
Theory of Computation 
Prof. Kamala Krithivasan 

Department of Computer Science and Engineering 
Indian Institute of Technology, Madras 

 
Lecture No. # 32 

Problems and Instances, Universal TM, Decidability 
 

In the last lecture, we saw about recursive sets, recursively enumerable sets and a few 

properties of them. And we also saw what is meant by a halting problem of a Turing 

machine, and how it is undecidable. 

(Refer Slide Time: 00:34) 

 

Let us consider some more results and facts about recursive sets recursively enumerable 

sets and also about decidability. Now, before going into decidability, what do you mean 

by decidability? Or when do you say that a problem is decidable? For this, you must 

have a clear understanding of what is a problem and what is an instance of the problem. 

Informally, if you say a problem refers to a question such as is the language accepted by 

a Turing machine; empty. 

That is the problem or in other words, something like does a graph have a Hamiltonian 

circuit. And instance of the problem will be here, in this case, a Turing machine, when 



you consider a Hamiltonian graph problem, the instance is a graph. Now, we shall 

restrict ourselves to the problems where the answer is only yes or no. We call them as 

yes or no problem or decision problems and the problems can be encoded as strings. And 

we can look at the Turing machine which will accept all the yes instances of the problem. 

That is the problem itself, it is encoded as a string and all those strings which correspond 

to yes instances of a problem form a language, and we can think of a Turing machine 

accepting that language. And the Turing machine will reject the no instances of the 

problem. 

(Refer Slide Time: 02:20) 

 

So, we will restrict ourselves to the decision problems. Of course, there is a connection 

between decision problems and the other problems we will see that in a moment. So, the 

decision problems the answer is yes or no. If you can design an algorithm, which will 

come out with an answer yes or no then the problem is decidable. If you cannot have an 

algorithm the problem is undecidable. For example, if you look at the Boolean 

satisfiability problem, what is that? It is to find out whether a Boolean expression is 

satisfiable or not. What is a Boolean expression? The Boolean expression is something 

like this. 



(Refer Slide Time: 03:15) 

 

So, you can have an expression take x 1 plus x 2 plus x 3 and not x 1 plus x 4 plus x 5 

plus x 2 x 5 something like this. This is a Boolean expression, is it satisfiable or not? 

That is, does there existence assignments to the variables x 1 x 2 etcetera 0 or a 1 0 

standing for false and 1 standing for true. Thus there exist in assignment which will 

make the expression evaluate to 1 or true. So, if it evaluates to 1, some assignment makes 

the expression evaluate to 1, then you say that instance has a solution. So, that is a 

Boolean that expression is satisfiable; that particular instance is satisfiable. There are 

instances which are not satisfiable. 

(Refer Slide Time: 04:32) 

 



For example, something like you know p n naught p are this is in the proper (( )) form, x 

1 naught x 1. That is x 1 and naught x 1 that will always be 0. So, there are expressions 

which are never satisfied, which will never take the value 1. So, the problem is given in 

expression of this form can one assignment make it equal to 1? Similarly, you have the 

ambiguity problem for context free grammars. What is that? 

The ambiguity problem is finding out whether a context free grammar is ambiguous or 

not. Particular context free grammar is an instance of the problem. If this particular 

context free grammar is ambiguous, then that is a yes instance of the problem. If it is not 

ambiguous, then it is a no instance of the problem. 

(Refer Slide Time: 05:55) 

 

Now, let us take a grammar S goes to a S b, S goes to a b. I am only writing the rules S is 

the non terminals, small a and small b are terminal symbols. Now, this particular 

grammar, you know is unambiguous. Any string will have only one derivation tree. The 

language generated is a power n, b power n; n greater than or equal to 1. And if you take 

any string a power i, b power i, that will have only one derivation tree or one pass tree. 

So, this particular grammar is unambiguous or you can say it is not ambiguous. It is a no 

instance of the problem. 



(Refer Slide Time: 07:07) 

 

Whereas, look at this grammar, S goes to S S, S goes to a. Here again, S is a non terminal 

and small a is the terminal symbol. These are the two rules. The language generated is a 

power n; n greater than or equal to 1. We know that this grammar is an ambiguous 

grammar so, this is ambiguous or it is a yes instance of the problem. 

