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In the last lecture, we considered some restricted versions of turing machines. Earlier we 

considered some generalized versions of turing machines. Then in the last lecture, we 

considered 3 restricted versions of turing machines. One of them was a two pushdown 

tape machine. Any turing machine can be simulated by turing machine with two 

pushdown tapes; that is 2 tapes which behave as pushdown tapes. Then we showed that 

any turing machine can be simulated by a 4 counter machine. 

A counter machine is a one, where the tapes are behave like counters; that are they can 

store only a number there is only one non-blank symbol and the other symbols are 

blanked. And the distance from the non-blank symbol to the position of the head is 

calculated, and it denotes an integer. We showed that one pushdown tape can be 

simulated by 2 counters and hence 2 pushdown tapes can be simulated by 4 counters; 

then we showed that even 4 counters are not the necessary, you can simulate with 2 



counters. The 4 counters store 4 numbers i j k l and we can make use of one integer to 

represent all i j k l by using the concept of Gödel numbering, and so we can simulate 4 

counter machine with a 2 counter machine. 
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Having said that we have some more restricted versions, we find that two symbols are 

enough apart from the blank symbol for any turing machine. That is we can take the tape 

alphabet to be, just two symbols and a blank symbol input alphabet may consist of 0 and 

1 only. So, input alphabet you can take to be just 0 and 1; how can we do this? Suppose a 

turing machine has say n symbols say a 1 a 2 a 3 a 4 a n. We can encode the n symbols 

using just binary alphabet that is 0 and 1; for example, if you have just a 1 a 2 a 3 and 

then say blank, instead of a 1 you can use 0 0; instead of a 2 you can use 0 1; instead of a 

3 - 1 0 and blank - 1 1 some sort of an encoding. 

Probably, we would like to use 0 0 for blank and 1 1 for a 1 anyway you can encode the 

symbols in binary and to encode n symbols each symbol has to use log n to the base 2. 

See o many bits will be required to encode each symbol. For example, suppose I have the 

alphabet as a 1, a 2, a 3 and I have a tape like this, where I have a 1 a 1 a 2 a 3 followed 

by blanks and preceded by blanks. The corresponding encoding here will be for blank I 

used 1 1 for a 1 0 0 again for a 1 0 0; for a 2 0 1; for a 3 1 0, then blank is 1 1, so 1 1 like 

this. You must here you have blanks, but you must realize that you should when you use 



blank, you should replace it this is the input alphabet. So, if you use blank here, when 

you want to simulate this blank you must use 1 1 and then simulate that. 

Now, when you want to read a 1 what you have to do is, you have to read these two 

symbols and then define the mapping. So, if the states will be increased the number of 

moves will be doubled here. Depending upon the number of cells used it will be 

multiplied by k. So, you have to read these two symbols and determine that the symbol 

read is a 1 and define the mapping. When you want to read this blank instead of blank, 

you must first think of it as 1 1 and then replace it with the corresponding symbol. So, 

the next symbol is a 1 again. You have to read these two symbols and then determine the 

mapping next it is a 2. So, you have to read these two symbols and determine the 

mapping. So, this way any tape alphabet a 1 to a n can be encoded using the binary 

alphabet 0 0 0 1 1 0 1 1 and so on. So, it is enough if we consider the tape alphabet to 

consist of two symbols 0 and 1 apart from the blank symbol. 
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This is one restricted versions and in all our proofs we will be using this restricted 

version. The next instance even when you use two symbols, you can have an offline 

turing machine that is one which is having the input alphabet within markers and one 

more tape you can have where you keep on writing symbols, but you never turn to the 

left and rewrite something. This is done in this manner, the input is kept here and the 

initial id is copied on to this tape the initial id will be some q 0 w, where the tape head is 



pointing here. So, initial id will be written here and then instead of changing the id; this 

id is left as it is and the next id will be written here in the blank portion then the next id; 

this is id 1 and this is id 2 and so on. The next id is written in the blank portion and you 

always keep on writing on this tape in the blank portion and you never turn left and 

rewrite something.  

