 

And so, 4 S S will be there they will be converted into 8 a using the first component and 

again I have the choice of making them into small a or proceeding further. So, you will 

find that you can generate a power 4. We can generate a squared you can generate a 

power 8 and so on. So, the language generated in the t mode is a power 2 power n 

another grammar let us consider this also has three components the first component has 



rules like this the second component has rules like this and so on. There are three non 

terminals, two terminals and so, what happens when you have star mode equal to 1 mode 

less than or equal to k mode. 

So, you have to apply this rule to proceed further then I can just proceed with this X 1 in 

the star mode and generate something I want turning into X 2 and then again going back 

to X 1 going back here and so on, anything I can derive. So, from X 1 I can derive some 

string of a and b I can do the same thing with this X 1 have derive some string from the 

second X 1. So, I can clearly derive two different strings from the 2 X 1’s, but minimum 

is one symbol. So, the length of the string will be generated the length of the string 

generated will be greater than or equal to 2 minimum length is 2 and actually w will be 

of the form w 1, w 2 where w 1 and w 2 are any strings of a’s and b’s. 

So, that is why you just have any string of a’s and b’s generated where the length of the 

string will be minimum 2 it can be anything, but what happens when you use equal to 2 

mode. So, at each component you have to use 2 steps the derivation in each component 

consists of 2 steps in that case what happens you use 2 steps S goes to S, S goes to X 1 X 

1. Now, from this X 1 if I use this rule and from the second X 1 if I use this rule I can 

derive 1 a and 1 a but if I go here X 2 can be converted into X 1, but here I have to spend 

2 steps right that is not possible. So, if I use this rule for this X 1 I have to use the same 

rule for this X 1. 

 (Refer Slide Time: 28:01) 

 



So, the derivation will be like this in the first component starting with S I get S in 1 step 

actually the rule S goes to S is just added. So, that you are able to get 2 steps in the first 

component then from this you get X 1, X 1 this is done in 2 steps then you have to go to 

another component. If you go to P 2 and apply the rule you will get a X 1 you have to 

use the same rule here a X 2, a X 2, a X 2 then you go back to the first component and 

convert this into a X 2 into X 1, X 2 into X 1. 

So, from here to here there are 2 steps this X 1 derives this X 1 derives this and here 

again 2 steps X 2 goes to X 1, X 2 goes to X 1 then I can proceed using the rule by going 

to the third component b X 2 a then using the same rule I can get b X 2 and so on, then I 

can terminate the derivation using something. So, I can get something like a b b again 

note that you are using two rules in each component suppose at this stage I tried to use b 

X 2 here, but just b here what happens when I go to the first component to convert X 2 to 

X 1 I can use only 1 step and that is not allowed I have to use 2 steps. 

So, when I use the rule it has to be a repeated twice and I get strings of the form w w. We 

know that this is a context sensitivity language, but note that each component has only 

context free rules. So, with context free rules you are able to generate context sensitive 

languages. In fact, the 3 languages a power n, b power n, c power n, w w and a power n, 

b power m, a power n, b power m they are called they have some features, they are 

useful for defining what is known as mildly context sensitive languages. And usually 

when you consider a context sensitive language means usually consider these three 

languages and show that they can be generated of course, a power n square does not 

come under this. (No audio from 30:51 to 31:05) 



(Refer Slide Time: 30:51) 

 

Now, what can you say about the generative power. It is interesting that context free rule 

with context free rules you are able to generate context sensitive languages. But what 

happens if you use type 0 or type 1 rules actually type 0 or type 1 it can be seen that the 

CD grammar systems working in any of the modes. It can be star mode, t mode or 

anything, but if you have regular rules or linear rules or context sensitive rules or type 0 

rules then the generative power does not change it does not increase whatever you can do 

with n components you can just do with one component. 

We can re-write the rules in such a way that you achieve the same thing with one 

component they if generate the families of regular linear context sensitive and 

recursively enumerable languages. The power is not increased where as when you use 

context free rules the power is increased. 



(Refer Slide Time: 32:07) 

 

So, this is seen by the examples which you have just now, seen by the examples given 

you find that the CD grammar systems with context free components can generate 

context sensitive languages. If, you denote by CD n ( f ) the family of languages generate 

by CD grammar systems, which epsilon free context free rules and n maximum n 

components then you also denote why CD infinity ( f ). If you do not put that restriction 

on the number of components and if you are allowing epsilon rules you also use this and 

this and there are several results related to their power. We will not go into the details of 

them. 