(Refer Slide Time: 08:20) 

 

Now, I know that this particular grammar is ambiguous because I am able to get two 

derivation tree for a cubed or something like that, you know, that this grammar is 

unambiguous. These are particular instances of the problem. For particular instances, you 



may be able to find out the solution. When you say that the problem is un decidable, 

what it means is, in general, there is no algorithm which will take a context free grammar 

G as input and come out with the answer yes. 

It is ambiguous or no it is unambiguous. There is no general algorithm which will take 

any grammar G. G may be having 50 rules, it may be having 100 non terminals or it may 

be having 100 rules, 150 non terminals and so on and algorithm should take any such 

grammar and come out with an answer yes or no. What we want to say is, there is no 

such algorithm, that is, the problem is undesirable corresponding to a problem. Suppose, 

we denote the problem by a symbol pi, this is the ambiguity problem. There I will be 

corresponding language l which consists of all yes instances of the problem right. 

Now, when you say that pi is undesirable, it would mean l is not recursive and vice 

versa. The problem pi is the problem. It is un decidable that is equivalent to saying l is 

not recursive. What is l? l consists of all yes instances of the problem encoded as a string, 

encoded as strings. Now, how is this encoding done, that we have to see. Under what 

condition, this one is not recursively enumerable? Under what condition it is recursively 

enumerable, not recursive? They are all points to be study. 

(Refer Slide Time: 11:55) 

 

So, we show that we see that for the sat problem or Boolean expression satisfiability, if it 

is satisfiable, that is, if there is an assignment, which makes the expression evaluative to 

1, it is a yes instance of the problem. If there is no such assignment, it is a no instance of 



the problem. In contrast to these problems, the problems like finding a Hamiltonian 

circuit, they are called optimization problems. Whether a graph has a Hamiltonian 

circuit, it is a yes or no problem decision problem. 

Whereas, find the Hamiltonian circuit is a optimization problems. In fact more or less we 

can convert one to the other and look at in a similar manner. For example, here the 

ambiguity problem is given a grammar. Is it ambiguous or not? That is the answer is yes 

or no. You can just look at it as an optimization problem. In this way, find a string which 

has got two or more derivation tree in, find a string which has two or more derivation 

trees, find a string of course, string is in l G. 

Now, how can you relate one to the other? Suppose, the ambiguity problem is decidable 

or if the answer is yes, then in the find one by one, you can, the strings and find the pass 

trees and find out the string which has got two or more pass trees or derivation trees. The 

other way round, if the find gives you an answer, one particular string w. That means that 

particular string w has two or more derivation tree. So, the answer to the ambiguity 

problem is here. That way you can connect to one decision problem to one optimization 

problem. 

(Refer Slide Time: 13:44) 

 

So, without loss of generality, we will restrict ourselves to decision problems and how 

can we encode a problem? As a binary string, any problem you can encode as a string. A 

Boolean expression can be looked at as a string. For example, this particular expression 



you write it as, without subscripts x x 1 plus x 2 naught x 1 plus naught x 2 and so on. 

What are the symbols which are being used? Left parenthesis, right parenthesis, the 

symbol x and the number, which follows x gives you the subscript. It is an integer using 

the symbols 0 to 9. 

So, this string uses left parenthesis, right parenthesis, x plus naught 0 to 9. So, if taking 

this as the alphabet over this alphabet, this is a string right. Similarly, if you take a 

context free grammar, it can be encoded as a string. For example, this is the grammar and 

the non terminals are say S taking this particular grammar non terminal. There is only 

one non terminal s, there are two terminals symbols a and b set of production rules and 

the start symbol. And the production rules are given like this. 

You may look at it as a string over this alphabet left parenthesis. Second symbol is this, 

third symbol is this and so on. So, what are the symbols being used? Left parenthesis and 

right parenthesis used in the beginning and the end, then when you denote the non 

terminal and the terminal as sets, you will be using this flower brackets and also in the 

rules you use the arrow mark. So, as a you can look at it as a string right, you can look 

the grammar as a string. This is how you encode a string. 