So, without rewriting also you can simulate a turing machine; this is much restricted 

version this is for interest sake only we will not be using this idea, but we will be using 

the idea of this that is two tape symbols are enough apart from the blank symbol. 
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So with this, we shall go on to the next concept of what is a recursive set? And what is a 

recursively enumerable set? The set accepted by a turing machine is called a recursively 

enumerable set. We have also seen earlier that, the language generated by a turing 

machine can be compared with the language accepted by the turing machine. That is, if a 

language can be generated by a turing machine in the output tape, then there is another 

turing machine which will accept it. So, because you are able to generate the string, one 

by one the set is called a recursively enumerable set and we also know that the turing 

machine need not always halt on all inputs. On some inputs it may get into a loop and 

never halt. 



Suppose a turing machine halts on all inputs, then the set accepted is called a recursive 

set the language accepted by a turing machine. The second one, the language accepted by 

a turing machine which halts on all inputs is called the recursive set.  
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In the Chomsky and hierarchy we have this diagram, the regular set is the smallest class 

which is included in the class of CFL. Then which is included in the class of context 

sensitive languages and which is included in type 0 or recursively enumerable languages. 

The recursive set form a subclass of recursively enumerable sets, but it is higher than 

context sensitive languages. This is the class of languages accepted by turing machine 

and this is the class of languages accepted by turing machines which halt on all inputs. 

Now, when we say recursive set it corresponds to an algorithm, a procedure corresponds 

to a turing machine. What is a procedure? A procedure is a sequence of statements which 

tell you how to behave that is you define a set of moves from instance to instance, you 

know what is the next step that is like a computer program which may not halt. For 

example, keep on printing integers 1 2 3, you can write a pseudo code for that which 

keep, which will execute and keep on printing 1 2 3 and will never stop, but you know, 

what is the next step to be done. That is an example of a procedure.  

An algorithm is a procedure, which always halts given a number n is it a prime or not. 

You can write a program for that ultimately, it will tell you, whether the given number n 

is a prime or not. That is an algorithm. An algorithm always halts and gives you an 



answer. It may be yes or no or some other answer, but whatever it is. An algorithm is a 

sequence of statements, it is a program like thing which always halts and tells you an 

answer and an algorithm corresponds to a turing machine which always halts. It 

corresponds to a recursive set. A procedure corresponds to a recursively enumerable set, 

you can have a turing machine which will do that. For example, you can write the moves 

of the turing machine which will keep on writing the integers in binary notation or in 

decimal notation one by one and that will keep on doing it without stopping. But the 

turing machine will not halt. So, an algorithm corresponds to a turing machine which 

halts on all inputs given an input, an algorithm will always give you an answer. 
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Now, let us study a few properties of recursive sets and recursively enumerable sets. So, 

what is that? If you have two recursive sets, the union is a recursive set. How do you 

prove that?  
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Suppose I have L 1 and L 2 are recursive sets. So, L 1 is accepted by a turing machine M 

1 for which when input w is given. It will stop and accept it or reject it. Similarly for M 

2, a turing machine which is accepting L 2 given an input, it will halt and accept or halt 

and reject. Now how can you have a turing machine which will accept L 1 union L 2? It 

will have the following structure, given the input w, first M 1 will act on it and if it 

accepts the compound machine, which is for L 1 union L 2 will accept the input. 

Suppose M 1 rejects the input w, then the machine M 2 will be started and when M 2 is 

started. It will come out with the if it comes out with the answer yes, then M accepts it. 

That is, if w is accepted by M 1, you will take this exit. If w is accepted by M 2, you will 

take this exit and if M 2 rejects it. Then the compound machine will not accept, it will 

say no. 

So, this way you can have a turing machine, which always halts, which accepts L 1 and 

L 2, L 1 union L 2. The same procedure we cannot have for recursively enumerable set. 

The next result, we will study is the union of two recursively enumerable sets is 

recursively enumerable. Obviously, we cannot use this construction. What is the reason? 

