Performance Evaluation of Computer Systems
Prof. Krishna Moorthy Sivalingam
Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture No. # 36

Programming Aspects of Discrete - Event Simulations-1

Today, we are going to focus on programming aspects of discrete event stimulation. We
are used to looking at mathematics models before. And we also talked about what is
discrete event stimulation is. So, there is are several software tools available that can
help us they realize models, right. Models for event stimulation and then based on the
two, performance evaluation and so on. This is a tool that goes back to, almost 20 years
and it might be old, but it is still useful, it is basically a collection of C routines. And
therefore, those who know C programming and C plus plus programming, can start

queries easily from this.

There are other more sophisticated tool like, n s 2 and ns 3. More recently things like
Omnet plus plus so on, particularly design for network stimulators, network stimulation.
And there are tools for other domains too. But the reason, the axiom is particularly useful
1s, it is very generic, it gives you bare bones set of functions that you can use and with of
the help of that we can consider you can construct fairly reasonably, good size
stimulations. The advantage, we decide the abstraction you want. In the case of ns 2 and

ns 3, the abstractions are not that easy. You have t ¢ p layer and i p layer and so on.

With reaction, u can just exactly decide what part of the system u want abstract and build
the model for that and realize that with the help of C code. So, we will go through is
some other details of reaction manner. It is fairly fairly large manual, 60 pages or so also,
but most of it is self understanding, self understandable. You can read once ones and
figure of out things, but we want to highlights some of the main function right. So, the
program itself, look at right, samples later on, that has a set of function that qualify a
logic that we want to relies realize to capture the system behavior and action the axiom is
still available, it still works and we can find it on net. If not, we will put not directly links

for that Indian Institute Technology website which we have.

(Refer Slide Time: 02:14)

2 Applications Paces System () [l 1 ! wed May 10, 1207 PM

file [t Yiew o Help

Prevows - et

1. INTRODUCTION

YACSIM is a discrete-event simulation language based on the C programming language. Itis
implemented as a collection of data spructures and a library of € subroutines that can be linked
withany program written in C. | \lm:lln-' an existing language by adding discrete-event
simulation routines is a common mwuull The main advantages of t this over designing a
completely new language are that the user can wrile most of the code of a simulation in a well-
known and widely mdlmvu ge, and a new compiler is not required. A user who knows the
hase language only needs to learn how to use the simulation library routines in order to write
simulation programs

There are at least two other simulation languages based on the C programming language, both
called CSIM. One was developed at Rice University as part of a parallel processing testbed,
and the other was developed at MCC in Austin, TX. YACSIM is Yet Another CSIM that has
features in common with both of these. [t is more closely related to the Rice CSIM and was

< Sdeveloped to replace that language for the parallel processing performance work at Rice.

RETREL

[Fermial MufuganPra s exlen yacum MM 1Qb.c el lota.c pal

So, again this is something which we already said right. So, this discrete describe even
event stimulation language based on the C programming language. So, it is the collection
of the data structures and Librans libraries and C of subroutines that can be linked to

with any program written in C and link that in C plus plus.

(Refer Slide Time: 02:35)

2 Applications Maces System () [] . Wed May 10, 1OTPM | skrishna (%

fle [t Yiew Co Help

Previows - Nt 4 Aof B | 175N

L1 SIMULATION OBJECTS

The YACSIM extensions to C are organized as a set of objects, each with an underlying data
structure and a set of operations for manipulating that structure, These objects will be called
simulation objects in this manual. There are several types of simulation objects, and the user
can declare multiple instances of each.

We group the simulation objects into three categories: activities, quees, and statistics records
Activities model the active components of a simulation. They account for the passage of time
and modify the state of a simulation. There are two types of queues, those used for
synchronization and those used to model resources. We use the term queue for this group of
objects because they all contain an intemal queue to hold waiting activities. Statistics records
simplify the collection and presentation of information generated by a simulation

There are two types of activities: events and processes. They are used to represent activity in a
simulated system. Some simulation languages only have events for this purpose, and the only
way a simulation can advance time is to schedule an event to occur at some time in the future.
These languages are called event-driven. Simulation languages that are based on processes are
said to be process-oriented. In process-oriented simulations, the processes can account for the
passage of time by delaying themselves for some time interval. In general, event-driven

5. Ssimulators are more efficient than those that are process-oriented. On the other hand, process

& grienied simulators are usually thought lnh. asier and more natural to use. Since YACSIM
FEFEL

[Terminal MuruganPra yacm exten yacTmmn. MM10b.c pdf o [rim's direct jepradish c

So, it is fairly flexible, that is the reason we are particularly talk talking about it today.
We going to, so the three main entities then that when we look at stimulation right in a

axiom environment. So, there are three objects and stimulation objects. One of this is

called activity and we talk about activity related later on. Then, we when we have on
queues or resources. When we are looking on at a system, this is particularly designed
for stimulating a set processor processes that communicate with each other. This is more
of parallel travel computing where, we also in use network based stimulation. We can
build any other form of stimulation where, if you fundamentally required require the
notion or of an event or process. That is the basic absorption abstraction, and also need
queue servers in the system, wherever is the queuing system we are looking about at we
talked about CPU, disk use earlier on in the course. If you want moral to model those,
then this is a pretty, good mechanism to achieve that. We have basically activities, queues

and satisfaction statistics records that is all.

So, the behavior of the system is going to be captured with the to help of activities,
queues and strictest the statistics records help us obtain mean, thorough throughput,
mean standard deviation and last lots of other histograms and so on. Some of these are be
the built in. you can always extend the way you want. Exton First, we look at activities
right; there are two types of activities. So, they describe stimulation system, the basic
entities in event right; the system is described as a sequence of events a that happen in
different point in time. of system And event one will take this at time and 0, event take
two will take at and 10, event 3 at time fifteen and so on. And as we it is discussed early
earlier on right, the system will simply jump from say, the first event time 0, the next
event say time 10, the next event say time fifteen and so on. So, that is why it is called
discrete event stimulation, described event stimulation The event is your desire basic of

unit of activity in a given system.

We can write programs using the event based model or processed based model. Those of
student s who are familiar with the, sorry unique Unix processors, we know how to write
but multi tuner threaded system or multiprocessor programs where we can create a very
set of processors and the processors can communicate with each others. The us for
example, we use the fork in Unix to create a new process, or use the thread library, we
can use corresponding thread create package. For example, we will create (()) new
thread for u right. So, you can imagine the system as of the sequence of events that
happen over a on period of the time or sequence, set of communicating processors. And

each processor will have responsibility for and managing some for other system activity.

So, sometimes you will find that we can find it is more efficient to write event driven
programs. First time For some application, it is easy to write process driven programs.
So, both are possible. And we look at combination of the examples as we go later on, and

role it.