There are one or two things you have to be careful about. Now, the alphabet size may 

become very large because you may have a number of non terminals. So, instead of that, 

we can just encode this in binary. We know how to do this. In the last class, we saw that 

any Turing machine, you can look at it in such a way that the tape alphabet consists of 

only 0 and 1 apart from the blank symbol. 



(Refer Slide Time: 16:23) 

  

So, if this encoding use this k symbols say, a 1 a 2 a n, then to represent each symbol you 

can make use of log n to the base two symbols. So, for a example, suppose, I have a 1 a 2 

a 3 a 4 a 5, I can use 5 like you know 0 0 1 0 1 0. Like that, I can use another way of 

encoding will be a 1 I represent as 1 0 a 2 I represent as 1 0 0 a 3 1 0 0 0 a 4 1 0 0 0 a 5 1 

0 power 5 and so on that way also we can represent. 

So, any problem you can encode as a binary string (( )). So, this is the connection 

between problems and languages. When you say that the problem is un decidable, it is 

equivalent to saying that the corresponding language which consists of the yes instances 

is not recursive. 



(Refer Slide Time: 17:43) 

 

The halting problem for Turing machines was proved to be un decidable by Turing in 

1936. Afterwards, many problems were shown to be un decidable. One of them is 

syllabus strength problem and problems like, you know, given to flow chart programmes 

do they do the same thing? Do they compute the same thing and sometimes given two 

flow chart programmes do they compute the same thing in the same manner? For 

example, factorial n you can compute by having 1 2 3 multiplied up to n or taking n 

initially, multiply it by n minus 1 and n minus 2 and so on. 

Both of them will compute n factorial, but they do it in a different way. One starts with 1 

and goes up to n, the other one starts with n and goes down up to 1. So, given two 

programmes do they compute the same thing? That is an un decidable problem. Even if 

they compute the same thing, do they do it in a same manner? That is again another un 

decidable problem. Hilbert strength problem is given, a polynomial with integer 

coefficients making it equal to 0, that particular equation will have number of roots. 

If d is the degree, it will have d roots whether the roots are integers, rational, irrational, 

real, and imaginary that is to be seen. Does there exist an algorithm, which given a 

polynomial tells you, whether it will have integer roots? Polynomial with integer 

coefficient will it have integer roots? People have been trying that. Again as I told, 

particular instances of the problem you may be able to find out. Given one particular 

cubic equation or fourth degree equation where factorising you may be able to find out 



the root and tell whether it is integers are not. 

But, in general the degree may be 100 the degree may be 200, the coefficients are all 

integers. Whether the roots are all integers are not, does there exist an algorithm? People 

have been trying this for a long time from say nearly beginning of the 20th century till 

Turing proved his result. At that time, they realized that there is no part in trying for that 

algorithm because no such algorithm exists. Again this is a very strong statement it tells 

you that nobody can ever find an algorithm for that problem. 

(Refer Slide Time: 20:44) 

 

At the same time, it through some light on problems like Fermat’s last theorem. What is 

Fermat’s last theorem? It is a Fermat’s conjecture. It says that you cannot have integers 

x, y and z such that i is also an integer and i is greater than or equal to 3. You do not have 

integers x y z and i; i greater than or equal to 3 such that this particular equation holds. 

Look at this. This is a single instance of a problem there is no set of a problem instances 

and so on. Some problems may have just one instance. 

This is such a case, there is only one instance. x, y, z, i are not parameters; they are 

bound very well. Actually, it means that not there exist x there exist y there exist z there 

exist i greater than or equal to 0; x power i plus y power i is equal to z power i. So, x y is 

a dye or bound variables they are not parameters. So, this is only a single instance of the 

problem, either the answer is yes or no. It is decidable problem; we do not know we may 

not know. 



Now, you know that is the conjecture is correct. Nearly 8 or 9 years back, it was proved 

that the conjecture is correct. But before that people thought, it may be true or it may not 

be true, but this un solvability of the halting problem showed that there should be an 

answer for that. Either it is yes or no you may not be able to prove that also. Even if the 

answer is yes it is a true statement, but by a result of Godel, any consistent axiomatic 

system for integer arithmetic will have true statement which cannot be proved. 

