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So, we have seen that the family of regular sets is closed under the following operations. 

The family of regular sets is closed under union concatenation and star, this we proved 

using regular expression. Then we also saw that it is closed under inter section and 

complementation. (No audio from 00:47 to 00:59) Usually these three operations 

considered together, and these three operations set theoretic operations are considered 

together. So, any way this union is counted in both the sets. 
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Now, we will consider two more operations - reversal and derivative with respect to a 

string. (No audio from 01:20 to 01:35) What do you mean by this will come to that in a 

moment first take the reverse. If w is a string a 1, a 2, a n the reversal of w, w R is taken 

as a n, a n minus 1, a 1. If L is a language then the reversal of L is denoted as L R and 

that is the set of w R w belongs to L the reversal of a language is take each string in L 

and then reverse it. It consists of all strings of the form w R where w belongs to L. For 

example, if I take L I will take this example a power n b power m this I have been 

considering several time. Because it is a good illustrative example L is equal to a power 

n, b power m; n, m greater than or equal to 1 this is a regular set. L power R take each 

string and reverse it. So, this will be b power m a power n; n, m greater than or equal to 

1. 
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What we want to show that is if L is a regular set L R is also regular it is also a regular 

set. We want to show that how do you show this? It is very simple L is represented by is 

accepted by a finite state automaton with a state diagram. It can be a finite state 

deterministic finite state automaton nondeterministic finite state automata or 

nondeterministic finite state automata with epsilon it does not matter. And without loss 

you assume that there is only one start state and one final state because otherwise you 

can add epsilon transition sand make only final state. 

So, have a finite state automaton with epsilon transition, if there are more than one final 

state create a new final state and have epsilon transition leading to that. So, without 

losses of generality assume that there is only one final state and one initial of course, 

initial state is so on. Now, how can we accept L R any string in L will take you through 

apart from q naught to q f? Now, the reversal you have to go from q f to q naught. And 

then in this diagram if there is an arc like this, from one node to another node change the 

arc change the direction of the arc. 

Keep the same diagram each arc if it is directed this way make it directed this way and 

make this as a final state; make this as the initial state. So, if a string takes you to from q 

naught to q f the original diagram in the changed diagram. It will take you from because 

the arcs are all directed in the in the opposite direction it will take you from q f to q 



naught by traversing to a n a n minus 1 and so on. So, this is a transition diagram or a 

nondeterministic f s a with epsilon moves. 

So, obviously it accepts the regular set you can convert it into N F S A and then D F S A. 

Take this simple example which you have considered q naught, q 1, q 2 a power n, b 

power m I need not draw the dead state. I will tell you why it is not necessary, but if you 

want you can even draw the dead state does not matter. I will draw the dead state, but 

actually you can omit that also dead state b, a, a comma this accepts a power n. Now, I 

want to convert this diagram so that it express accepts b power m, a power m. So, reverse 

a direction of every arc, self loop will be same. 

(No audio from 07:12 to 07:37) 

Make this into initial state make this into the final state initial change in this example it. 

So, happens that you have only one final state and one final state if you have more final 

state you must create a new final state and draw epsilon arcs. Now, you can see that it 

will accept b power m, a power m. This is not really required the reason is note that this 

is a nondeterministic F S A. What you have obtained is a nondeterministic F S A, from b 

if we get from q 2 if we get a b you can go to q 2 or q 1 from q 1 if you get a you can go 

to q 1 or q naught. 

So what you are getting is a nondeterministic F S A, but you know that we can convert a 

nondeterministic F S A into deterministic F S A. This is not at all necessary because 

from D you can reach any state. But starting from the q 2 we cannot reach d so it is not 

going to contribute to anything. So, this is not necessary you need not have considered 

this portion at all that is not going to affect the result in any way. So, we know that if L is 

a regular set L R is regular so the family of regular sets is also closed and reversible. 

Now, one more thing you have to consider which will be used for converting a regular 

expression D F S A, into a regular expression. 

(No audio 09:15 to 09:36) 
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Let x belongs to sigma star x is a some string, we have considered in the alphabet sigma 

and x is some string. And L is a language L is a language it denote by L of x L with the 

subscript x this is called the derivative of L with respect to x. What is this language this 

is the set of strings, of the form y where x y belongs to L. (No audio from 10:35 to 

10:41) that is in L you take strings, which begin with x, x is a string. So, consider from L 

the set consist set of strings, which begin with x and remove that x portion ok is that 

clear. 