(Refer Slide Time: 05:16)

2 Applications Maces System () [l CE ed May 30, 1211 P

File pdt View Co Help
previes Nt 115%
PROCESS SEMAPHORE STATREC
EVENT BARRIER
FLAG
CONDITION
IVAR
FVAR
RESOURCE

Table 1. Simulation Object Types
L3, THE FUNCTIONS main() AND UserMain()

Unlike standard C programs, your program must not contain the function main(). In its place,
you must use a function called UserMain(). The function maind) is in the simulation library
As usual, it will be called to start the simulation. It will perform several initializations and then
call the function UserMain(). When UserMain() terminates, it wil return to main() which will
also terminate. The usual way to get a simulation started is to create one or more events or
processes and schedule them from within UserMain(). Then transfer to the driver using the
DriverRun() operation (see Chapter 5)

EH COMMAND LINE ARGUMENTS

s
GETEL

yuumenten. | yncsmaman.. | Mu1gb.cpdl aohu.c.pd

So, I will just highlight some of the main commands in of the system right and this is
what we said and so there is a the process activity and event activity, and queues there
are different kinds of queues. For those of you, who have done operating system scores,
you what a those different kind of queues operating system is, what is semaphore is, flag
is and so on fly design. So, these primarily used when you have only have paralleling
processing and or thread base processors, which have do to coordinate quarantines and it
probably synchronization, you probably must have learnt about right. And semaphore is
basic construct constraint very as Barriers, flags, condition variables, all these are
different type of queue stature structure and what we will use on particular system in
since we talked about primarily what a queue is notation. Notion of what is called

resource? The resource is nothing but a server, which has a queue associated with that.

So, these are the 3 main. Statrec is the statistic record we talked about early earlier on.
And we just look at the program and just a couple of things about how to invent invoke
the program. You will have a function called write user main right. User main, is

equivalent of a main event of in the C program. The main in the action program, so the

axiom of the program is defined elsewhere. So, we cannot hat may user rewrite the main.
So, we write the User Main and that is where and that is where your code starts
executing executed. So, the whatever our program you will write, it will start executing

right from the User main.

(Refer Slide Time: 06:29)

2 Applications Paces System (i [l

fle EoX Yiew Go Help

Previows - et

To compile a simulation program under the UNIX operating system, you need access lo two
files, sim.h and yacsim.o. The file sim.h should be included in all the files that make up your
program. It contains useful pre-defined symbols, declarations of all the YACSIM operations
available to the user, and definitions of the simulation object types. The file yacsim.o is the
library of all YACSIM operations

To compile a simulation program, use a command line of the form:

ce "vour options for the compiler” "your files” wicsim.o
You may include any options you want for the C compiler such as -g, -0, etc. To use this
command, you must put sim.h and yacsim.o where the compiler can find them, for example in
the same directory as the source code for the simulation program, or use full path names for

them

An alternative way to compile a simulation program is to use a command line of the form:

= vacsim "vour options for the compiler” "your files”

-y P 5o use this form, both sim.h and yacsim.o, along with the command file vacsim, must all be in
the came ifinsetine and that dirsctory mist have hean nassad i the command nmamm vaedm
FEFEL.

[Termial MuruganPra Facsm exlen yacummn. MM1Qb.c pdf ploda.c pal [1im's direct. jepudish.c.p

So, that is a small basic and there are several command line arguments, programs which
you can go through. And completion compilation is also very simple. That, there is file
called axiom dot o, which is the object file all the entities that contains all the complied
files. And then you simply have your files which is what our, a dot ¢ b dot ¢ so on.
Compile that with any other axiom C executable and others we can compare which I will
not can talk about which you can figure out in the manual later. So, now we come to
events and eighteen even in processes. I am and skipping many of this as we will look at

this only this week.

(Refer Slide Time: 07:16)

2 Applications Maces System () [

fle pot Yiew Go Help

Previows - Nt 1) 1)

URCHI WILHT (I VG VT PV O TaITIT —EY Y STETOAE (07 RSN 11
argument on a stack, since a value is passed instead of a pointer to a value. A situation where
this is very useful is when you want to create several processes with the same body by using a
loop. In this case it is difficult to give each process a different name or to pass a different
argument value to each one using argument pointers. If you need some way of distinguishing
between the different processes, passing 4 single integer that is incremented for each process
created is a simple way to do this.

21, PROCESSES

Process-oriented simulators use processes to model the components of a simulated system.
The usual approach to writing such a simulation is to identify the main components of the
system to be simulated, and then, for cach one, design a process to simulate its behavior. An
important characteristic of processes is that they can model the behavior of components that
operate concurrently. The simulator coordinates the advancement of simulation time as the
processes execule in a way thal accounts for this concurrent behavior

&
RAETFEL

[Tl Fatum exten yacEmmn. MM1Qb.c paf blota.c pal

So, let us look at us how to create the a process. So, the process if u look at thread 4
right, unique In Unix, it is a new process, the child process and parent process can do
something and child process can do something else. Here, it is here may be similar to
what you would do in a us windows based system where you call a function called

function called new process right based system

(Refer Slide Time: 07:35)

2 Applications Maces system) [l

File Edt View Co Help
Prevows [Nt (14| (14ats
this procedure the body of the process. [t can be any C procedure that retumns void (i.e., does
not return a value) and has no arguments. You must specify its body when you create a

process, and you can not change it after that. You can create several processes that use the
same procedure as their bodies.

Operations:

PROCESS *NewProcessipname, bodyname, stksz)
char *pname

frte: bodyname

it stks.

This operation creates a new process and returns a pointer to it. The argument pname is
a user-specified name for the process that is used in debugging traces. Func is a
typedef specifying a pointer to a function that returns void and has no arguments.
Bodyname 1s any pointer to such a function (1.e., the name of the function). Each
process has its own private stack, and the argument stksz specifies the size of this stack
in bytes. If stksz is O or the pre-defined symbol DEFAULTSTK, u default stack size
will be used.

; void ProcessSetStkSz(stksz)
, A Find stksz
ﬁgl
MEEEL
[Termunal

So, this is basic function that you are going to use create a new processor. When you start

the action axiom, there is no process in the system. There is just one basic process right

that is, you can now create additional processors as you need and then define the

function for inch each of these processors We with the corresponding function right.

So, this is the gain again new process in the function that you called to create the process.
And the pname is just the name given for the sake of shaking tracking purposes and
diagnostic purposes and debugging purposes. And there is function and definition. The
body name is simply the predefined name function that of you write in some other part of
code. For example, you can write the process say, simply count from one to 10 say. So
you will write the function the count one to 10 and define whatever our is going to have
happen there right. So, write this is basically process logic is defined as a in logic that
defined the function called the body name. So, there is called some tab functions
accessories, which we will skip for the time being. So, basically you need to give the
processor name and function that the contains the logic that is the process that is going to
execute. That is the main interface to create process; that how will you create a new

process.

(Refer Slide Time: 08:37)

3 Agpliations Paces System (g [l

Fle Bt iew Go Help

Previows Nest 14 WafsE) 119N

void ProcessSerSikSz(stksz)
it stksz;

The simulator has a built in default stack size that should be satisfactory for most
simulations. This operation allows the user to change that default value to stksz. The
operation must be executed at the very beginning of a simulation, before the operation
NewProcess() is called for the first time. Otherwise, it will print a waming message
and leave the default stack size unchanged
void ProcessDelayitimeine) ™
double imeine,

You can only invoke this operation from within the body of a process. Its execution
causes the suspension of the process for timeinc units of simulation time. If the
argument is (.0, the process execution is halted and other processes scheduled for
execution at the same time are allowed to continue. If there are no other such
processes, the process continues immediately. This option gives the programmer a
little control over the order that processes scheduled for the same time will actually
execute on a uniprocessor. A negative time increment is not allowed

."'—"V
i \K‘Elw vidd ProcessSleep()
B You can onlv invoke this oneration {rom within the hodv of 2 process. s exeention

METEL. S

[Termial MuruganPra yacumenten JEmm. | MMIGh.cpdl Jaioha.c pd [Tim's direct jepradisk.c pe

So, the process will be containing C a sequins of C lines stricter (()) statement that is all
right. And then basically references it represents the logic. The couple of important logic
statement which are not available traditionally right, in numerical computation; one is
called the process delay. So, the process delay is the special function which is in work

when invoked within a process will simply delay of suspend the process for the

passepied specified amount of time. So, I can say for example, for process delay 10, and
will system suspend this process for 10 units of time. That unit of the time is important.