So, people thought that probably we will never be able to prove that statement even 

though it is true. But finally, after some long difficult work this has been proved to be 

true; the conjecture has been proved to be true. That is to show that if a problem has only 

one instance, then it is a decidable problem. The other problems which we considered 

like ambiguity, they had several instances. For a particular instance, you may have an 

answer, but for the general problem there may not exist an algorithm. 

Now, after this result, several other problems have been shown to be un decidable. How 

it was shown and how is it that you can show a new problem to be un decidable? Now, 

researches we are trying to find algorithms and we trying to show that problems are un 

decidable. Now, you want to prove a new problem to be un decidable. How do you do 

that? You have to take a known un decidable problem and it has to be reduced to the new 

problem. That is there should be one algorithm which converts one instance of the 

known problem to a one instance of the new problem. 

(Refer Slide Time: 24:27) 

 



So, I have two problems. I have one problem p known; this I know is un decidable and I 

have a another problem p new. I want to show it is un decidable. How do I do this? There 

will be several instances here, several instances here so; there should be a way of 

converting one instance of p known to one instance of p new. So, while constructing one 

instance of p new from one instance of p known, we have to convert the yes instances 

into yes instances and no instances into no instances. 

The argument will be like this, suppose, p new was decidable, that means there exist an 

algorithm for that. So, what you do is, take one instance of the p known problem. 

Convert it to an instance of the p new problem and call this algorithm. So, while 

constructing one instance of p new from one instance of p known, we have to convert the 

yes instances into yes instances and no instances into no instances. This algorithm will 

solve it. So, there is a solution for the p known also. If p new were decidable, there is an 

algorithm for this. 

Using this algorithm, p known gets an algorithm. How does it get? One instance will be 

turned into one instance of p new and this algorithm will be caught and hence p known 

gets an algorithm for it. That is you come to the conclusion, you conclude p known is 

decidable, but we know that p known is un decidable, so you are arriving at a 

contradiction. So, that shows that p new is not decidable therefore; p new is not 

decidable. This you call as reducing p known to p new. 

(Refer Slide Time: 28:10) 

 



Or sometimes, this symbol is used, sometimes some other symbol is also used does not 

matter. But you say that p known is reduced to p new and you show that p new is un 

decidable. 

(Refer Slide Time: 28:50) 

 

Many problems can be proved to be un decidable by reducing the halting problem to it. 

But for problems related to formal language theory, like you know, ambiguity problem, 

whether a given context free grammar is ambiguous or not, we rather used another 

problem called p c p or post correspondence problem. So, first we prove that this is un 

decidable from the halting problem, then making use of this problem, we show that other 

problems are un decidable. We shall this later. 



(Refer Slide Time: 29:32) 

 

Now, we have seen that a Turing machine can be encoded as a binary string. This we 

saw in the last lecture and Turing machines because of that encoding can be enumerated 

you can talk about the i’th Turing machine and you can also look at a Turing machine as 

computing a function. So, if you enumerate the Turing machine as t 1 t 2 t 3 etcetera, the 

Turing machine t i computes a function and those computable functions they are called 

Turing computable functions. And they can also be enumerated or it is a countable set of 

functions. The set of Turing computable functions is a countable set. 

(Refer Slide Time: 30:28) 

 



Now, let us see what is meant by a universal Turing machine. A universal Turing 

machine is a Turing machine which can simulate any other Turing machine including 

itself. Now, the universal Turing machine can simulate any Turing machine t, on a tape t, 

on an input t. Now, the alphabet for this is 0 1 and blank we saw that without loss of 

generality, we can assume only two letters apart from the blank symbol. So, we consider 

three symbols as a tape alphabet and the encoding of a Turing machine is a binary string 

d t. This also we have seen. The universal Turing machine given the encoding d t and the 

input t, it simulates t on t and behaves like t on t. 

Now, the input will be of this form. The universal Turing machine will have three tapes. 

The first tape will contain the input and it will be of this form. The encoding of the 

Turing machine will be given first; the encoding dt. We know that the encoding begins 

with three 1(s) and ends with three 1(s) and are separated by two 1(s); the blocks are 

separated by two 1’s and each block represents a move of the Turing machine. 

