Theory of Computation
Prof. Kamala Krithivasan
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture No. # 23
Pushdown Automata PDA to CFG

(Refer Slide Time: 00:16)

T PD it

5= me)lf!

o

We have been discussing pushdown automaton, and we have seen that PDA acceptance
of PDA by empty store, and acceptance by PDA by final state; both we considered and
we showed the equivalence between the two that is given, this we can construct an
equivalent PDA in this, and given a PDA by final state; you can construct equivalent
PDA by empty store. And to show the equivalence between CFG, we have seen that
given CFG, how to construct the PDA by empty store in the last lecture. Now, in this is
what we have to study today, given a PDA by empty store. How to construct an

equivalent context free grammar?

(Refer Slide Time: 01:17)

| Lkl Sk, cSnammal s be 14 PPA
| a‘&j’f”‘ﬁ L ‘MJ enply afove
Cansbued G: (N, T P 5) AF
L&) = NCet)
BN = u?[-’t,f\. f’]] 4pe R, At F}
T)

S = LELQ,ZU_J F‘S ’g'-"- G-"\:\-’\ [\ l—‘r‘ [/

9 (00,) onbas (o B,)

Vot

10k,
L

Let M is equal to k, sigma, gamma, delta, g naught, Z naught, phi be PDA, accepting a
language. Accepting L a language context free language L by empty store construct G is
equal to N, T, P, S, such that L of G the is equal to N of M. The language generated by G
is a same as the language accepted by M by empty store. Now, how do we construct G?
Now, in this case we have to specify the non-terminals, terminals productions etcetera.
Non-terminals will be you have the start symbol plus the non-terminals are triples they
are taken as triples g, A, p.

It they are triples of this form where g and p belong to the set of states first and third
component are states in the pushdown automaton and the middle component is a
pushdown symbol. So, you have to consider all triples. First one can be any state third
can be any state then middle one can be any pushdown down symbol. So, if there are K
states, what will be the number of non-terminal, if there are K states and m pushdown
symbols what will be the number of non-terminals? K into all triples we have to

consider.

()

K squared m

()

Plus 1, this is K into M into K squared m plus 1. The number of non-terminals will be ((
)) what is T, what is a set of terminals same as sigma, same of input symbols. Now, P we
have to the productions rules we have to define S, this S is the start symbol a 1 S you
have taken that is the start symbol, rules in P are written like this S goes to q naught, Z
naught, g naught is initial state Z naught is the initial pushdown symbol and P for each P
in K.

Start symbol going in to a non-terminal this a unit production. Please remember that,
this we are writing unit production this is to accommodate see for all P. See, when the
store is emptied we are not bother about the state in which the machine is is not it when
the store is emptied. The string will be accepted, but we are not worried about the state of
the pushdown automaton. So, any it can be in any state so, allowing for all possibilities
for each P we have role like this right. Then the rules we have to write from the

mappings.

So, if delta of g x or may be A is better, if there is a rule of this form I will write x
because A usually symbol x. Here x can be a symbol or Epsilon x can be a symbol or
Epsilon. Then, corresponding to this you will write a rule of the form g, A, X, P, B 1. The
triples 1 am leaving, but I will fill later B 2, B 3 up to B m you will have a collection of
rules of this form P contains rules of this form. Now, | have purposefully left out certain
things, the rule the mapping is g, x, A contains P, B 1, B 2, q is there, x is there A is
there, P is there, B 1, B 2, B m are what about the other things.

Now, you see that x can be can be a input symbol or Epsilon x can be a input it is an it is
an Epsilon moves means x will be Epsilon. If we start true input to move means x will be
a symbol from sigma. So, you have g, A goes to x, P, B 1, B 2, B middle components |
have written | should have enough space. How do you fill the other components? So, P,
B1,g2,q2,B2q3,q3,B 3 like that cut, last you have g m, B m, g m plus 1. You can
fill like this that is you can fill with this portion here with any state, if there are K state
you can use any of them. So, for one mapping you will have a collection rules, but
whatever you write here you must here the next one, the third component of this will be
the first component of this the third component of will be the first component of this and
so on. And last one, this will be g m previous one will be g third component of the
previous non-terminal will be g m, last you have written g m plus 1 that is here g m, what

you write here should be same as this.