Let us see some example 0 0 0 plus 1 star 1, 1 or let us consider the example, which we 

considered yesterday. Set of strings, beginning with a and ending with b the regular 

expression for that was a, a plus b star b is not it this is a regular set. Now, what suppose 

I denote it by L is represented by this, that is the set of strings, over a and b which begin 

with a, end with the b. Now, what can you say about L a the derivative of L with respect 

to a, you take all strings, beginning with a and remove the first a. So what will be that 

that will be just this any string of a (s) and b (s) ending with the b is not it. 

So, L of a will be set of strings, ending with b. That is all. It will be represented by a plus 

b star b and you know that it is a regular set. Now if you take L to be this, a power n, b 

power m, n comma m greater than or equal to 1. What is L of a (No audio 13:13 to 

13:22) what is L of a? a power n, b power m yes (( )) n greater than or equal to 0, m 

greater than or equal to1. What is L of b? There are no strings beginning with b so L of b 



is empty. Now, you can see that we are taking L, L of a is a regular set here also there if 

we take L L of a is a regular set, L of b is also a regular set phi empty set is a regular set. 
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Now, what you want to show is… 

(No audio 14:19 to 14:36) 

X, is a string in sigma star L of L is a regular set to show L of x is regular the derivative 

of L with respect to s is a regular set how do you it is very simple how, do you show that. 

(( )) Take a deterministic diagram without loss of generality L is accepted by a D F S A. 

Then what change L is accepted by L is accepted by D F S A M some diagram with one 

initial state may be some final states. Now, how will we get L of x (( )) make (( )) yeah 

the same diagram we can have remove the initial state starting from here go through a 

path for x you will reach some state make this initial state that is all. 

Start from the initial node go through the path corresponding to x you will reach one 

state. I am taking D F S A if it is N F S A there will be many states and so on. I do not 

want I mean for simplicity I am taking D F S A. So, starting from q naught after reading 

x I go to a particular state only one state. Make this the initial state same diagram, but 

they are making this initial state. With the original one accepts something like x y, this 

automaton will accept y. So, this changed diagram will accept it represents D F S A, 

which will accept the derivative of L with respect to x. 



So what do you get if L is a regular set L of x is regular (No audio 17:05 to 17:12) I have 

taken a string, now say I take a regular set L I consider L x 1, L x 2, L x 3, L x n like that 

for different string, how many distinct derivatives can I have? 
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For let us take this example, L is a power n, b power m, L of a is a power n, b power m, n 

greater than or equal to 0 m greater than or equal to1. What can you say about L a a, 

what will be L a a same as L a. What can you say L b is empty L b b will also be empty, 

what can you say about L a b what is L a b (( )) b power m, m. 

So, this is L a power n, b power m, n greater than or equal to 0 this is one derivative, this 

is one derivative, this is one derivative empty set and so on. Now, similarly, for anything 

L x 1, L x 2, L x 3, L x n are some derivatives, how many of them after sometime they 

have to be equal. How many distinct derivatives can you have? (( )) It depends on the 

number of states; see while for considering L of x I am making this into initial state 

similarly. I can make each one of the state the latest possibility is each one of the states 

can be made as a initial states. 

So, if there are n states in the D F S A, at most they will be n distinct derivative. 

Afterwards they will become equal more and more strings, you consider some of them 

will be equal. In this diagram I can make each one of the states as a initial state and get a 

regular set. So, for x 1 I may make this as the initial state for x 2 I may make this as the 



initial state. But again for x 3 I may make come to this itself is not it, so at the most I can 

have n distinct derivatives this we will use now. 
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We have considered the, this given a regular expression how to construct N F S A, with 

epsilon move this we consider. Now, today we shall consider given D F S A how to find 

the regular expression. I will recall one theorem which we studied in the last semester. 
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This lemma theorem whatever it is we studied this in the last semester please recall this 

result. If epsilon does not belong to A, X is equal to A X plus B has a unique solution X 



is equal to A star B. Did we not study this how many of you remember? So, we will 

make use of this. I will assume this result if you have forgotten the proof please go 

through your notes and try to remember. 

If epsilon belongs to A, the solution will not be unique A star B will still be a solution, 

but it will not be unique. So, we will not bother about that because this is the result we 

will make use of. Now, our aim is given D F S A how you will construct the regular 

expression. Again I will start working out with an example will have 2 or 3 examples. 

The method should be clear and while working out we know that the procedure is correct 

give the argument that the procedure is procedure is correct. So, let me start with this 

same a power and b power. 

(No audio 23:04 to 23:34) 

How many states are there? There are 4 states so for 4 states I will write 4 equations. 