(Refer Slide Time: 32:20) 

 

Let us just recall what we studied earlier. Suppose, the states of the Turing machine are q 

1 q 2 q n, the tape symbols are 0 1 blank, the mapped given by delta of q i x j is equal to 

q k; it goes to state q k x l and the direction, which will be either l or r. This move means 

that it is in state q i reading the symbol x j and it will go to state q k replace x i by x l and 

then move left or right. 

This move is represented by 0 power i, 1 0 power j, 1 0 power k, 1 0 power l, 1 0 power 



m. Here, j and l will be 1 2 3; 1 means 0, 2 means 1, 3 means blank, m will be within 1 

and 2; 1 means left move, 2 means right move. And i and k are states, they will vary 

from 1 to n. Without loss, we take q 1 to be the start state and without loss of generality, 

we can take q 2 to be the final accepting state. 

(Refer Slide Time: 34:10) 

 

Now, with this the universal Turing machine has three tapes. The first tape contains d t 

and t. Or in essence, it means that the first state will have the encoding and the tape t. We 

have seen that the encoding consists of blocks separated by two 1’s and each block is of 

this form. The second tape contains 0; the third tape is used for simulation. 

Now, initially, this has single 0, which means state 0. At any time, it may have some 0s, 

which will denote the states. So, you can have something like this. The third tape is used 

for simulation. So, initially, this contains 0 and t is copied on to this. That universal 

Turing machine before doing, it has to checks whether it is a proper encoding. We know 

that a proper encoding should begin with three 1’s, end with three 1’s and should have 

blocks. So, it checks whether it is of this form and we are considering only deterministic 

Turing machines now. 

So, for one particular q i and x j, there should be only one map. So, the Turing machine 

first checks, it is a whether it is a proper encoding by checking whether it begins with 

three 1’s, ends with three 1’s and whether each block is of this form. And when it checks 

whether each block is of this form, it also checks whether i and k are between 1 and n, j 



and l are between 1 and 3 and m is 1 naught 2. If it has some other value, then it 

represents an improper encoding and the machine halts. A machine with improper 

encoding represents a Turing machine with no moves and so it cannot accept any string. 

Now, once it finds it is a proper encoding, the initial state is q 1. So, 1 0 is here, t is 

copied on to the third tape and the behaviour of this Turing machine is simulated on the 

third tape. So, suppose, here the third, it is a binary string something like this. The third 

tape head is here it is reading a 1 and this contains a four 0s. That is, it means in state q 4, 

it is reading a 1, then it goes through this portion of the first tape and checks whether 

there is a block beginning with 0 power 4, 1; 1 is 2 so, 0 power 2, 1 and so on. 

If there is a block, which begins like this, there is a move for this situation. That is in 

state q 4; it can read the symbol 1 and make a move. Then it records it, stores in its 

memory. What is given there something like 0 power k; 1, 0 power l; 1, 0 power m. So, it 

replaces this by 0 power k k 0s and prints a 0 or a 1 depending upon what is the value of 

l and then depending upon the value of m, it is moved left or right; tape head position of 

tape three will move left or right. 

(Refer Slide Time: 38:50) 

 

Thus you simulate one move of the Turing machine, in the universal Turing machine. So, 

if at some time, 0 0 appears in the second tape, that means you have reached the final 

state and so this string will be accepted. So, the possibilities for T on t, u simulates a 

Turing machine T on t. t is the input; small t is the input, capital T is the Turing machine. 



It is given like this on the first tape. The possibilities are this halts and accepts in a 

situation where known next move is possible, it halts and it is not a final state. That 

means the string is rejected. 

It halts and rejects or gets in to a loop. In this case also, the string will not be accepted. In 

this case, the string will be accepted, in these two cases, the string is not accepted. u 

while simulating T on t, if this halts and accepts it will also halt and accept. If it halts and 

rejects, this is also halts without accepting; that is, it is rejecting the input. In this case, u 

also will get into a loop. One step by step, it will simulate the move of t and it will get 

into a loop. This way, a universal Turing machine can simulate any other Turing 

machine, if suppose you take t to be u itself, it can simulate itself. 

Now, one point we have to note is that we have used three tapes for the universal Turing 

machine. Actually, it is not necessary; we know how to simulate a multi tape Turing 

machine with a single tape Turing machine. So, let u be the universal Turing machine 

with one tape. You can make use of just one tape alone because a multi tape Turing 

machine can be simulated by a single tape Turing machine. 