(Refer Slide Time: 32:56) 

 



Now, let us come back to the other model PC grammar systems or this is called parallel 

communicating grammar systems or the classroom model. So, what happens here is you 

have a set of non terminals the formal definition is this. You have a set of non terminals, 

you have a set of terminals and you have another set which is called the set of query 

symbols. If, there are n components you have n query symbols and corresponding to 

each component you have a start symbol, you have a set of productions, start symbol a 

set of productions and so on. Now, in this you have n components. So, there are n start 

symbols and n production sets now, without loss of generality we assume N T K are all 

mutually disjoined and the total alphabet is denoted by N union K union T and we denote 

it as V GP is N union K union T. 

(Refer Slide Time: 34:11) 

 

The sets P i are called the components of the system the index i for Q i Q a is the query 

symbol for the i’th component. So, when Q i appears the answer has to be provided by 

the i’th component the equivalent representation is also like this instead of P 1, P 2, P n, 

S 1, P 1, S 2, P 2, S n, P n you can also have G 1, G 2, G n where G i is G i is N union K 

T S i P i. 



(Refer Slide Time: 34:50) 

 

Given a PC grammar system like this how do you define derivation in this case? So, you 

have n strings and from this is an ID instantaneous description it consists of n strings 

from this the next ID is y 1 y 2 y n. How do you get this there are 2 steps two different 

types of steps? you can use one is the actual derivation another is the communicating 

step. 

Now, there are two possibilities here, none of the exercise contain the query symbol this 

tells you that X i does not contain any query symbol no query symbol in X i and then 

there is a non terminal. if there is a non terminal you can use a derivation step and get y i 

from X i. If, there is no non terminal it is only the terminal string. You have to keep it as 

it is the other one is the communication step that is X i has a query symbol. This denotes 

that this sort of notation denotes that X i has a query symbol. 

In that case suppose X i is like this Z 1 Q i 1, Z 2 Q i 2, Z t Q i t, Z t Q i plus 1 where Z 

1, Z 2 they do not contain any query symbols the query symbols appearing in X i are Q i 

1, Q i 2, Q i r then what happens is the next stage X i is replaced by putting the value of 

the corresponding string in the i 1’th component here, the corresponding string in the i 

2’th component here, corresponding string in the i t’th component here and you get y i. 



(Refer Slide Time: 36:55) 

 

So, the y i will be Z i, X i 1, Z 2 etcetera Z 1, Z 2, Z t, Z t plus 1 remain as they are, but 

the query symbols are replaced by the strings provided by the corresponding 

components. Now, after this is done from X i you have got y i in the i’th component 

what happens for the i j’th component. The i 1’th component provides this string to the 

i’th component the i 2’th component provides the string for the i’th component, but what 

happens to them what happens to the i j’th component it starts again once again it start 

from S j that is called the returning mode. So, it returns the start symbol in the non 

returning mode it keeps the corresponding string X i j as it is and proceeds further. 

Let us see one example and this is achievable only if these strings do not contain query 

symbols if, they have query symbols there will be problem you cannot do this. So, you 

have an instantaneous description like this. 



(Refer Slide Time: 38:12) 

 

So, an ID is a n tuple like this each is a string over the total alphabet and it can give rise 

to the next ID y 1, y 2, y n if you can have component wise derivation that is no query 

symbol is there from X 1 you derive y 1 from X 2 you derive y 2 and so on. Each X i has 

a non terminal if there is no non terminal it is a terminal string you keep it as it is. So, 

you either use this rule or you keep it as it is then you have the communication step in 

the communication step. You have query symbols suppose Q j appears in X j then Q j 

will be replaced by X j provided X j does not contain any query symbol. 

In essence the component X i contains query symbols is modified only when all 

occurrences of the query symbols in it refer to strings without the occurrence of the 

query symbols. The communicating step X j replaces the query symbol Q j after that the 

system assume starting from the x m that is the i’th, j’th component goes back to the start 

symbol means it is called the returning mode or if it continues from where it was it is 

called a non returning mode. 



 

The communicating step X j replaces the query symbol Q j after that the system assume 

starting from the x m that is the i’th, j’th component goes back to the start symbol means 

it is called the returning mode or if it continues from where it was it is called a non 

returning mode. And always communication has priority over rewriting only when there 

is no more communication possible you will use the derivation step, but there should not 

be any circular question, query symbols. We will see what a circular query symbol. 