How do you write the equations first start with q naught q naught equal to it goes to a q 

1, so a q 1 starting with the b it goes to d, b D. q 1, but q 1 is a q 1 plus b q 2, q 2 is a D 

plus b q 2. But if is it is a final state we must add one lambda also lambda or epsilon I 

will use lambda for empty string plus lambda this denotes the empty string. Then D is 

equal to a D plus straightforward how you write the equations I am starting with the 

deterministic F S A. So, it is very simple how you write down the equations you must 

look at these as unknowns. 

In the sense you are having 4 unknowns and 4 equations and you must be able to solve, 

but the thing is they are not simultaneous equations as you study it earlier they are 

equations involving regular expressions. So, you have to use a different technique and 

the technique you use is you will be making use of this lemma. Only two things you use 

in solving you have to solve for q naught q naught is the initial state. So, there are 4 

equations with 4 unknowns, you should be able to solve. And for solving that you use 

two techniques one is substitution another is this lemma only these two. 
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So, let us see how to solve this first take D is equal to a d plus b D. And that you can 

write as a plus b D. I can write it as a plus d plus phi can also write it that way is not it. 

Now, this is of the form D is equal to a plus b D phi. So, actually it is of this form is not 

it. So you can solve for d use this lemma it is of the form X is to equal to A X plus B and 

epsilon does not belong to this. So, use the lemma what will be the solution for D what 

will be the solution a plus b yes and something concatenated is phi is phi, see you have 

this result this also we studied earlier L phi is equal to phi L is equal to phi. But what is 

phi star this again you must remember phi star is not empty it is having one string phi 

star is epsilon. Why phi star is epsilon phi star union of i is equal to 0 to infinity phi i. So, 

it will be phi 0 union phi 1 union etcetera all this will be empty, but phi 0 is epsilon by 

definition. 
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(No audio 28:48 to 29:07) 

Before proceeding further what is what will be the answer you have to get. It represents a 

power n, b power m a power n, b power m n greater than or equal to 1 m greater than or 

equal to what will be the regular expression. You have to get this answer is not it a a star 

b b star is not it. This is the answer you have to get so let us see whether you get it D is 

empty. So, when D is empty this will become empty, this will become empty. 

 

So, the equations will now reduce to q naught is a q a q 1, q 1 is a q 1 plus b q 2, q 2 is b 

q 2 plus lambda. Now, we have got rid of 1 equation and 1 unknown that is all now we 



are ending up with 3 equations with 3 unknowns. Each time when you do the substitution 

or solving after that you must get rid of 1 unknown and 1 equation. Now, look at the last 

one it is again of this form. So what is the answer of q 2 q 2 is b star lambda that is b star. 

Now, use this in the other equations use this in this so what do you get you get q 1 is 

equal to a q 1 plus b instead of q 2 you write b star. Now, we are having only these 2 

equations. 

So, we have got rid of 1 more unknown and 1 more equation we are having 2 equations 

with 2 unknowns. Now, saw again this is of the form A X plus B. So what will be the 

solution for this q 1 will be a star b b star is not it this star followed by this. So, this is a 

star b b star use this in the first equation, q naught is a q 1 that is a a star b solving for q 

naught you have got the answer. Now, this method will work because each time we are 

trying to get rid of 1 equation and 1 unknown and we are using either that lemma or 

substitution. 

So, finally, we should be able to solve for q naught. Now, why we do this and what is the 

underlying meaning behind this why you should do this. Now when you solve for D, D is 

empty when you solve for any variable here take for example, q 1 what is q 1? q 1 is a 

star b b star is not it finally, you got this q 1 is a star b b star it is a set of strings, which 

have take you from that state to the final state. So, the set of things which take you from 

that state to the final state is represented by that when you solve for that variable. So, d 

means the set of strings which take you from d to the final state, but no string takes you 

from d to the final state it is empty. 

So, you are getting the empty state d is empty q 2 q 2 represent the set of strings, which 

take you from q 2 the final state. What is that you can go through this several times? So, 

b star so when you solved what we got q 2 is this term q 1 is the set of strings which take 

you from q 1 to final state. so that will be a star b b star that is what we have got for q 1 q 

naught is a set of strings, which take you from q naught to the final state. So that is you 

know that it is a a star p b star finally, we have to solve for the initial state see suppose I 

have say ten states or something like that you will get 10 equations. 