(Refer Slide Time: 10:06)

B{\fud (j[& kNJ AP =

L(G) = [\!(H)
0(q x,A) Cankais (P, ¢)

44]—x € P

So, for one mapping there will be a collection of rules. Suppose the rule is of this form
the rule is of this form delta of g, x, A contains P Epsilon that is m is 0, in this one m is
not equal to 0. You have rules of this form. If m is equal to 0, there mapping will be of
this form is it not? g, x, A contains p Epsilon then the rule will be g, A, p goes to X is it

not? P the rule will be g, A, p goes to x is in p. Now, we have to give the proof that this
construction is such that L G is equal to N of M.

(Refer Slide Time: 11:18)

= (12,83, fou], T
\;;| q,.0/ v ~
j:-(-lu:_:,xja =
'T:.f‘ql_I,\JA) =
E‘-(Lil,l,x) 2 L (3, ¢ }
SR ER) = E Lrlp(')_}

5(cj_\‘(-,z.,) = g (-’1”@)}

{_r.JJW at (s (Y

/ M S p Jf

Now, we will prove that by induction in both directions but before that, let us consider an
example take pushdown automaton with has got two states and input symbols are 0 and 1
pushdown symbols are Z naught and X, q naught is the initial state i Z naught t is the
initial pushdown symbol and the mappings are given by this. It is a acceptance by empty
store the mappings are given in this manner. Now, look at the mappings and tell me what
is N of m, we will write the grammar for this, but before that what is N of m you have to
start with g naught and Z naught or I will give you few minutes to tell me what is N of
m.(no audio from 12:12 to 13:10)

()

0 power m

()

0 power m 1 power

Mr(())

What does the first mapping say, if you have 0 and does it not you add x then this says
whenever you see a 0 you keep on adding x’s. So, as long as there are zeros you will be
adding x’s then once you see a 1 you go to g 1 and start removing. Now, when you read
a 1 what does this mean, when you read a 1 you remove X, but without reading one also
you can remove X, this is an Epsilon move which tells without reading m also one also

you remove X so, what does that mean.

()
()

0 power m 1 power n which is greater

()

m greater than r equal

()

Right

()

More zeros than once is this a deterministic machine or a nondeterministic machine is

this PDA a deterministic one or a nondeterministic.
Non[deterministic]-
Non-deterministic, why?

()

With g 1 and x you can use a true input move or an Epsilon move so, the machine is

nondeterministic even though there is a singleton here, it is nondeterministic.

(Refer Slide Time: 15:42)

So, let us write the grammar for this by this method, what are the non-terminals? non-
terminals are S then you have triples of the form first one can be a g naught or a q 1 the
middle one can be a g is Z naught or X third can be a g naught or q 1. So, 8 triples we
can have isn’t it you have triples the first one can be a q naught or a q 1 second one can

be X or Z naught, third one can be q naught or g 1.

So, 8 plus 1, 9 non-terminals. T is equal to 0,1. S is the start symbol and we have to write
the rules now with S you have two rules g naught, Z naught, q naught see the first two

are fixed g naught and Z naught third one can be a g naught or q 1.

So, g naught, Z naught, q naught, S goes to q naught, z naught, q 1 then I have to write
the rules for the this first, let me write the rules for these four which is simple q naught, 1
x is equal to q 1 Epsilon, what will be the corresponding rule for this I will write 4, sorry
noitis31,2,3,4,5, 6.6 mappings are there, right? Corresponding to three mapping is q
naught, delta of g naught. 1 X contains q 1 Epsilon so, you will have g naught, X, q 1
goes to one it will be a terminal rule. Non-terminal going into a terminal rule then
corresponding to 4 what will be the rule q 1, 1 X goes to q 1 Epsilon. So, you will have q
1,%,q1goestowhatql,1Xgoestolinacorrespondingto5q 1 Epsilon X goestoq 1
Epsilon.