(Refer Slide Time: 40:24) 

 

Now, you may not be able to replace X j by the corresponding string suppose at some 

stage I have X 1, X 2, X n and I also have say this has Q j, but X j has this symbol Q k 

say then I cannot replace it like this, but the k’th component suppose this is k component 



this is the k’th component this may not contain any symbol. So, first replace this with 

this then you use this to replace X i, Q j in X i. So, this can be done when it is not 

possible to do something like that it is called circular query. And the derivation stops at 

that stage if some query symbols in a component cannot be replaced in a given 

communication step. 

It may be possible that they can be replaced in the next step that is what we can do when 

the first component first component is called the master of the system or the central 

centralised system. It has the terminal string when the first component derives the 

terminal string no more derivation takes place the derivation stops the double arrow is 

used to denote both the rewriting step and the communication steps, as usual double 

arrow star is the reflexive transitive closure of double arrow. When you use returning 

mode you use R below that when you use non returning mode you use n R below that. 

(Refer Slide Time: 42:08) 

 

The language generated by the PC grammar system in the returning mode is L r (GP) the 

first component derives a terminal string. So, you start with a n tuple S 1, S 2, S n and 

you arrive at x alpha 2, alpha 3, alpha n these may be non terminals or terminals does not 

matter, but the first component derives the terminal string in the non returning mode you 

use the non returning derivation steps. So, starting from the n tuple S 1, S 2, S n the first 

component derives the terminal string and that is the string belonging to the language if a 

query symbol is present rewriting is not possible. 



So, you have to finish all the query symbols before further rewriting takes place. If a 

circular query occurs communication will not be possible and the derivation halts 

without producing a string for the language. 

(Refer Slide Time: 43:07) 

 

What do you mean by circular query component I has Q j and j has Q k and k component 

k has Q i. So, when it is asking for Q j, X j it has Q k and when it is asking for the i’th 

component it will have Q i. So, this way you will never be able to get out of all the query 

symbols the first component is called the master of the system. And the language 

consists of terminal strings derived there generally any component can introduce query 

symbols. So, you do not put any restriction any component can generate a query symbol 

and the corresponding component can give the answer. We saw the several students 

working in a classroom any student can ask a question if he does not get have the answer 

for that. 

And the student who has the answer for that should produce the answer this is the non 

centralised version. The centralised version only class leader is allowed to ask questions. 

He is proceeding with the main program and main problem or the main program and 

when he gets some queries or when he wants a answer for something he ask the 

corresponding student who is working that particular portion of the problem. And that 

student has to provide the answer only the reader has the capability of asking questions 

or only he is permitted to ask questions or in the grammar system only the first 



component can produce query symbols, such a system is called the centralised system. 

So, you have centralised, non-centralised returning, non-returning. So, 4 types of thing 

you have 2 into 2. 

 (Refer Slide Time: 45:03) 

 

And what is the language generated under different things that is been studied what can 

the rules be it can be regular rules, linear rules context free context sensitive. What is the 

class of language generated? What are the properties of them these are been studied (( )) 

book there are books chapters on this. 

(Refer Slide Time: 45:21) 

 



So, let us just consider some examples. Now, consider this example you have three 

components P 1 has these rules you have S 1, P 1, S 2, P 2, S 3, P 3, three components. 

 (Refer Slide Time: 45:47) 

 

P 1 has a number of rules like this 1, 2, 3, 4, 5 8 rules P 2 has just 1 rule P 3 has 1 rule 

what is the language generated in the returning and the non returning mode. We will find 

that the language generated is a power n, b power n and c power n. 

(Refer Slide Time: 46:03) 

 

You can see this S 1, S 2, S 3 there is only 1 rule. S 2 goes to b, S 2 S 3 goes to c S 3. In 

these two components you have to apply that only, but in component one you have 8 



rule, you can use any one of them if you use the first rule, you can use the second rule, 

you can use any one of them. So, c if you use the first rule you get this is the terminal 

string no further derivation is allowed. So, this belongs to language a, b, c belongs to the 

language. It can be either returning mode or non returning mode does not matter 

similarly, you use the first rule you will get a square, b square, c square in the first 

component. It is both in the returning mode and the non returning mode it will be 

generated. 

(Refer Slide Time: 46:53) 

 

Now, what happens when you use the other rules suppose the fourth rule I use here. So, 

if I use the fourth rule in the first component a cube Q 2 is generated here. I can use only 

1 rule be S 2 goes to b, S 2 here, I can use only 1 rule S 3 goes to c S 3. So, what I have 

is this now, a communication step takes place Q 2 is there the query symbol. So, the 

answer has to be provided from here. So, this is shifted here and the returning mode this 

becomes S 2 this is continuing as c S 3. 