But then you have to be while solving you have to use your sort of intuition you may you 

must try to get rid of quite easily. How in which order you will proceed which one you 

will try to remove first that is not there is no hard and fast rule you have to look into the 



rules. And then try to see which one you can get rid of easily and then solve finally, you 

have to solve for the initial state. That represent the set of strings, which take you from 

an initial state to the final state and that is the answer you want. 
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Now, how are we justified in writing this equation and what is q 1 what is q 2 and so on. 

We are justified in writing this equation because of that in reality you can see that q 

naught represents L, the language q 1 represents L a, the derivative of a L with respect to 

a q 2 represents L a b. So, the first equation q naught is equal to a q 1, D is of course, L 

b. q naught is a q 1 plus b q 2 this is what we have written instead of I can write L is 

equal to a L a plus b L b. This is what we had written and anything for that matter some 

L some A or something like that on the left hand side you write it as a A a plus b A b you 

write like this. 

What is that really mean this represents the set of strings; it represents the set of strings 

which take you from a particular state to the final state. Now in this place so here for 

example, q naught represents the set of strings which take you from q naught to the final 

state. Now, this represents the derivative of A with respect to a. I will so the set of 

strings, some of them can begin with a some of them can begin with b a is set of strings. 

Among the set of strings some of them will begin with a, some of them will begin with b. 

So, this represents the set of strings which begin with a set of strings which begin with a 

is a then the derivative of A with respect to a is not it. 



And the set of strings which begin with b is this for example, here you see q naught 

represents the set of strings which take you from q naught to the final state. If among 

them some of them may begin with the a some of them may begin with the b. This 

represent the set of strings which begin with the a this represent the set of strings which 

begin with the b. That is why it is empty no string in this case it is empty because no 

strings begins with the b. So, we are justified in writing like this. This equation is really 

this and the next equation is q 1 is a q 1 plus b q 2 that is L a is a L a a plus b L a b, but 

we see we saw that L a a is the same as a L a is not it. 

So, this is and L a b a L a a is the same. As the L a this we have earlier seen some are we 

have written, L a is this l a a is also this L b L b b they are all empty. L a b is equal to b 

power m, m greater than or equal to 0 if you consider L a b b this is also the same. Set of 

strings beginning with a b b and then remove the a b b it will be b power m m greater 

than or equal to. So, continuing our equation L a a is the same as L a this is l a b. Then 

the third equation is q 2 q 2 is a D plus b q 2 plus lambda, this is as L q 2 is L a b L a b is 

a L a b a plus b L a b b plus lambda. And this is again empty because strings, starting 

with a b a, is empty here. So, this is a D a phi it will be or L b I can this will be empty 

and this is just L a b itself. 
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And this equation D is equal to a D plus b D really represents L d is equal to a L b a plus 

b L b. So, we are justified in writing the equations in that manner and why this lambda 



here this really this q 2 is equal to where is that. q 2 is the set of strings which take you 

from q 2 to the final state. Some of them may begin with a some of them may begin with 

b, but those beginning with a are empty that is why this becomes empty. Some of them 

may begin with the b that is why you get this. 

But if it is a final state the empty string also takes you from that state to the final state is 

not it. So, in order to accommodate for that from q 2 you have a set of strings which take 

you from q 2 to a final state. This accounts for the set of strings, which begin with a, this 

accounts for the set of strings which begin with b and this accounts for the empty string. 

Because it is a final state you are not adding lambda anywhere if it is not a final state you 

are not adding lambda. 

It is a final state only you are adding lambda this is the explanation why we get. Why we 

are justified in writing such equations. So, given a D F S A, you can construct the regular 

expression in the first in this manner first you write n equations with n variables. 

Because you have n equations with n variables you will be able to solve and the two 

techniques which you use for substitution and this lemma. And both while substituting it 

is we are justified and substituting and while using this lemma also you are justified so 

finally, you get the correct solution as on. 
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So, let me take one more example and solve 



(No audio 43:43 to 44:26) 

0, 1 look at this diagram with 3 states L is a set of strings, over 0 and one accepted by 

this F S A. Is this the deterministic f s a? (No audio from 44:48 to 44:55) this is a 

deterministic and this solution works for a deterministic F S A not considering the 

nondeterministic F S A. That is why you are able to write uniquely the next thing. So, let 

us find the regular expression what sort of strings will be accepted by this machine one 

condition will be the string has to end with (No audio from 45:24 to 45:30). What sort of 

strings will be accepted by this machine or sort of strings will not be accepted by this 

machine.(No audio from 45:36 to 45:42) 

The string has to end with the 0 epsilon will be accepted of course. But apart from that 

any other string it has to end with the 0. Let us find the regular expression corresponding 

to this D F S A. So, how do you go about doing that let us first write down the equations 

q naught is 0 q 1 plus 1 q 2 plus lambda. Because q naught is the initial is a final state. 