It is‘s not your real clock seconds; it simply the simulation time.

So, Intel internal to your simulator, there is a that clock that is running; that you are in
control of. And this is simply in terms of simulation time units, that there is something
very important; and if u want, and you can also make this also 0.0 which is the special
case, which, I will skip for now. 0.0 simply to eel yield process to some other processes.
So every ever action your axiom program action program can have 15 processes running
and u might want just this is running on single CPU right; actually emulating the
execution of multiples process on the single CPU. So, if you want to give up the CPU
and like let some other process, which is every action a axiom process run; this is the
way of doing that. So, it is simply to eel led yield and if there is molar weighting no other
waiting process that is executed that; then control will come back to this particular action

process that you are dealing with.

(Refer Slide Time: 08:37)

» Appliations Paces System () [l

File B8k yiew Go Help
Previows . Net 14 (Vhof58) 175%

| and leave the default stack size unchanged.

void ProcessDelav(timeine)
double timeing;

You can only invoke this operation from within the body of a process. Iis execution
causes the suspension of the process for fimeine units of simulation time. If the
argument is |11, the process execution is halted and other processes scheduled for
execution at the same time are allowed to continue. If there are no other such
processes, the process continues immediately. This option gives the programmer a
little control over the order that processes scheduled for the same time will actually
execute on a uniprocessor. A negative time increment is not allowed.

void ProcessSleep()

You can only inyoke this operation from within the body of a process. lis execution
causes the suspension of that process for an indefinite amount of simulation time. The

2 T = —

[Termial " MuruganPra Facsimeten Jacsm man, MM1Qb.c pdl |akoba.c.pal [Tim's direct. :

So, the process delay is use full useful, when we look at some example we see, where it
is to be going used. And process sleep is a special case of process is delay. It is more like
putting this process to sleep, but you do not specify how long this is sleep is going to be.
That will wake up related later on based on some condition variables right. That again we

do not know have an example in the particular class, but this gives more flexibility of

writing a generate generic system where for example, time work mode right. Simple
example using process sleep is, you put the process to sleep after sending a packet, and
you you accessions as soon as the acknowledgement comes back, you wake up the
process and process the acknowledgement. And in you never know when is this action is
going to come back. That can be done using a special condition variable or some other
flags with in which is used to wake up the particular process. So, there this is the process
sleep. So, two main activities are creating the process and leading letting the process go

to be delayed are or put to sleep.

(Refer Slide Time: 10:45)

2 Applications Paces System (i [

fle pot Yiew Go Help

Previows [Nt 1

Activities 12

only way to wake up a sleeping process is to schedule it using one of the activity
scheduling operations,

void Pracessdoin()

This is an operation used for synchronization with forked activities. You can only
invoke it from within the body of a process. Once executed it will suspend the calling
process urdil all activities forked by that process are finished. That is, all forked
processes must have terminated and all forked events must have occurred. Once this
happens, the suspended process continues with the next instruction in its body. If there
are no outstanding forked activities when Processloin() is executed, the process
continues without interruption

void ProcessSetPriority(procpir, p)
_ PROCESS *procprr;
double p;

This operation sets the priority of the process pointed to by procptr to p. Prioritics are

ycsmman MM1Qb.c pal aohu.c.pd [Tim's direct. ok c.pef

Process join, priority and all those things are optional which you want we look at. If you
writing programs where if you remember where four can for ken join right, you can join
to wait for some other process to complete before those are particularly proceeding.
Those are specify particularly specific to parallel process kind of parallel kind of things

routines. We can send messages which again we going to pass over for now.

(Refer Slide Time: 11:06)

2 Appliations Paces System () [l

fle poX Yiew Go felp

Prevows o Net 1 (1atse 11N

Ly,

tis possible to overflow a process' stack during a simulation. This usually results in the
simulation crashing for no apparent reason. It can also crash at different points if the
simulation code 1s changed (e.g., by putting i prinif statements to find out what is happening)
A good rule to follow is to try increasing the stack size of suspect processes if there is no other
obvious reason for a crash. On some implementations the maximum size of the stack used by a
process is printed out in the debugging trace when that process terminates. Unfortunately, this
15 very machine dependent and may not be implemented on some machines

23, EVENTS

Events are similar to processes. When you create an event, you must assign it a body in the
same way you assign a process body. When an event occurs, the body is executed. The
significant difference is that the body of an event can not suspend execution. This means that
ance an event body has started exccution, it will continue until it reaches a return point. More
importantly, if the same event is activated again, it will start executing its body at the same
entry point as before, 1t can not remember where it stopped and restart at that point the way a
process can. To put it another way, execution of an event body is the same as a subroutine
call, where processes use coroutine linkage to implement suspensions.

=
-}F&ETIN conditions for the body function of an event are the same as for a process. It must be a C

'—#glullclmn that retums void and has no arguments. Like processes, several events can use the
RAETEL

[Fermial MuruganPra yacm exlen ycsimmn. MM1Qb.c pdl [akota.c pal [Tim's direct. jepuadish L e

So, that is about the process. So, event is simulate similar to a the process. So, the
process has the body that right, the function that can be, associated with that the process.
And the process can be a long time running process. For example, in an arrival the
process in have, stimulation program can run for entire duration of the simulation right.
So, it has much longer life time association. That is the definition of the process. It
simply can run. You can kill process in any time, but in the theory process has can run
forever never. And event is similar to the process, only made major the difference is, the
event is instances instantaneous. It is gets created, it gets triggered. Whenever get
triggered, event anyone triggers; you take event, say some activities right. When
interrupt is triggered, some action is take him taken and that is it. And trigger is
programmed. The write event is forgotten, go back in you can reschedule the event if you
want to, but event typically happens only once. That happens, function code associated

with the event executes and that is all. That is the end of the (()) it simply dies ok.

So, you will find that events, so essentially it simply will give you less over head right.
Writing a program, event driven takes less over head and requires less memory, but on
the other hand the other hand tool the other two will require more memory is required

more than.

(Refer Slide Time: 12:19)

3 Applications Places Syt

fle Eot Yiew Go Help

Previows - et

Aclivities 15

You can also assign a type to an event. An event's type is an arbitrary integer value that you
can assign at the time of creation or later with the event operation EventSelType(). Event types
are not currently used by the simulator; they are provided for users to use anyway they want
For example, a user could collect statistics on event types to count the number of event
occurrences of a given Lype.