The reason is when a turing machine for a recursively enumerable set, we can have a 

turing machine which will say yes, if w is accepted. But if w is not accepted, it may not 

halt. So, it will not say no, it may get into a loop. So, similarly for M 2 also you can have 

a turing machine which will say yes that is, it will halt and accept if w is accepted, but if 

w is not accepted M 2 may halt in a non-final configuration or it may get into a loop. 



Obviously, for the compound machine for L 1 union L 2 you cannot use this 

construction, because this exit may not be taken at.  
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So, for accepting L 1 and L 2, we will rather have a different machine. A turing machine 

which has this structure M 1 and M 2 are simultaneously tried by with input w, you may 

have 2 tapes in one, you may simulate M 1 in another one; you may simulate M 2. So, 

given the input w, it is given as input to both M 1 and M 2 and if this accepts, it will say 

yes, if this accepts also it will say yes. So, if w is accepted either by M 1 or by M 2 or 

even if it is accepted by both, you will come out of the yes exit and the machine M will 

accept that. 

But if w is not accepted by M 1 and also not accepted by M 2. M will not accept that, 

because it may halt in a non- final configuration or it may get into a loop does not matter. 

It will not accept, if w is not accepted by both M 1 and M 2 this way. We can have a 

turing machine, which will accept the union of two recursively enumerable sets L 1 and 

L 2.  
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The next result, we see that is the complement of a recursive set is recursive. That is you 

have L as a recursive set. Now I want to show that L bar is also recursive. How can you 

have a turing machine, which always halts for L bar? This will have the machine M as a 

sub 1, if L is accepted by M. We know that M always halts, so given w, M will say either 

yes or no and if it says yes machine for the complement - M bar; M bar is the machine 

for L bar. It will say no, if M says no then M bar says yes. You know that, M always 

halts and either says yes or no. if it says yes M bar will say no, if it says no M bar will 

say yes or in other words it is like same as finite state machine. You can interchange the 

final and the non final states that is what it means really. 

So, you can have a turing machine, which always halts for L bar. So L bar is recursive, if 

L is recursive that is the family of recursive sets is closed under complementation. We 

will see that that does not hold for the family of recursively enumerable. Now another 

result we see that if L and L bar are recursively enumerable, then L is a recursive set. 

How can you prove that L and L bar are both recursively enumerable? Then we can have 

a turing machine for L which always halts, how is this machine built given an input w, 

Suppose this is say M dash; the machine for L is M, the machine for L bar is M bar, they 

are turing machines, but they need not halt on all inputs. 

Now, how does M dash accept a string, you give w to both M and M bar as input? M 

dash has as subparts M and M bar and w is given simultaneously as input to both M and 

M bar. Now any string w, it has to be either in L or in L bar you know that, it has to be 

present in one of them, but not in both. So, suppose w is in L, this will say yes. Suppose 



w is in L bar, then this will say yes. In that case you can say no M dash will say no. So, 

you have a turing machine M dash, which always halts given w, if it is in L it will say 

yes. If it is not in l, but in L bar it will say no. So, if L and L bar are both recursively 

enumerable, then you can have a turing machine M dash accepting L and M dash always 

halts. What does that mean? That means that L is a recursive set. Therefore L is recursive 

why because M dash always halts. 
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Next we will see, how we can encode a turing machine; a turing machine can be encoded 

as a binary string? 
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We will see, how this can be done. The let M be a turing machine - k, sigma, gamma, 

delta, q 0, F. Let the set of states be q 1, q 2, q n without loss of generality, there are n 

states and we can assume that the initial state is q 1 q 1 is the initial state. You may have 

some for zero final states. Then we have already seen that without loss of generality, we 

can assume that, there are only two input alphabet and one blanker symbol as the tape 

alphabet. 