So, the rule for that will be g 1, X, g 1 goes to Epsilon and corresponding the 6th
mapping delta of g 1 Epsilon Z naught contains g 1, Epsilon the map rule for that will be
g 1, Z naught, q 1 goes to Epsilon, this terminal rules are easy to write. Now, the other
rules for 1st and 2 we have to write the 1st one is this delta of g naught, naught, Z naught
contains g naught, t X, Z naught.

So, for that what you will have is q naught, Z naught, 0, X, Z naught, q naught here then
rules have to be of this form now, what | write here I should write here and what | write
here | should write here right and again either write q naught or g 1 both possibilities
should be taken into account. So, how many rules will be there, there will be two
possibilities here there will be two possibilities here.

So, four possibilities will be there so, let us write the four possibilities g naught, Z
naught, 0, g naught, X, Z naught, g naught, Z naught, 0, q naught, X, Z naught, q naught,
Z naught, 0. So, I have just written the same thing four times now, the possibilities are |
can write g naught here and g naught here, g naught here and g naught here. I can write q
naught here, g naught here, g 1 here, g 1 here | can write g 1 here, g 1 here g naught here,
g naught here, q 1 here, glhere, q1 here is the other what | write here, | am writing here,

what | write here, | write here.

Now, let us consider this one the mapping is delta of g naught, 0, x contains g naught, xx.
So, the rules will be g naught, X goes to 0. X this is g naught the rules will be of this
form, here again what | write here | must write here what | write here | must write here |
can write a q naught or g 1 both possibilities will be there. So, 4 rules will be there that is
g naught, X, g naught X, q naught, X again all the possibilities we have to consider, if |

write g naught here | must write g naught here and if | write g naught here I must write q
naught here. That is one possibilities then g naught here, q naught here if I write q 1 here
I must write the same q 1 here again q 1, 1, g naught, q naught, g 1, g 1, g 1 that is all

so, how many rules it has

()

4 plus 4 8 plus 2 10 plus 4 14 rule. Now, you can remove the useless non-terminals, you
can remove, something has to terminate a non-terminal should you lead you to a terminal

string.

(Refer Slide Time: 25:18)

G [‘waf 913 e
w [1,%81> 1
® L9, %52 &
0 [9,2,9]~ &

S= L4z, 8

1
S8

=2 00gq % q i
), LJ../_!I] L’th,,.’l‘] < ‘E

I".“ -‘\J ’ll]

Then you see that there are no terminal or there are no rules with g 1 and g naught like
this, if there are no rules like that in fact g 1 with the first component as g 1 and the last
component as g naught there are no no rules like that with this on the left hand side.

So, such non-terminals will be useless first component q 1 third component g naught will
be useless first component g 1. g 1 this you cannot rewrite it. For the if you apply this
rule you cannot rewrite this further right so, this is useless similarly, if you have apply
this rule g 1, X, g naught this cannot be rewritten as further because with this symbol on

the left there are no rules so, this is also you useless you can remove them.

Now, what about the others if you have g naught, Z naught, q naught. Then you will
when you apply this rule you will get g naught, X g naught, then when you apply q

naught, X, q naught again you will get a g naught, X, g naught you can do it again and
again, but that q naught, X, g naught there is a rule with this on the left hand side, but
when you write again you will get a q naught, X, g naught you will not be able to

terminate.

So, such g naught, X, g naught. g naught, Z naught, g naught are also useless they will
not lead you to terminal strings g naught, X, q naught. g naught, Z naught, g naught they
are also useless because ultimately it will not lead you to a terminal string right. So, such
non-terminals and the rules involving them can be removed what are they you can
remove this, we can remove this, we can remove this, we can remove this and we can

remove this so, ultimately you are left with 4 plus 1 5 6 7 rules.