Operations:

EVENT *NewEvent{ename, bodvname, delflg, ervpe)
char *ename;

fime bodyname;

int delflg

Int efype;

This operation creates a new event and returns a pointer 10 it. The argument bodyname
specifies the body function and ename names the object. The third argument
determines whether the event will be deleting or non-deleting. The only two possible
values for this argument are DELETE and NODELETE. The last argument is the
event’s type. The event's state, used for rescheduling (see event rescheduling
operations below), is set to)

MuruganPra pacsmexten FcEmm. MM10b.c paf

So, that for therefore, an event is the other they took to create an activity, and then syntax
for creating a event is very similar right, you have the notion of event right. The new
event is a function that will create a event for you. And just like before, the name
associated for debugging and diagnostic and other purposes, whereas body name just like
the case of process, there is a logic there that is associated here, is also that a we function
you can define. That will handle this particular event right. This is event handler that is
trigger. So, the action axiom will take handle while calling this particular function when
this event takes place and there are other flags associated with that. For now, simply
ignore. So, all I can do is I can like create the event and I can define the logic that will be
executed and when the particular event occurs this system. And then there are again lot

of other functions that are associated you know.

(Refer Slide Time: 13:06)

2 Applications Paces System () [l

Fle Eok Yiew Go Help

Previows | Nest 19

Aclivities

void EventResched Time{timeine, stval)
double timeine;
int stval;

If this operation is \'\cculcld from within the body of a non-deleting event,
reschedule the event to occur again in rimeine time units and save the value sval for use
during the next occurrence. Executing the operation from anywhere other than the
body of a non-deleting event is an error.

void EventReschedSema(semptr, stval)
SEMAPHORE *semptr;

int stval;

‘.-r"_"'\% This operation reschedules an event on a semaphore and saves the value sival for use
e during the next occurrence of the event. 1t can only be used within the bady of a non-
| deleting event
RAESEL
[Termnal

yatsm eaten s man, MM 100, [aloba.cpall Tim's direct. [epusish.c pe]

I create an event right, sometimes I want to reschedule the event for some other function
point in of time. So, let us take say, some other packet arrival then take place time that
then the time t equals to 10 seconds. That is when the event is triggered, so you have now
to schedule the packet. Now, you are going to transmit this packet and you know you are
going to get that acknowledgement back in 30 seconds right, 30 time units of for the
stimulation time. So, you would want to reschedule the same event to occur at some
future pointer point in of time. That is for event reschedule purposes. You know how to

desire do you decide? That is your part of the logic.

The whole purpose of the simulation program writer is that to understand behavior of
system and capture all the behavior using this event processor right. So, if u know that
you want the same event to occur red in a future point in time; like to birthday for
example time you know that 365 days later the same event has to reoccur again. So, you
can reschedule the particular event at future point at time. That is the base case right that
we, but all know that I have event that I can schedule, that can happen at some other
point in future. There are other more sophisticated things like based on semaphore right,
based on flags, like there are some other things like that which I think are not relevant to
the examples you’re we were going to look at, that we are going to look for more

sophisticated things.

(Refer Slide Time: 14:14)

2 Applications Paces System () [l

fle pot Yiew Go Help

Previows [Next 19 | (19afsE) 179w

This operation reschedules an event on a flag and saves the value stval for use during
the next occurrence of the event. It can only be used within the body of a non-deleting
evenl

void EventReschedCond(condpir, stval)
CONDITION *condprr;
int stval;

This operation reschedules an event on a condition and saves the value stval for use
during the next occurrence of the event. It can only be used within the body of a non-
deleting event

voidd EventReschedReg(resptr, timeinc, stval)
CONDITION *condptr;
double timeine;
int stval;
This operation reschedules an event to use timeine units of service from a resource and

saves the value stval for use during the next occurrence of the event. It can only be
used within the body of a non-deleting event

:\imr EventSetState(stvat)
S int sival;

HMEFEL -
[Terminal

Muruganra ysmenten. | ycimmin. MM 1Qb.E

And something special is called the event reschedule, based on the resources availability.
So, I talked about the resource being the server; so server has a queue associated with
that and the server is normally a single server. We can have multipliers servers also. So,

the single server associated that is sever (()) given queue.

So, when I schedule an event to be scheduled with respect to resources. So, this
resources with event will in the go and weight in the servers queue; and when it’s turn
arrives right, then what will happen; the server will handle all other packets or other
event that is in its queue and this particular event will be handled when ever gets to reach
sever or getting serviced Servest at the server. And little bit continues confusing no? you
We will look at the example, but the other function you will see, would the event
reschedule, the resources and other thing we will see what a script early on? There is on a
general thing called activity reschedule resources all. So, which is also available. So, the
same thing can be done, it can you can also use the activity schedule, event schedule,

process schedule and so on.

(Refer Slide Time: 15:18)

2 Applications Paces System () [l EIX ed May 10, 1220 M

fle ESX Yiew Go Help

Previows - Next

| astatistics record once you have a pointer to it

Examples:

ActivirySched procprr, 0.0, INDEPENDENT

Schedule the independent process pointed to by procpir to start immediately

ActivitySchedTime(procpir, 4.5, INDEPENDENT)

Schedule the independent process pointed to by procprr to stant in 4.5 time units,

mptr, BLOCK);

Schedule the process pointed tw by procptr to start when the semaphore pointed o by
sempir is positive, and then suspend the calli {

terminates. This blocking form of ActivitySchedSemat) can only be invoked by a
proce:

ActivitySchedCond{procpir, condptr, FORK).

Fork the process pointed 1o o to stant when the condition pointed to by
condpir holds. This forking form of ActivitySchedCond() can only be invoked by a

process

ActivineSchedFlaotente flontr INDFPENTIFNT)

Muruganpra pacsm eaten yacsmman. MM 10b.c [aloba.c.pall [Tim's direct jepadish. pe

You can simply call the thing for generate generic all activity schedule time; the same
function, the same functionality as saw before, where the event in the process, we can
schedule that to happen in some future point point in time. For example, this case your
saying that, the I want this process to scheduled at 4.5 units in the future or we can also
schedule this activity based on a resource which particular on example is not there, this

starter.

(Refer Slide Time: 15:40)

» Applications Paces System () [l

Fle Gt iew Go Help

Previows - et

10, BLOCK)

Schedule the event pointed to by evper to occur immediately and then suspend the
calling process until the event vecurs,

xpir, &, sizeoff float));
A pointer 10 a floating point argument with value 5.4 is passed to the process
pointed to by procpir
floar®JActivityGetArg(ME]),

IF this staten
prokpir in the previous example, it will set y to the value 5.4. The cast is necessary
to prevent a C compile time waming message

Comments:

7=, Although the scheduling operations work for both types of activities, not all possibilities of

i - Bscheduling activities make sense. For example, you can not fork or schedule a blocking

__4:5.'- process from any place except within the body of a process, since processes are the only
MEFEL

[Termaoul ™ MuruganPra Facumexten T MM1Qb.c pdl |akoba.c.pal Tim's direct jcpudisk.c.pef]

When we come to our core we will see that. That is the basic of creating events and
creating processes. And we know that, know by action codes has punches of process that
would be running, each process contains some part of system logic right. For example,
get have an arrival process, departure process, CPU process, disk processors, all those
different processors each executing some core logic of the system. And in between, I can
through throw in a bunch of events that will created, that will get deleted as and when
went near it is needed in the system. That is the these are two main things much most of

which pretty much the code is know taken and care of.

And we can create severs from by ourselves, but we can write our notion of the sever we
know all node we know how to create a link list right. A sever basically queue or link list
stature right. There are five or more structure stature or some other more complicated
stature which want to right. So, you can create packet or add packet to queue and serves
service the queue the queue any how we add that you want. That is something we can do.
It offers all nodes, singly linked list, doubly linked list, even list stack queue whatever
you want to implement, they can implement, but action axiom gives you some set of
predefined queue stature structure that saves you has that hassle, because you because
maintaining pointers, all those things can always leave bulls bugs in the system. So, we
have no a special node notion of what our are called as queue as right. So, these are

queues are called resources. That is described the stature structure is called queue right.