(Refer Slide Time: 41:10) 

 

So coming back to this (No audio from 41:10 to 41:21) 



(Refer Slide Time: 41:20) 

 

We have seen about the languages l d and l d bar. How did we define them? They we 

defined l d as w i; w is not, w i is not accepted by t i. l d bar is w i; w i is accepted by t i. 

Now, we can define a universal language as the language accepted by a universal Turing 

machine. Actually, it will accept strings of this form d t t, where d t denotes the encoding 

of t and t is the input to t. So, if t accepts t, this particular string will be in the language l 

u, if t does not accept t this particular string will not be in l u. 

So, u we can define a universal language like this in this form. Sometimes, we use this 

notation; m w, m accepts w. That means the string is a binary string; you must realize 

that it is a binary string. Only for notation sake we use n comma w there is no comma or 

this less than symbol or right greater than symbol or anything. 

It really denotes something like this. The compliment of this language is denoted as l u 

bar. We can show that these two l d and l u bar, they are not even recursively enumerable 

whereas, l d bar and l u, they are recursively enumerable, but not recursive. So, in the last 

class I mean in the last lecture, we considered this recursive set recursively enumerable 

set. 



(Refer Slide Time: 43:10) 

 

For a language l and l bar, they can be both here, they can be both here. One can be here, 

one can be here but both cannot be here. If l and l bar are here, then they will come 

within this. That is what we have seen. So, in this case, we find that l d is here, l d bar is 

here, l u is here, l u bar is there. This is a thing. Now, recalling what we did in the last 

class. 

(Refer Slide Time: 44:02) 

 

We have an infinite Boolean matrix where the strings over 0 1 are enumerated and in the 

column wise, you have the Turing machine. The i j’th entry, that is the entry in the i’th 



row and j th column is equal to 1 if t i accepts w j. That is if the i th Turing machine 

accepts the j th string, the entry will be 1. Otherwise, if it does not accept, it will be 0 and 

l d corresponds to the 0 elements of the diagonals. 

If you consider the diagonals here, there will be some 0s and 1s. l d corresponds to the 0 

elements, l d bar corresponds to the 1 elements and we have seen that l d is not 

recursively enumerable. Now, we will show that l u is recursively enumerable, but not 

recursive and l d bar is also again recursively enumerable, but not recursive. How do we 

show that? 

(Refer Slide Time: 45:40) 

 

L d bar is recursively enumerable, but not recursive. How do you show that? Similarly, 

how do you show l u is recursively enumerable but not recursive? Now, for l d bar you 

show like this have one tape, the input w is given here. You can make use of another 

tape, where one by one you string; you generate the strings in that enumeration w 1, w 2, 

w 3, w 4 etcetera. Each time you compare with this. If they match, suppose, w i is 

generated here and it is matching with this. 

That means the given input is the i’th string in the enumeration. Once you find that w is 

w i, after finding this, simulate T i on w i. You generate the encoding of the i’th Turing 

machine. What is that? It is an integer i. That is what we have seen earlier. So, you 

generate the encoding of the i’th Turing machine and simulate t i on w. The possibilities 

are it halts accepts halts and rejects or it gets into a loop. 



So, the mission for l d bar is like this. It finds out that the given string is the i’th string in 

the enumeration. Then it generates the encoding and then simulate t i on w i. If it halts 

and accepts m also accepts, if it halts and rejects, this rejects. If it loops also, it may get 

into loop, it will not accept. Anyway, if t i is accepted by if w i is accepted by t i. It will 

be accepted by this machine m, which you are constructing. That is why you are able to 

construct a Turing machine for l d bar. So, it is recursively enumerable. So, l d bar is 

recursively enumerable. 

Why it is not recursive? Because if it is recursive, the compliment of a recursive set is 

recursive so, l d will become recursive, but we know that l d is not even recursively 

enumerable. It lies outside so, in that case, we know that it is not recursive. So, we 

shown that l d bar is recursively enumerable, but not recursive. The next is same thing 

we want to show about l u. l u is recursively enumerable, but not recursive. How do you 

show that l u is recursively enumerable? 