Now, look at this and see what will be the derivation starting with this you have to apply
this rule then with this when you generate 1, 0 and g 1, Z naught, g 1 then this g naught,
X, g 1 when you apply you will generate 1, 0 and g 1, X, q 1 right and the derivation will
of this form S drives q naught, Z naught, q 1 which derives 0, g naught, X, q 1,q1, Z
naught, g 1 and q 1, Z naught, g 1 goes to Epsilon.

So, this will go to Epsilon so you have 0, g naught, X, q 1 now, for g naught, X, g 1 this
is the rule g naught, X, q 1 it will again it is a linear rule g naught, X, g 1 will I should
not say linear because this is also non-terminal g naught, X, g 1 generates the recursive
rule it generates g naught, X, g 1 on the left it generates g naught and on the right it
generates q 1, X, g 1.

So, applying it several times you will get 0, some 0 power n. g 1, X, g 1. 0 power m. q
naught, X, g 1 then q 1, X, q 1 power m, it will like that now, this will g naught, X, q 1
goes to 1. So, this will go to 1. g 1, X. g 1 it can go to one or Epsilon, some of them will
go to one some of them will go Epsilon so, from this you will generate 0 power m plus 1,
1. And then you will have x power m where x can be 0, x can be 1 or Epsilon this will be
(()) now, x can be 1 or Epsilon so, string is of the form 0 power m plus 1, 1 x for m. So,
it will generates the language O power m, 1 power n, m greater than or equal n, m n
greater than or equal to 1. So, you can see how the construction works we have

illustrated the construction with an example.

(Refer Slide Time: 32:07)

-

G PPA r_fil A, FJ "-"-{D‘JC' lH' (i;){“ ;U" {i '\F <)
ppcieE,

@ (A ©)
.(;: (4 354) ;_,,.\{—,‘,',.I:‘(]:‘_‘(._)
['TJ.‘AJF\—J—}.X C_P

Now, we have to formally give the proof how do we formally proof this, you show that
g, A from a non-terminal g, A, p you can derive a string X, if and only if from the
configuration ¢, X, A you can go to the configuration p, Epsilon, Epsilon. So, from this if
this is true that is from the non-terminal g, A, p you can derive a string X, if and only if
from the ID q, x, A you can go to the ID p, Epsilon, Epsilon this is what we want to

prove we have to this if and only if we have prove in two directions.

So, first in this direction again we have to use induction g, X. A derives P, Epsilon,
Epsilon in induction on the number of steps so, one step this is in n steps you have to
prove basis class will be in one step you derive basis class, if you have this what will be
the corresponding rule by our construction. What is our construction? If you can go from
this ID to ID that a mapping should be delta of g, X, A contains p, Epsilon then only you
would have got this going from one this from this ID to this ID. Now, what is the

mapping rule for the if delta of g, x. A contains p, Epsilon then g, A, p goes to x is a rule.

So, you will have g, A, p goes to x belongs to p that is g, A, p derives x so q, A, p derives
x this is for i is equal to 1 from this you are going to this 9 steps are something like that
then induction portion, assume it is true up to i minus 1 steps, prove of i steps this is
strong induction up to i minus 1 steps we assume, the result is true then we want to proof

for i steps. How do you prove this?

(Refer Slide Time: 36:18)

(‘l,f-*‘j, A) l——l(]) ¢, e)

G .
neg a, 4) L cewmbaiio

Now, we are starting with the ID g, x, A right now, suppose | write x in the form a, y. A
can be a true symbol or Epsilon so, instead of x. I will write it as a, y. A can be are
Epsilon by the mapping which I will apply will be of this form delta of g, a, A contains p
B 1, B 2, B m there will be a mapping like this and we have to apply that mapping first
step of the move of pushdown automaton will be something like that isn’t it so, from g, a

y,Ayouwillgotothe IDp,y,B 1, B 2.