Now, we have a mapping of the form delta of q i, x j is equal to q k, x l and then L R; R 

depending upon left R. The mapping will be of this form that is when the machine is in 

state q i reading the symbol x j, it goes to q k, prints the symbol x l and either moves left 

or right. Now you know that we can use only three symbols. So, we have three symbols 

x 1, x 2, x 3 this stands for zero and this stands for one; this stands for blank. We can 

have something like this; any other order is also acceptable. So, if you do that, you know 

that the value of j and l should be between 1 and 3 only and what can be the value of i 

and k? There are n states from q 1 to q n. So, q i have to be one of them, similarly q k has 

to be one of them. So, the value of i and k should be between 1 and n; again the move 

can be left or the move can be right. So, if it is left, you use 1. If it is right, you use 2 for 

that. 

So, this move can be encoded as a binary string like this 0 power i 1, 0 power j 1; that 

means, in the i eth state, you are reading the symbol j then it goes to the state q k that is 0 



power k 1, 0 power l 1. That is you are going to state q k and you are printing the symbol 

x l and you are moving left or right. So, you have 0 power m here, where m is 1 if it is a 

left move, and M is 2 if it is a right move. 

So, the value of M can be only 1 or 2; any move of the turing machine can be encoded in 

binary like this, this is one particular move of the turing machine and it can be encoded 

like this 0 power i 1, 0 power j 1, 0 power k 1, 0 power l 1, 0 power m. You must 

remember that, i and k can have values between 1 and n j and l between 1 and 3 m 

between 1 and 2. This idea we would be again using in universal turing machine, but let 

us take as an example this particular turing machine and see let us see, what is the 

mapping? Or what is encoding? This is the turing machine, the 3 symbols are 0 1 and 

blank there are 5 states q 1, q 2, q 3, q 4, q 5. q 1 is the initial state and q 5 is the final 

state. You see that there is no mapping for q 5 without loss of generality, we assume that 

when it reaches the final state, it halts no next move is specified here. Now the mappings 

are given in this manner.  
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How do we encode this turing machine? The first move, how many moves are there? 

There are 8 moves 1, 2, 3, 4, 5, 6, 7, 8. Let us write them as move 1, move 2, move 3, 

move 4, move 5 and So on move 6, move 7, move 8. What is move 1? Delta of q 1 0 is q 

2 0 or that is delta of q 1 and zero is a… first 0 is x 1. So, you have 0 power 1, 0 power 1, 

you can omit the 1 if you want. It goes to state q 2, so 0 power 2. q 2 it prints a 0, so 0 



powers 1 and it moves right so, right is 2. So the first move is denoted like this, it is 

actually 0 1 0 1 0 0 1 0 1 0 0. 

The second move is delta of q 2 0 is q 3 0 R. so that will be represented as, q 2 0 is q 3 0 

R so, the second move is like this. The third move is delta of q 3 0 is q 4 1 R. So, it will 

be q 3 0 is q 4. 1 is denoted by symbol 2, so q 2 0 power 2 1 and then again right move. 

So, you have 0 powers 2. Note that a right move is denoted by 0 power 2 or 0 0 and the 

left move by 0. 

The fourth move is q 4 is q 3 1 L. So, delta of q 4 0 is q 3 1 L, 1 is zero squared; L is 

only 1, so 0 1. So, this is move 4, move 5 is delta of q 3 1 is q 4 1 L q 3 1 is q 4 1 L is 

just 1. The next move is delta of q 4 1 is q 5 1 R q 4 1 is q 5 1 right move is this. Then 

there are two moves using the blank symbol, they are delta of q 3 blank is q 4 1 R and 

delta of q 4 blank is q 3 1 L. So, they will be denoted by move 7 and move 8. What are 

they delta of q 3? That is q 3 blank is symbol 3, so you have 3. See we have used x 3 for 

blank, so when you read a symbol blank, you use 0 power 3. It goes to state q 4, so 0 

power 4 1 and it prints a 1 and the move is right. So, you have this. 

The next one is q 4 blank is q 4 blank is q 3 1 L. So, q 3 1 L is 1. So, 0 power 1.  
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So, these are the eight moves for this example for the given example like this. The 

encoding of the turing machine will be like this. It is m 1, m 2, m 3 separated by two 



ones. m 4, m 5, m 6, m 7, m 8 the moves separated each move is separated from the other 

by two ones. You could have arranged them in a different order also, instead of arranging 

them as m 1, m 2, m 3 you could have arranged this as m 2, m 3, m 1; some other way 

also that also represents the same turing machine. It will be a different encoding that 

does not matter. 