(Refer Slide Time: 17:11)

» Applications Paces Syst

Ple g8t yiew Co Help
Previous Neat i}
ISSUE & WY HICSSAEE WHCH (LS TP, SUICE 101 TIRETY 1008 THISGIKE 1HF 00 ST
program. This is not yet implemented in the current version of YACSIM.

35 RESOURCES

1A nesource consists of a queue and a set of servers. The only thing that an activity can do with
aresource is (o request service time. When an activity makes a request, the resource assigns it
to a free server, if one is available, and puts it in the queue otherwise. A resource makes no
distinction among its different servers and simply picks the first free one it can find to satisfy a
request for service. The activity is in a suspended state when it requests service and does not
wake up until its request has been fulfilled. When a server finishes serving an activity, it looks
for another activity in the queue to serve. If there are none it retums to a pool of free servers
and waits for another activity to serve, The set of rules used to decide how the resource puts
activities in its queue and takes them out for service is called the queuing discipline for the
resource. Most of the standard queuing disciplines have been implemented. They are
described later in this section

s T

[revmal Murugania U | g,

Let us see. This is the resource. So, the resources action in the axiom consists of set of
queue and set of servers. And important what an activity can do at any event or process is
to request service time on a particular declare resource. So, the service time is to. So, you
need 4.5 units of service time on the particular resource. If it is the CPU time, for the
example, you want to use it for 20 milliseconds, the disk you want to use it for 500
milliseconds right. Whenever an activity makes the request for a resource and if resource
is free, then that all are the maintenance is done by the axiom action itself; if the resource
is free, it will utilize immediately service you. If the resource is currently is servicing in
some other activity, then some other packet whatever, then this packet will simply
queued in some later pit of service related point in the time. So, that implicit queuing is
done whenever you simply schedule an activity on a given resource. And then on all the
business of the queuing, de queuing, all that is transparently handled by action axiom

itself right. We do not have to see that. As to how that is getting that done.

(Refer Slide Time: 18:08)

2 Appliations Maces system () [l 2] wed May 30, 122008 1| skrishnam |%

Fle Bt View Go Help

Previews . Nest) (32afse) 11N

Queues

Operations:

RESOURCE *NewResource(rname, qdisc, nserv, slice)
char *mame;

int gelise;

int mserv;

double slice;

The operation creates and returns a pointer to a resource. The argument gname is the
name assigned to the resource. The argument gdise 1s a integer that specifies the
queuing discipline for the resource to use. The choices for this argument are described
in the following section. Nserv is the number of servers for the resource. The last
argument slice is only used with the "round robin” and "round robin preemptive resume
with prionty” queuing disciplifies and is ignored for all others. It 1s explained in the
following section on quewing disciplines

void ResourceUse(rptr, timeinc)
s#==_ RESOURCE *prr;

sl Sgdouble fimeine;

‘,._,55 This is the operation a process uses to request service from the resource pointed 1o by
METEEL- = PR

[Terminal " MuruganPra. yacumexten JHE. | MMIGb.Cpdl [akoba.c.pal [Tim's direct jcprdisk . pe|

So, let us see how to create resources. So, basically again, will like new event, new
process, we have something called new resource. New resource will simply create the
resource or some other parameter as before. So, the name of the resources again the for
diagnostic purpose what we will use that and then discipline, queue the queue discipline
we are used to; first in first out, but there are last lots of other discipline of last come first

out is there else so let us look at some of those queuing discipline.

(Refer Slide Time: 18:38)

4 aoslications M Syt
2 Appliations Maces System () [

Flle E6R Yiew Go Help
Previows [Next] (32t 58}
RESOURCE *rprr;

This operation returns the number of activities that are currently receiving service from
the resource pointed to by rpir.

Quening Disciplines:

Ten different queuing disciplines are implemented. Currently, there 1s no way for the user to
add new ones, although that capability may be added later. The user specifies the queuing
discipline for a resource by passing an integer code (o the operation NewResourcel().
Abbreviated names have been defined for all the implemented disciplines, and these can be
used in place of the integer code to improve readability. These abbreviated names are listed in
bold after the full names of the disciplmes in the following descriptions

First Come First Served - FCFS

The resource inserts processestinto its queue at the tail and removes them from the
head. Once the resource assigns a process to a server, that process receives all of its
[L'I‘HC\tl‘d service without II][CﬂIIF[Il]I]

<. Last Come First Served - LCFS
_‘} The resource inserts processes into its queue at the head and removes them from the

head. Once the resource assigns a process to a server. that nrocess receives all of its

HETEL

[Termaal MuruganPra ycsim exten FcEmm. MM10b.¢ pdf [akoba.c pal [1im's direct jepuish .. pef]

So, first come, first out simply order of getting in to the queue, that is what is the that is
used full for. Removing packet from queue, last come first out, and then last come first
out, pre empty to the process right. And then you can do and then FCFS with preempty to
resume with priority, write right. And same thing as the sharing; some of you have the
done at the networking course might remember. It is your GPS, which comes from this

are or we can simply have the basic round robin scheduler.

(Refer Slide Time: 19:03)

3 Aooliations Paces System (g [l

file (ot yiew Go Help
Previows - et Mofse) N

| queue, it any, and Ff\lt‘\.‘lji (1] \.IHTIWL'[L' Its service time.

Last Come First Served Preemptive Resume With Priorities - LCFSPRWP

This discipline is the same as the FCFSPRWP discipline described above, except that a
process requesting service is inserted in the queue in the order of its priority, in front of
all processes with the same priority instead of behind them

Processor Sharing - PROCSHAR

This discipline uses as many servers as it needs (o service all request without delay
That is, all processes start receiving service as soon as they request it and they are never
delayed in a queve. However, when there are k processes receiving service the
remaining service time for each is increased by a factor of k. As processes arrive at and
leave the resource, the requested service time of each of the remaining processes is
altered to account for the new value of k.

Round Robin - RR
This queuing discipline is one of the two that use the JE¥ argument. Processes
requesting service are put at the tail of the queue. WheneVer there is a free server, the

: } resource takes the process from the head of the queue and assigns it to that server for a

service time equal 1o the slice time. When a server completes a time slice the resource

reduces the process' requested service time by the slice amount and puts it back at the
D — — : '

[Termunal, " MuruganPra yomesten FOCEmA... i 100, pall |wota ¢ pal [Tim's direct. |tpradinh ¢ pef|

So, the round robin scheduler for the example of it you put 10 packets in queue and each
packet is called got hundred bytes right. And with round robin, you can simply say the

that each packet say, 10 byte is may the make a quantum or time slices.

So, there is the notion of the slice argument that are given; that have you to file. We also
have to specify in round robin u also specify the time quantum that going to use to be

every process execute for the particular sever.