This is first step now, if you look at it as this one we have considered even earlier this set
of a diagram A was there on the stack right now, A and you are in state q. Now, A has
been replaced by B 1, B 2, B m on the stack state has gone to p now, then some moves
may take place after some 2 moves take place the first time B 2 becomes the top of the
stack you would the state will be say some q 1 or maybe | use q 2, q 2. In between the
stack may grow and come back does not matter and B 1 need not be the always here B 1
can be change to something else that is possible, but so for we have not touch the B 2,

when B 2 becomes the top of the stack the state is g 2.

Then again now, the stack may grow and come back then when B 3 becomes the top, the
stack the state is q 3, but while going from this p to g 2, some portion would have been
read, some portion of the input would have been read and again some portion would
have been read from the time you start with B 2 on the stack and end with B 3 on the

stack as it of symbol.

So, ultimately when B m is on the top you will be in state g m and ultimately this also be
raised because finally, from this ID you are going to some ID E Epsilon, | need not use
the same p instead of p | can say g 1 that is better g 1 if it confuses both p confuses
instead of that q 1 | can say g 1 here start so, this is also g 1 in both places | need not use
p that is why. So, when you start with say state q i and B i on the stack, B i on the stack

and when you read the portion y i this y you can write asy 1, y 2, y m separate it.

So, when you start with ¢ i and read y i with B i on the top you will ultimately you will
goto g i plus 1 whole of y i would have been read and now, the when q i plus 1, B i plus
1 becomes the top of the stack. So, this is the situation up to this B i you have read up to
some y i minus 1 and you are in state q i now, when you read that y i portion you go to g
i plus 1 and B i plus 1 becomes the top of the stack they has been erased B i has been

erased, but this is a situation in that case what do you get.

You getq I, B 1, qi plus 1 derives y i by the inductive hypothesis this should have
happen in a lesser number the whole thing it has taken (()) from this to this it takes i
steps right the first step is this so, the rest of the steps will be i minus 1 so, each one will

be must less than i minus 1 and by a inductive hypothesis this will be the situation.

Now, for this mapping what will be the rule g, A I will write p here goesto q 1, B 1, here
a, B 1,02, q2you can have a rule like this, for this mapping by the cell mapping for this
mapping you have a rule of the form g, A,pgoestoa,q1,B1,a,92,B2,gqm,Bm,q

m plus 1, but this g m plus 1 and this should be the same this is actually equal to p.

(Refer Slide Time: 43:58)

This is the way we have written the rules. Now, by induction hypothesis this will go to y
1, this will go to y 2, this will go to y m. So, thatisay 1,y m whichisay so g, A, p
derives ay or what is a 'y, a y is nothing, but the x with which we started x. | told you we
can write as a 'y isn’t it derives right here also. (()) So, in one direction we have prove if
we can go from this ID, if we can go from this ID to this ID then it is possible to derive x

from this non-terminal and we use induction on the number of moves of the PDA.

Now, the other way around we have to prove that is, if this is true then this happens that
is if it is possible to derive x from this non-terminal, then it should be possible for the
PDA to go from this ID to this ID here we have to use induction on the number of steps

in the derivation, we have to use induction on the number of steps in the derivation.

(Refer Slide Time: 46:04)

So, what we want to prove is if from g, A, p we can derive x this implies from g, x, A
you can go to p, Epsilon, Epsilon here use induction on number of steps in the derivation
in the grammar. Now, suppose g, A, p derives x number of steps is one basis class. In
one step you get this then you should have been come from it should have come from the
rule this rule right x can be a symbol or a Epsilon x can, x can be x can be a symbol or
Epsilon and when is this rule possible it should have come from a mapping delta of g, X,
A contains p, Epsilon only when we have mapping like this you would have written this

rule.

Now, we are going from the machine to the rule does it only if there had been a mapping
like this you would have written this rule. So, if there is a mapping like this what does
that mean ¢, x, A from this ID you go to p, epsilon, epsilon.

(Refer Slide Time: 48:31)

So, for basis class we can prove this, I will rub this off. Assume induction portion

assume up to i minus 1 steps, prove for i prove for i steps strong induction.