Now in the beginning, you have three ones and in the end you have three ones. So, the 

encoding of a turing machine begins with three ones and ends with three ones and each 

move is represented by something like this 0 power i 1, 0 power j 1, 0 power k 1, 0 

power l 1, 0 power m. This is a block and blocks are separated by two ones. Thus you 

find that a turing machine can be encoded as a binary string; it can be represented as a 

binary string. If you rearrange them, you may get a different encoding. But that also 

represents the same turing machine. 
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Having defined an enumeration encoding for turing machine, we can talk about the 

enumeration of turing machine. So, we know that a turing machine is represented by a 

binary string. So, suppose we say the i eth integer in binary represents the i eth turing 

machine, so you know that the integers in binary are like this and So on. This is turing 

machine, one turing machine, two turing machine, and three and so on. Now you must 

realize that the proper encoding should begin with three ones, some of them do not begin 

with three ones. So, they are improper encodings and you can look at them as turing 



machines with no moves turing machines with no moves if the encoding is not proper, 

you can consider it as turing machine with no move. 
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We now, we can talk about the i eth turing machine; the integer i represents the i eth 

turing machine. If the encoding is not proper or if the integer i does not begin with three 

ones or some other problem is there, it may not be a proper encoding. In that case, you 

look at it as a turing machine with no moves and if a turing machine has no moves, it 

accepts the empty set, it does not accept any string. 
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Now if you take 2 languages L and L bar. A language and its complement 
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You can have three possibilities: both can be recursive L and L bar can be both recursive 

and neither of them are recursively enumerable or one is recursively enumerable. But not 

recursive and another one is not recursively enumerable. That is if we look at the 

diagram, the recursive and the recursively enumerable, there are three possibilities both 

L and L bar can be here. Both of them can be recursive or you can have recursive 

recursively enumerable, one can be here, L can be here, L bar can be here. This is 

possible and the third possibility is recursive recursively enumerable both L and L bar 

can be here. This is you will not have these possibilities are there, you will not have this 

situation. That is L, L l bar both are recursively enumerable, but not recursive this 

possibility does not exists. Why we have already seen that if both L and L bar are 

recursively enumerable, they are recursive, L is recursive and hence L bar is also 

recursive. So, this possibility will not exist. 
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Now, you can think of an infinite Boolean matrix. 
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We already saw that, strings over the alphabet 0 1 can be enumerated like this 0 1 then 0 

0 0 1 1 0 1 1 and so on. So, you can always talk about the i eth string in this enumeration. 

So, you talk about w 1, w 2, w 3, w 4 and so on. You can also talk about turing machines 

T 1, T 2, T 3, because we can have an encoding of the turing machine and hence an 

enumeration of the turing machine. Now you consider an infinite Boolean matrix where 

the entries are 0 or 1. The i j eth entry will be a 1 if T i accepts w j, if T i accepts w j the i 



j eth entry will be … If T i does not accept w i, does not accept w j, then the i j eth entry 

is 0. Having said this, we can define two languages L d and L d bar. Look at the diagonal 

elements of this infinite Boolean matrix. There will be some 0s, some 1s and so on. Take 

all those elements which correspond to 0 that is L d. Take all those elements which 

correspond to 1 that is L d bar. So, we define like this, taking the infinite Boolean matrix 

d, where the i j eth entry is 1, if the i eth turing machine accepts the j eth string. 

Otherwise it is 0. 

Consider a language L d; L d is w, where w is equal to w i and for some i. The i, i eth 

entry, it is the i, i eth entry in D is 0. w i, w i is not accepted by T i that is the i eth string 

is not accepted by the i eth turing machine. The complement of that language where you 

consider the elements to be 1, it is w i is equal to w i, and i, i eth entry is 1. It is the 

compliment is w i is accepted by T i because the diagonal entry is 1. 