(Refer Slide Time: 19:36)

3 Aopliations Paces System (g [l

File pat yiew go Help
Previows Next |3 (32afsH) 11N

Operations:

RESOURCE *NewResource(mame, gdisc, nserv,
char *mame;

int geisc

int nsery;

doudle slice;

The operation creates and returns a pointer to a resource. The argument gname is the
name assigned (o the resource. The argument gdisc 1s a integer that specifies the
queuing discipline for the resource to use. The choices for this argument are described
in the following section. Nserv is the number of servers for the resource. The last
argument slice is only used with the "round robin” and "round robin preemptive resume
with prionty” queuing disciplines and is ignored for all others. It is explained in the
following section on queuing discipfines

void ResourceUse(rptr, timeinc)
RESOURCE *rprr;

double timeinc;

This is the operation a process uses (o request service from the resource pointed to by

= . -
i ‘ﬁ iptr. The argument fimeine is the amount of service time requested. The operation can

only be invoked from within a process body

METEL-

[Termaal - MuruganPra jacumexten JEmmL. | MMIGh.cpdl |akoba.c.pal [Tim's direct. jcpudisk.c.pe]

So, that is what we specify. So, we specify the name, we specify the queuing discipline,
and also the number of severs. We called MM 1, M M 3, M M 5 and so on right. So, we
can specify the number of servers in axiom. It will automatically create that many
servers. But this is a the single queue right, there are no multiple queues, but one queue
in the system. And then but I can M M (()) system. Then slices is the basically it can be
round robin alone. We are have to specify what is time slice, the basic unit of schedule.
So, you can now create the a resources. So, we are now seen processes, we have seen

events, we can see resources, that is that we need. Everything else can come in.

(Refer Slide Time: 20:12)

2 Applications Maces System () [l

fle BAX Yiew Go Help
Previows o Net 32 | (et 119%

| Only bE INVOKEA TrOMm WITNIN 1 process poay.

int Resource Waiting(ptr)
RESOURCE *rpir;

‘ This operation returns the number of activities in the queue of the resource pointed (o
by rpir.

int ResourceServicing(rpir)
RESOURCE *rptr;

This operation returns the number of activities that are currently receiving service from
the resource pointed to by rpir.

(Juening Disciplines:

Ten different queving disciplines are infplemented. Currently, there is no way for the user to
add new ones, although that capability may be added later. The user specifies the queuing
discipline for a resource by passing an integer code to the operation New Resource().
Abbreviated names have been defined for all the implemented disciplines, and these can be
_. used in place of the integer code to improve readability. These abbreviated names are listed in
;’\‘&Emhl after the full names of the disciplines in the following descriptions.

\.s”gl irst Come First Served - FCFS
HEFEL —

[Fermaal] MuruganPra Fatsim exten T MM10b.c paf [alota.c pal [1im's direct jcpuish L e

So, event sometimes whatever be the schedule you are using, with similar using the
weather Omnet or whether it is the ns two; ultimately that is called is happening. You
create a bunch of logic and it is organized is term of modules. In for example, Omnet
derides the module of action ns two, you have write various objects in that are created,
ultimately underlying what happens is there are events scheduled; and this happens over

and over again, and finally you can stop the stimulation is at some point of in time.

So, the before the stimulation terminates, what do you we want to do? Want to measure
performance. So, whole idea running the stimulation this is which gives values of some
system. So, we need to measure performance matrices matrix. And performance matrices
matrix, we can do that all sources ourselves right and depending on the system. In case
of Opnet probably, you can have a whole bench bunch of performance matrices that it
you will have go and search right, depend dig up and find what they are. In the case of n
s two, you normally have trace file right; that the simply dumps everything into a round
large file, new script or script right, what the packet are; what the throughput also this is

done manually are or in all our case of we can choose to dump in what our values.

So, you keep on aggregating some statistic variables as go long. And we can just for
example, number of packets completed right, you can simplify count that. Count every
time packet is finished, to keep incrementing the count. And at the end of the time

system, we can say we delivered 10,000 packets, whatever 50,000 time units. Therefore,

throughput is point 5. So, that is something that the we can do. The axiom provides you
with a set of basic static record right, which little bit which help you. In some cases

mostly we write other our own statistic our routine also.

(Refer Slide Time: 21:51)

+ Applications Places System () [l

file pot yiew go Help
Previows Next 35 | (SafsE) 119%

11 KESOURCEUSe!) 15 INVOKE MO (AN OnCe AL e SAme SIMULAON Tme, 1 Wi De me Process
with highest prionity that calls Resourcelse() most recently in real time that gets service.

36, QUEUE STATISTICS

Statistics can be automatically collected on queues. The following operations are used to
activate this feature and (o access the collected statistics. Note that when a queue is deleted its
associated statistics record is also deleted.

Operations:

void QuedCollectStasigprr, type, meanflg, histflg, nbin, low, high)

RESOURCE *qptr;

int type,

int meanflg;

int histflg;

int nbin,

double low;

double high;
This operation activates statistics collection for the queue pointed to by gptr. It does
this by creating a statistics record (see Chapter 4) that is updated automatically
whenever the queue's status is changed. Statistics can be collected on the following

. MEFEL

[Fermeul MuruganPra youmeten. | yacsmmin, MMIGh.Codl | [aona.cpdl [Tim's direct jpudish.c.pef|

For example, we can initiate collection of statistics the for particular queue. So, the
resources we created above, we can ask the axiom of to keep track in various things
right, the amount of time, the busy, for the example, let us That is one thing, utilization of
sever right, row value; that we defined in M M 1 system. For example, you can keep, you
can ask the axiom to do that for you are or the service time for you, different packet. You
can just calculate name mean service time; you also calculate statistics in terms of

histogram right.

So, we you defined what your different number of bins are and write values of and then it
will keep atomically keep track those things. So, there are So, there very sophisticated
things you can do that. And decide besides the queue is alone right, u can directly gather
statistics for the queue queue collect, but you can we can also gather other statistics for
example, number packet are delivered or delayed of the particular packet right. All those
things you do with the help, notion of the statistic record that is the predefined in the
axiom. So, new static Statrec, that is the function that is available and here we can

specify right whether it interval point interval and interval, very where you want to write.

It computes number of samples, maximum value of the sample, minimum value of the

sample.

(Refer Slide Time: 22:57)

2 Applications Paces System () [l ed May 30, 12:20 M

Fle Bt iew Go Help

Previows Nest] (37etsm 1

A statistics record can also accumulate a histogram of its input sequence. The user specifies a
number of bins n and low and high values. The histogram will have n bins of equal size
between the low and high values. It will have two additional bins, one for all values less than
the low value and the other for all values greater than or equal to the high value. For each
sample (v,w), the bin that corresponds to v is incremented by w.

Operations:

STATREC *NewStatrec{sname, tpe, meanflg, hisiflg, nbins, lowbin, highbin)
int type:

char *sname;

int meanflg;

int histflg;

int nbins;

double lowbin;

double highbin

This operation creates a statistics record with name smame. Type is either POINT or
INTERVAL to specify whether the statstics record will be a point or an interval
statistics record. 1t will always compute the statistics Samples, Max, Min,
Interval, and Rate. Meanflg indicates whether or not this statistics record will
compute the mean and standard deviation. There are two possible values. MEANS

indicates that the mean and standard deviation are computed, and NOMEANS
RETEEL. —

[Termaul " MuruganPra facsmexten JuCsmm. MMI0b cpdl [aiota ¢ pal

So, every time you transmit the packet, you will call the this new satiric Statrec.
Automatically, it will increment the number of the samples. It updates the max value,
min value right and mean value all of things are automatically taken it care of it. This is

the conveying convenient way of doing it. We are also doing it in different ways.