And equation for q 1 will be q 1 is 0 q 1 plus 1 q 2 and q 2 the 0 q naught plus 0 q naught 

plus 1 you have to solve for q naught. As I told you, you have to look into the equation 

and try to solve whichever is easier and so on. So, take this from this you will get q 1 is 

equal to 0 star 1 q 2. 

(No audio from 47:27 to 47:356) use that here q 2 is equal to 0 q naught plus 1 instead of 

q 1 you write 0 star 1 q 2. Use this in this equation you will get this. So that will be q 2 is 

1 0 star 1 q 2 plus 0 q naught. Use the lemma again so q 2 will be 1 0 star 1 0 q naught. 

(No audio from 48:41 to 48:47) Look at the first one q naught is 0 q 1 plus 1 q 2 plus 

lambda that is equal to 0 q 1 is 0 star 1 q 2. So, 0 star 1 q 2 plus 1 q 2 plus lambda that is 

0 0 star 1 plus 1 into q 2 plus lambda, but what is q 2 q 2 is 1 0 star 1 star 0 q naught so 

use that here 0 0 star 1 plus 1 instead of q 2 you write this 1 0 star 1 star 0 q naught plus 

lambda. 

So, q naught is this q naught plus lambda, it is again of the form X is equal to A X plus B 

where B is lambda. So, if you use expression if you use that X is equal to A X plus B is a 

star b you will get 0 0 star 1 plus 1 1 0 star 1 star 0 star lambda. This is nothing, but that 

lambda you can remove 0 0 star 1 plus 1 1 0 star 1 star 0 (No audio from 51:00 to 51:06) 

that is starting from q naught how will you reach q 2 0 0 star 1 or just 1. That is this 

portion starting, from q 2 how will you get q 2 again q 2 1 0 star 1 that you can repeat 



several times that is why that 1 0 star 1 star is here. Then you go back to 0 q naught and 

this itself you can repeat several times and that is why the star outside. 

Now, you can see that apart from epsilon the string will end with the 0 it cannot end with 

the 1 and then each time a string within the bracket is considered there will be 1 1 

contributing from this and even number of one is contributed from this. So, always the 

blocks of one will be of odd length they will not be of even length. So, this method helps 

us to get the regular expression from the final state automata so for a regular set. (No 

audio from 52:35 to 52:44) 
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We have this is complete now you have D F S A, you have N F S A, you have N F S A 

with epsilon move sand you have regular expressions. So, we have seen given an N F S 

A, with epsilon move how to construct the N F S A without epsilon moves. And by 

subset construction from a N F S A, you can construct the D F S A, given a regular 

expression you can construct the N F S A with epsilon moves. This also we have 

considered and today what we have considered is given a regular expression how to find 

the given D F S A how to find the regular expression. 
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So, regular sets can be represented in 3 different ways 1, 3 ways to represent a regular set 

1 is grammar this type 3 second is F S A, this is an acceptance device. We have shown 

the equivalence between the two earlier and another is by means of regular expressions. 

We have seen the equivalence between these two norms. So, all these 3 are different 

ways of representing regular set. The idea of regular expressions is very useful in L E X 

is a automatic lexical analyser generator which is used as part of a compiler generating 

device. 

The compiler has 2 parts the parser and I mean syntax part and the analysis part and the 

synthesis part the analysis part consists of the lexical analyser and the parser. And 

nowadays you have automatic way of generating the lexical analyser. And the parser you 

have a program called a L E X, which is a automatic lexical analyser generator and you 

have a program called Y A C C, which is automatic parts of generator a lot of context 

free grammars and parsing ideas will be used here lot of regular expressions idea will be 

used here. 
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I will spend may be a few minutes on this sometime later how the L E X works or the 

idea behind the automatic lexical analyser generator. Not only that in text editors also the 

idea of regular expression is used that is for pattern matching.(No audio from 56:3 to 

56:13) So, you want to see you have a big text in spell check and all you use this quite 

often you have a text. And you want to find out supposing you have misspelt something 

you want to check what is, that word and then check wherever you have that word you 

have to replace it by the correct spelling and so on. So, for example, something like 

theory instead of writing like this you have written like this some where you will check 

and then replace it. And this or for that matter some name you have misspelt then use the 

spell check you use the spell check what it is this ultimately gives us some idea of 

regular expression or a finite state automata. 