 Now it can be shown that L d is not recursively enumerable and L d bar is recursively 

enumerable but not recursive. That is, in this one, it comes under this is L d, it is not 

recursively enumerable and the complement L d bar is recursively enumerable but not 

recursive. Let us see how it is possible. 
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First we will show that L d is not recursively enumerable L d is not recursively 

enumerable why? Suppose L d is recursively enumerable then it is accepted by a turing 

machine M, if it is say the j eth turing machine. Now what can you say about w j? w j 



belongs to L d means, what does that mean? By definition what is L d? L d is not, L d 

corresponds to the zero elements. So, by definition T j does not accept w j, but L d is 

accepted by T j by our assumption. Turing machine I have said M is equal to T j, T j, I 

have been using the symbol T j for that, so T j. By definition, L d is accepted by T j. So, 

w j belongs to L d means, w j is accepted by T j, they are contradictory statements. You 

say that w i is not accepted by T j and here you say that w j is accepted by T j. So you are 

arriving at a contradiction and the contradiction has come because of the assumption that 

L d is recursively enumerable. Therefore, L d is not recursively enumerable. We will 

make use of this fact in improving what is known as the halting problem for turing 

machines. 
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Now, we will come to the most important concept in the whole of this course I would 

say, the concept of decidability. What is decidable? This is a very break through concept 

which was stated by during in 1936 and two of the results have been considered as very 

important in theoretical computer science. One is the Godel’s incompleteness theorem 

and the other is the halting problem for the turing machine till this result was proved 

people were trying on; so many problems trying to develop algorithms and so on. But 

after this result was proved, they knew that for some problems, nobody can ever write an 

algorithm. Hilbert’s tenth problem was one of them. In 1901 Hilbert stated this problem 

that is, can you write an algorithm which will take as input, a polynomial with integer 

coefficients and that equation polynomial equal to zero, whether the that has integer 



words or not. Without factorizing, how can you go about finding that can you give an 

algorithm for that? 

And people have been trying it for a long time and nobody was able to find an algorithm. 

So, similarly say there were other problems as well. So, after this result was stated, they 

knew that nobody can ever write an algorithm. It is a very strong statement to say that 

nobody can ever write an algorithm for that or an algorithm cannot exist for a problem. 

Because it is not that you do not know, how to write or I do not know, how to write or 

somebody else does not know, how to write a algorithm for a problem. Nobody can ever 

write an algorithm for that. 

That also gave an idea about the Fermat’s last theorem. Fermat’s last theorem is, can you 

find integers such that x power n, y power n is equal to z power n, for n greater than or 

equal to 3? Can you find integers x y z and his conjecture was that you cannot find 

integers and for a long time it was not proved and finally, about ten years back it was 

proved. But this result that the halting problem is undesirable gave a clue to this. That is, 

thus it is a decidable problem that is Fermat’s last theorem can be true. It can be proved 

or it cannot it can it need not be proved, but there is a possibility either it is true or it is 

not true . 

Nobody may be able to find out the proof, because of Gödel’s incompleteness theorem. 

But still an answer to that can exist. The concept of undecidability is that is why 

considered as a very important problem. For the turing machine, it is stated like this, we 

shall deal with more on decidable problems undecidability later. But let us consider the 

halting problem for turing machine now. The halting problem for turing machine can be 

stated as follows: Given a turing machine in an arbitrary configuration will it eventually 

halt? What it means that, can you give an algorithm which will take a turing machine and 

an input as input and say whether the turing machine on that input will halt or not? The 

problem is said to be recursively unsolvable or it is undesirable in the sense that, you 

cannot write an algorithm. There cannot exist an algorithm which will take as input a 

description of turing machine T and an input T for the turing machine and say whether T 

on t will halt or not. 
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Let us give a brief proof for this, we shall consider one more proof later. So, I will skip 

this for the moment. The halting problems suppose, it is decidable, and then there is an 

algorithm for this. We have already seen that, an algorithm corresponds to a turing 

machine which always halts. So, you have a turing machine whose state diagram is 

roughly this. The input for that is the description of the turing machine or the encoding of 

the turing machine and an input t for the turing machine and this will always halt and say 

whether t on t will halt or not. 