(Refer Slide Time: 23:19)

2 Applications Paces System () [l N ied May 30, 1220PM | shrishnam |

fle Bt iew Go Help

Prevows - et

EC srpir,

This operation resets the statistics record pointed to by srpir to the state it was in when
it was created. 1t also sets the start of the sampling interval to the value of simulation
time when it is executed. This operation should not be used to reset any of the three
statistics records associated with queues. Use QueueResetStats() instead.

void StatraeUpdate(srpir, x, v)
STATREC *srpir;

double x;

double y;

This is the operation used to add another sample to the statistics record pointed 1o by
srper, X is the value of the sample. If the record is a point statistics record, y is the
weight of the sample. If it is an interval statistics record, y is used to define an interval
weight as explained above

void StatrecReport(sipir)
STATREC *sipur

This operation prints all of the statistics computed by the statistics record pointed (o by
srptr in a standard format. It also prints a graphical representation of the histogram on
the user's display, if one was computed by the statistics record.

MEFEL — R

[Termual " MuruganPra yacumexten geSmm.. | MMIQb.cpdl |akoba.c.pal [Tim's direct. jcpudisk.c.pdl]

And so function, will call to every time you want to update the new value or update the
new value for the static collection is called as static update Statrec update collection
function, which will see in the example of as we go. So, now we have they are satiric set
of routines now we are everything in place. We have the process, events, queue all the
satiric statisitic records, then only one important thing is remaining and that is, and
actually running that stimulation, actually some out of the trigger stimulation. What we
look at the stimulation core code, you will see the raw definition here, all set of process
here, all set of events, all those get created here. But somewhere you have to give the
initial trigger right. It is like creation; somebody has come in and start that the first event
right to occur. Then the rest of events the will automatically start happening right. So,
that first event creation function is this handled with the help of a set of special function

which we will talk about.

(Refer Slide Time: 24:16)

2 Moplications Maces system (i) [

file pot Yiew Go Help

Previows [Next |4

5. THE SIMULATION DRIVER

5.1, THE DRIVER

The driver is that part of a simulator that controls the sequencing of activities. It usually does
this by means of a linked list called an event list. When a user schedules an activity to take
place in the future, the driver inserts that activity into the event list. The driver also keeps the
list ordered by inserting new activities in such a way that all activities scheduled to occur before
the new activity are ahead of it, and all activities scheduled to occur after the new activity are
behind it in the list. In other words, the event list is kept ordered by the scheduled times of its
activities. The driver initiates activities in the order they appear in the list by always taking the
activity at the head of the list to initiate next. Each time the driver removes an activity that has a
scheduled time greater than the current simulation time, it increases simulation time (o the time
of that activity.

Operations:

‘/"
'ifi}l'rwf DriverResen)

REFEL

[Rermaral MuruganPra Fameslen T MM1Qb.¢ paf [akota.c pal [1im's direct. jcpudish.c.pdf

So, basically called this is called stimulation driver right. Only when the stimulation
driver start executing do all the events has start scheduled and process has starts
scheduling and so on. And until then it is a static set of definition and nothing this is
really happening right. So, this is the main part of stimulation and that is actually

controlling all the sequencing events of all the activities of the system right.

(Refer Slide Time: 24:36)

2 Applications Maces System (i [l

Ple Dot yiew Go fielp

Previows . Nest |4

This operation resets simulation time to 0.0, ¢lears the event list, clears all simulation
queues, and destroys all existing simulation objects. That is, it takes the simulator back
to the state it was in when it first started exccution and betore any objects (queues,
activities, and statistics records) were created. You must recreate all objects after
executing DriverResel() before you can run another simulation.

int DriverRun{timeinc)
double timeine;

This operation SEarts or restarts a simulation. Once the user invokes this operation, the
simulator will run for timeine units of simulation time, until its event list is empty, or
until it is interrupted, and then return control to the user. The user can continue a
simulation by invoking DriverRun() again with a new time increment r. The simulator
will pick up where it left off and run for r more units of time. Invoking DriverReset()
before another run will start the simulation over at ime 0.0, If DriverRun() is invoked
with timeine less than or equal to 0.0, the simulator will run until the event list is empty
or the simulation is interrupted. The return value is 0 if the simulation runs the full
timeine units of time or exhausts its event list. Due o the operation Driverlnterrupt()
described below, it is possible for the simulation o terminate before that time. In that
case, DriverRun() will return a non-zero value as explained for the Drverlnterrupti)
operation

BPTEL I

[Fermueal MuruganPra yacsm esten yacumm. MM10b.¢ paf [alota.c pal [1im's direct. jcpuish c pd

And, the basic function that you would C see is the driver run. The driver will start the
stimulation to be get executing executed and specify the time line of how long you want
it to run. You can say, 10,000 second; again time is important. This is not micro second,
millisecond. This is simply stimulation time unit right. This is something which you have
to aware of. something And whenever, creating the system 100 m b ps links and so on;
you have to know how to translate that real time values into stimulation time values; and
again you can define the granularity of the clock in this particular one. It can be one
stimulation time is equal to 10 micro seconds or 10 milli or 10 seconds whatever. You

want define and based on that you can advance the clock internally create and delete.

So, this is the main thing. Once you call the driver run, it will keep running until and
unless it is interrupted. You can always interrupt using a special call called as driver
interrupt. So, early on you can interrupt right the existing stimulation, or it will simply
run to his million units or whatever, it will simply keep running. The most important
thing is stimulation is when to stop the stimulation right, whether 10,000 unit ok, 100
1000 units ok, we never really know. And each stimulation run can converge in a
different stimulation time. So, want we do is, we simply talked about terms and

termination condition right.

So what we do is we have 1 thing we talked about in the other lectures right, in theory

part other lecture we talk about terms and terminating conditions based on mean values

right and also lots of different condition that we have discussed. And trying to we find
out of is little bit of a challenge. So, mostly people just pop out and specify some large
value right. Whatever the guides says you simply follow that. If it says run million units
of time then you want to because it takes two and of days to finish the work. That is not
option right. You prepared 100 units of time, you get some samples and it get some you
are very happy; but unless you collect statistically large number of samples, but you
can’t get significant results. If you run 1000 time units, you may get about of 50 samples.

that There is no way near to get meaningful interpretation of the results.

So, running it for large number of samples is important, collection of how much time is
not as relevant as large number of samples how time samples you are collecting. not to
relevant has a number samples required Because if you are collecting sampling for delay
you need to know. For example, time you are trying to find out to bit error rate in a
particular system right or a packet draft drop rate in particular system right; and the
packet error rate is 10 to the power minus 6. Then you have run at least the a million
packet generation or packet completions before you can see the first packet drop. If

really you want to stop at 1000, then you would say that the packet drop rate is 0.

But, even for 10 to the power 6, you have at least 1000 times; 10 to the power 9
completions you have to get to make sure that he your packet drop rates are remaining
meaningful. So that, and those are also important condition right. And right now, most of
the time we just select a large enough number. But what we actually do is, we run it for
increasing units but it by increasing number run for 2 million units, 5 million units and
what you will find out what that compromise between the time taken, the real time taken
the for stimulation hand and the accuracy of the values. can be That you will find that the

out code is converging reasonably well, so you can stop the earlier.