So, the rules you know are of the form, you are starting with g, A, p then in the first step
you will use some rule and get B 1, B 2 the rules are of this form right, first step of the
derivation you are using a rule like this where what is this? thisq 1,9 2,92,93,qm, q
m plus 1 which is p this and this should be the same.

So, the x is and afterwards this is in one step and afterwards in i minus 1 steps you would
have derived a x | am sorry sorry X right so, x really can be written in the forma x 1, x 2
X m. x can be really written in this form where a is here from this you derive x 1 from

this you derive x 2 and so on from this you derive x m.

So, you have q I, B I, g i plus 1 derives x i and how many steps in the derivation it would
have taken less than i minus 1. Totally everything has taken i minus 1 steps so it will be
less so, induction hypothesis holds so what do you get g i, x i, B i from this ID you can
go to the ID q i plus 1 Epsilon, Epsilon. That is if | start with g i and x i on the input tape
and B i on the top after reading x i it will erase B i suppose, | have something B i plus 1
etc below that is not going to affect anyway. So, if it at erase the before finishing reading
X i it cannot complete further right see you need at least one symbol on the top of the

stack to read it to make a move so, this also would mean q i, x i, Bi, B i plus 1 B m from

this ID you cangoto q i plus 1 B i plus 1 B m am sorry write like this g i plus 1 it would
have read Epsilon, Epsilon stack B has been erased B m.

Now, this rule what about the first rule, it should have come from mapping delta of g, a,
A contains q 1, B 1, B 2, B m it should have come from a mapping like this. How can
you write a rule like this you are applying a rule like this that is a rule is g, A, p goes to a,
g1, B 1, g 2 etcetera and that rule you would have been able to write only if you had a
mapping like this.

So, starting with g and a string of the form a x 1, x 2, x m and a on the stack this whole
thing is X. x we have written the form a x 1, x 2, x m. Now, in one move it goes to q 1
this a has been read and you are left with x 1, x 2, x m a has been replaced by B 1, B 2, B
m we can go in from this to this in one move. Now, because of the induction hypothesis
after reading x 1 it will erase B 1 on the stack and B 2 will be x supposed in between

stack may grow and come back that does not matter.

So, when it goes to g 2. x 1 has been read and x 2, x 2, x 3, x m is the reaming 1 m now,
stack contains B 2 to B m now after reading x 2 it goes to g 3 now, the portion to be read
is X 3 to x m and stack will contain B 3 to B m proceeding like that ultimately you will
have g m, x m, B m and that will be also erase and you will go to g m plus 1, but g m
plus 1 what is g m plus 1 is p. So, from that you will go p, Epsilon, Epsilon stack whole
stack will be emptied and you will go to.

(Refer Slide Time: 55:40)

So, we come to the conclusion that if this non-terminal derives x that means from this ID
you can go to this ID. From the first rule is of this form q naught, Z naught, any
derivation will be q naught, Z naught some p. Then that derives x. A derivation will be of
this form now, from this if we can derive x that means from ID g naught, X, Z naught you

can go to p, Epsilon, Epsilon.

So, if x is derivable from S if x the string access derivable from S, then the first step will
be like this then you derive x then this is possible means this is possible if and only if
from this ID, we can go to this ID by what we have proved just now, and what does this
means this is the initial 1D after reading x you go to final ID, which is empting the store
that means x has been accepted by empty store so with the grammar derives a string x

then that string is accepted by empty store by the pushdown automaton and vice versa.

So, what we have done is given the pushdown automaton, which accepts a language by
empty store we have constructed the grammar further and shown that both of them
pushdown accept, automaton accepts (()) means grammar generates only L by and so on
vice versa there are the same the language generated by the grammar and the language
accepted by the pushdown automata by empty store are the same. So, this is proving in
the other way around. with this and we have proved the equivalence with final states so,
you see context free grammars pushdown automata accepting by empty store, pushdown
automata accepting by final state they are equivalent and when you say pushdown

automata we mean nondeterministic pushdown automata.