Suppose the halting problem is decidable there should be a turing machine which does 

that. So given this input, if T on t halts the machine will go to this state and take this exit 

and halt and say yes. Suppose T on t does not halt, then the machine will go to this state, 

take this exit say no and halt. In either case, it always halts and tells you whether T on t 

will halt or T on t does not halt. So, assuming that there is an algorithm for the halting 

problem, there should be a turing machine halt like this. 
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Now I will modify the halt machine and call it as a copy halt. You know that the 

encoding of a turing machine is a binary string, the input is also a binary string. So, 

instead of taking any t, I take small t as the encoding itself. That is the machine starts 

with one binary string d T, then it makes a copy of that string. Then calls halts as a sub 

routine. So, it answers when it calls halt as a sub routine, it will answer the question 

whether the machine T taking the encoding its own encoding will halt or not. 

So, if d T please remember that d T is a binary string, this is also a binary string. So, if 

the machine T halts on this binary string, it will take this exit and halt. If the machine T 

does not halt on this binary string, it will take this exit and halt T on d T does not halt. 

So, if it is possible to have a machine like halt, it is possible to like have a machine like 

copy halt.  
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So, again repeating the same thing, copy halt takes as input and encoding d T of a turing 

machine T makes a copy of it and simulates halt with T is equal to d T. So, if it is 

possible to have halt, it is possible to have copy halt. 

Now, the copy halt machine is modified a little bit, to have a machine contradict. How 

does contradict work? It is the same as copy halt, but when you take the yes exit instead 

of going to halt state, it goes to one of these states and afterwards, it just starts oscillating 

between adjacent cells moving left and right. So, when it takes the yes exit, it goes to this 

state and starts oscillating between two states that that means it does not halt. Now, what 

happens when contradict is given as input? 
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So, the machine contradict is almost like copy halt except that. When the yes exit is 

taken, the machine oscillates between two successive states and the two successive cells. 

Now for this machine, the input is the encoding of any turing machine, if you give as 

encoding, if you give as input the encoding of this machine the d contradict what will 

happen? There are two possibilities. 

(Refer Slide Time: 53:03) 

 

The input is d contradict, this is given as a input to the machine contradict. Now, when 

this is given as a input, there are two possibilities contradict on d contradict, it halts or 



does not halt. When it halts, it has to take this exit and when it takes this exit exit it gets 

into a loop. That means, it does not halt, when it does not halt when it does not halt, it 

takes this no exit, but then it halts. 

So when it halts, it takes the yes exit and gets into a loop and you come to the conclusion 

that, it does not halt and when it does not halt, it takes the no exit and you come to the 

conclusion that it halts. So, you are arriving at a contradiction and the contradiction 

shows that you cannot have a machine like contradict.  

We have seen that, if you can have a machine like halt, you can have a machine like 

copy halt and hence a machine like contradict. So, the fact that a machine like contradict 

cannot exist shows that, you cannot have a machine like halt. You cannot have 

something like this. That is, you cannot have an algorithm which solves the halting 

problem of the turing machine. 

So, these are a very important concept and after this has been proved, so many well 

known problems have been shown to be undecidable. Usually, we will consider the 

decision problems that is problems, which have the answer yes or no and many of them 

have been shown to be undecidable that is, we cannot have an algorithm for that. 

So, let us consider this in detail later. When we deal with problems instances or 

problems? How you represent them as languages? And what do you mean by the 

language being undecidable and So on. You also see, what is the connection between 

languages and problems when do you say that a problem is undecidable? When do you 

say that a language is undecidable, how do you represent a problem in terms of 

languages and so on? This we shall consider later, but considering the infinite Boolean 

matrix, which we looked into earlier like this. We can have another proof for the halting 

problem of the turing machine, the argument for that will be something like this. 

If you can have an algorithm for the halting problem for turing machine, then the 

language L d becomes recursively enumerable. But you know that, it is not recursively 

enumerable. So, you cannot have an algorithm for the turing machines. So, this second 

proof we shall consider later. 

 