Now what is the rule for S 2, S 2 goes to b squared Q 3. So, if you use that S 2 goes to b 

square Q 3 this S 2 goes to b S 2, S 3 goes to c S 3. If you use you get this now, at this 

stage again the query symbol Q 3 occurs. So, this will be transferred here. So, when you 

transfer this you get a cubed c square S 3 this remains as it is you go back to S 3 here. 

That is returning mode in the returning mode you get this so, a cubed b cubed then you 

use the rule S 3 goes to c and you get this string. 



(Refer Slide Time: 48:33) 

 

Similarly, you can find that in the non returning mode also the same type of a derivation 

takes place, but here the components may be having something else. So, whatever it is 

you can find that a power 4, b power 4, c power 4 also can be generated in the returning 

mode and in the non returning mode. 

(Refer Slide Time: 48:56) 

 

So, the language generated is a power n, b power n, c power n consider this grammar this 

is the PC grammar there are two components. This is one component, this is another 

component the rules are given by this the language generated is of this form w w. 



(Refer Slide Time: 49:23) 

 

Because in the first component always use the rule S 1 goes to S 1, S 1 goes to S 1, S 1 

goes to S 1 and in the second component I can use the rule a goes to a S 2, b goes to b S 

2 and so on, any string I can derive here. Now, once you terminate the derivation here, as 

long as you can proceed here you can proceed as much as you want 1 step, 2 step, 3 step 

any number of steps once you get a terminal string. You cannot derive anything further 

here and from S 1 if, you use the other rule the other rule here is S 1 goes to Q 1, Q 2 it 

should be Q 2, Q 2 it should be Q 2 Q 2. 

So, when you generate Q 2, Q 2 here there are 2 query symbols appearing both of them 

refer to the second component. So, for this Q 2 a, b, b is supplied for this Q 2 again a, b, 

b is supplied. So, you get strings of the form w w here. And because you can use any 

order of derivation here any w can be generated. So, the generated string will be of the 

form w w in the returning mode this becomes S 2 the non returning mode. It becomes the 

same thing I mean not disturbed does not matter. 

We are only interested in the terminal string generated in the first component. So, the 

string generated will be of the form w w. So, we have seen how context sensitive 

languages can be generated using the context free components in parallel communicating 

model also. This type of a communication is called communication by request there is 

also, something known as communication by command. What is communication by 



request? Because the query is generated query symbol is generated Q i is generated then 

you ask the i’th component to provide the answer for that. 

So, the request is made request is made and answer is provided. So, this sort of a 

communication is called communication by request; whereas, there is something called 

communication by command, what is communication by command? So, each component 

is deriving some string; and when a particular type of a string occurs, with each 

component, you also attach a set a regular set; and when that regular set appears when 

the string generated belongs to that regular set, something is communicated to other 

component. 

This component at a particular stage when the string belongs to the set decides to 

communicate something from here to another component. So, it is giving a command. 

So, when something occurs a command is generated and some string is transferred from 

this component to another component. Earlier what we have considered is query symbol 

is generated as a request and something is provided for the query symbol. Here a some 

command is generated here and when that command is executed this will be transferred 

to some other component. 

And this sort of a communication by command is also very useful in computer networks 

you want to study about the design of the system you may have (( )) you may have 

servers and you may want to talk about congestion how the system can be uniform 

distribution can be given among the servers. So, that one is not over loaded and so on. 

When you want to study this first of all it is very essential to study the work load on each 

server. What type of a work load is generated here? 

One server may just handle one set of simple sort of a thing one client may be just using 

email and another client may not communicate with the server at all some text 

processing may just be going on there. So, it is very essential to characterise a work load 

with each server and then arrive at scenario where the load will be distributed properly. 

So, at one stage a few years back this has been important study in computer networks. 

How to characterise the work load and for that a parallel communicating grammar 

describing the behaviour of the system there it is a client or a server you can model it. 

What is known as a parallel grammar or you can have a context free grammar with 

probabilities and attribute. 



(Refer Slide Time: 54:36) 

 

So, you can have a CFG. So, probabilistic (No audio from 54:40 to 54:47) and also it has 

an attributes each client or a server may have such a system, but then you know the 

whole computer networks describes a distributed environment. So, instead of modelling 

each one by a separate single context free probabilistic and attributed system, if you have 

a parallel communicating system it gives a very good result. And also the 

communication method used for that is better you use communication by command 

rather than communication by request. 

So, these models have lot of practical applications the cooperative distributed model, 

which is a sequential model and the parallel model is parallel communicating systems 

again they have a lot of applications, practical applications where their use is very well 

utilised. So, this is another model another advanced topic, which is of current interest 

today. 