(Refer Slide Time: 49:26) 

 

We have constructed a universal Turing machine u. So, you are able to construct a 

Turing machine for that. That means construction of a Turing machine, construction of u 

shows l u is recursively enumerable. Now, it is not recursive to show that, if l u were 

recursive, l d bar is recursive. You show that if l u were recursive, l d bar is recursive. 

How do you show that? 

You can construct a Turing machine which halts, and which always halts for m l d bar. 



So, how does it work? Given a input w, it finds out that it is the i th string in the 

enumeration. Then generates encoding of the i th Turing machine. Then it calls you with 

b of t t i and w i. Now, if l u where recursive, this will come out with the answer. This 

will be accepted or not accept or reject. There is no looping. If it accepts, that means t i 

accepts w i. 

So, the mission you are constructing will accept and if it rejects, this will reject. That 

shows you have a mission, which always halts and it accepts l d bar, but that is not 

correct. That is not true. So, l u is recursively enumerable, but not recursive. By the same 

argument we know that l u is recursively enumerable, but not recursive. So, the 

compliment has to be not recursively enumerable. Because if it were recursively 

enumerable both of them will lie here and we know that both of them will lie here. We 

know that if both of them will lie, they will be shifted here right. So that way the have 

been proved. 

(Refer Slide Time: 52:09) 

 

This gives another proof for the halting problem we have already seen one proof for the 

halting problem in the last lecture. Now another proof can be given for this. So, let us 

consider another proof for halting problem. It is like this. 



(Refer Slide Time: 53:00) 

 

If the halting problem were decidable, then the language l d can be accepted by a Turing 

machine, but we know that l d cannot be accepted by a Turing machine. So, the halting 

problem is not decidable. So, the argument will be like this. Suppose, halting problem is 

decidable, then there exist a Turing machine halt. And for this, the input will be sum d t 

and t because the encoding it will be like this d t t. And it will tell you yes or no, T on t 

halts or T on t does not halt. 

(Refer Slide Time: 54:00) 

 

Now, making use of this, you can construct a Turing machine for l d as follows. Mission 



for l d, given an input w, it will keep on generating 1 2 3 and comparing and then find 

out that the given string is the i th string in the enumeration. That is it finds out that w is 

equal to w i and then generates the encoding. Encoding of the i th Turing machine calls 

that is, dt i calls. It calls as a subroutine, the mission halts with dt i and w i, now halt will 

always gives you an answer yes or no. 

If it says no, that means the i’th Turing machine does not halt on the i’th string. It will 

get you into a loop. In this case, the mission, which you are going to consider m m 

accepts. If the answer is yes, that is t i and w i will halt, then it calls the universal Turing 

machine with d t i w. 

Now, the universal Turing machine will say accept or reject. That is t i accepts w i or t i 

does not accepts w i. If it rejects, m will accept. If it accepts, m will reject. That way m (( 

)) strings of the firm w i, w i is not accepted by t i. If t i accepts w i, m will not accept it. 

It will be like this. If t i does not accept w i, it may be by stopping in a configuration, 

where the next move is not possible. That is taken care of this and m will accept that 

string. If t a gets into a loop and does not accept w i, it is this situation and in this case 

also m will accept w i. 

So, this machine points out that the given string is i’th string in the enumeration and 

generating the encoding of the i’th Turing machine. First calls halt and then if it is says 

no, then it will accept. If it says yes, then it will call the universal Turing machine. Note 

that this will always halt because only in the case when t i halts on w i, we are calling u. 

So, in this case, the machine will always halt and come out of the sub routine right. So, if 

it accepts, m will reject; if it rejects, m will accept. 

In any case, if w i is not accepted by t i, and then m will accept w i and this is the 

language l d. So, we are able to have a Turing machine for l d, but we know that, that is 

not possible and all this has come from the assumption that there is an algorithm for 

solving the halting problem right. And hence the halting problem is not decidable. There 

is no algorithm for solving the halting problem. So, thus we have seen the un decidability 

problems. We shall look into some more problems for this for Turing machine. These are 

for languages, we have to consider some results about properties, about languages 

accepted by turing machine, and also turing machines themselves. 

 