In fact, it is the exterior extension to the axiom, called as the new Statrec, which is
actually called the driver auto of terminate, which I will go to that later on where can
related where we can automatically terminate the stimulation once at converge
conditions are attained. Again, we talked about termination conditions so those are again
actually programmed as the separate set of function. So, ideally what we can do is,
converge on delay. What I will we do is, If delay converge of delay if delay with every
500 samples that change the mean delay, the mean delay after the 9000 samples, after
10,000 samples is roughly he same; then simply you want to stop at 9000 samples the

right. You want special converge condition, you can define, assuming that the delay
converges right, then you want to, because you want to know running for one parameter
value you want the parameter value for 30 replications, 10 replication; that simply takes
time. And several combination of parameters values those have are finished M Tech

recently will know 8 number of replications, amount stimulation that takes place.

No Know those to working and on stimulation know, how long it takes to get the basic
result. That you take 10 times a day, 25 days for one data value, you have value hundred
parameter combination right it takes for even ever. And unit you need more machines,
then are you have to be claver clever to stop your termination as soon as your converge

takes place. So, that is something that is very important.

(Refer Slide Time: 29:02)

K » Applications Maces System () [l

File Eat yiew Go Help

Previows s Next (43 | (4dafsE) 11SW

DriverRun((.0).

This statement also transfers control to the driver, but it will mot return wntil the

event queue is empty OF an intermupt occurs,

i = DriverRuni 100.0);

This statement transfers control to the driver for 100 units of simulation time. The
return value 1 will be 0if the simulation runs for the full 100 time steps or the event

list is exhausted, and will be non-zero if it is interrupted

ement will run the simulator for 5.5, units of simulation time. The

ment will then execute 5.0 more units of simulation time. The third
statement resets the simulator and the fourth initiates a simulation run of 10.5 time
units. The ¢ of this sequence is to perform two simulations of 10.5 units of
simulation time eac

f*\é Driverlnerrpi(3);
e

This interrupts the simulator and retums the value 5 1o the user

L HPARES S
@ W (T "

MurgganPra... | jcsmesten.. | |jmeimman.. | MMIQbcpdl | aiohacpy

So, driver run 10.0 which means you can run the driver for the good point 10 unit of
time. So, that is the basic thing that will see. If you can reset the driver in between if you
want to. That means, you can the start again reset driver and start it again. The driver is
basically 0 round zeroed on or bringing down are stratification the statistics record to the
original sate and keep quiet going after that. So, that is, these are all the main functions
that you will have to require in order to execute the basic stimulation. So, before I
proceed, any question from the class? (()) It is important because you have to think
about the So, students who are hearing outside things about learning the outside right

And this is a very basic introduction. How does the stimulation time mentioned in the

driver run function appear in the real time Sir? That is something that you will have to do
the translation right. So, you you have to define one unit of time is equal to say, one
microsecond. So, that is something you will have to figure of right. So, that of translation
you have to do. And the unless we see an example you wont be able to do it. For
example, if you say, that the I am generating eight 30 packets, 30 million packets per
second right and correspondingly in that case you will have your...you will be
generating , that you will generating, just second as the basic unit of the time. Then your
will packet arrival rate, inter packet arrival time will be one over 30 million packets of
time, but if you want say that I am not able to make it. And you are going to generate one
second interval, you want to you can say that to convert time skill to one unit of the time

equal to 10 second or so if you desire decide to do the translation that way.

So, one stimulation time is equal to 10 second that then you will we translate your
correspond 30 million packet per second to time 3 million packet per stimulation packet
per second unit of time. Because you know, you are condensing the time scale that way
contains basic of time skill the page write, that is you will have to try to do that because
if you run into systems where we are talking about 1 gbps links and so on. Then what
happens is the number of packet that get generating generated is very, very large. And the
time between these packets is also very, very small and that leads to that is number of

events that is getting created and so on.

So that is, something you have to desire decides at what level of whatever absorption
abstraction is okay. Even though is your know system says 30 m b s, it will translate to 3
million packet per unit time. Is that sufficient to give that is that level of accuracy that
you are looking for? That is something end you will have to figure out after
experimenting and seeing if that is okay. And if at the end you translate that back to. So,
do we have to specify this on our code? you to Yes, you would have to specify it in your
code, the user parameters terms will be in the parameters of and make up our mega bits
per second. It is up to you say lambda says 30 millisecond, in your code you say one unit
of time is 10 second. Then in your the system will be stimulation the lambda will be the
original lambda is 30 m b s, because your having it on larger gross scale have and it will
be just 3 million packet per unit stimulation of time. So, that is on something that you

will have to program manually in the beginning of your system.

(Refer Slide Time: 32:10)

3 Appliations Places System (g I LN ed May 10, 123 PM

file (ot Yiew Go Help

(MM1Qb.c)

[* This file implements the M/M/1 Queue using Yacsim discrete—event
[* simulation. The simulation model consists of:
[* a. The server, modeled using a Resource, an in=built object.

‘.-“ b. The ;.ur'b'f arrial process modeled using Process.

Packets armive to the system based on the Poisson arrival process;
upon arrival, they are .;munf at the server [with an quum-‘.'hllf
service fime), where they are serval m FCFS mode.

The system, will terminate either based on Statistical Replication (m
‘,.r'fh i COSE, when mean packet deloy converges) or based on mazimum
\{Iih»r ption run—time

===

HCHIM man. MMIGB.Cpdf [abotac pal [Tim's direct. |cputishcpell]

So, now, that is the this is basic. Now, let us look at the program right? IS it clear
enough? Here it is looking clear enough. You want me to zoom? We can zoom. Is that
better? I want the entire screen to show up. So, this the basic M M queue right. Whoever
has followed the lecture so far will know what the M M queue is all about right followed
You have exponential service time, exponential arrival process, poison arrival process.
And there is exactly one server in this particular system. So, how do we build the
models? So, you we have seen the theoretical vassals results for M M 1. We know the
that delay is one by mu minus lambda right. All those derivation we have seen. How do

be we validate that.

We have seen time that there are two days ways of validation; one is where theoretical
vassal results are known or none and one is validation with the help of stimulation with
real system. We can actually we build a system where the files people come and go and
actually pretend that they exponential service times and so on. It is easy actually these
days to do it a stimulation based verification. So, this the definition; 1 Packets arrive on
the system are based on the Poison system on the poison arrival process and then they
are queued arrive and at the server has So, the service time for the packet is exponential
right. And each packet will have exponential service time and we are exponentially
servicing packets is in first compression come, first serve mode right. It is simply FCFS

or F T F O right as we know that. And this system actually terminates based on two

properties; one is run, it will by simply run by maximum unit of time or we can simply

converge maximum early on by which I mentioned earlier on.

Looking at the reputation replication method, you can converge. At the time of converge
conversion, you start stop the stimulation. We will you not look at convergence initially,
converge you we will simply look at stimulation for large amount of time. That is the you

specify at that command line.

(Refer Slide Time: 34:02)

2 Aoplications Paces System () [l CERD ied May 30, 1241 M

File gt Yiew Go Help

% Jmmlgh =h 0.5 1010

> arr. rate of 0.5; dep. rate of 1.0; terminate using replication
mazTime value is ignored.

% [mmigh —h 0.5 1.5 0 100000

> arr. rate of 0.5; dep. rate of 1.5; terminate wsing
mazTime value of 100000

This model can be easdly ertended Iu::wq\pm:" multiple servers
(how?), non-FCFS scheduling algorithm, finite buffers, other arrival
and departure processes. Ezpertment with this until you are very
fomdliar with the basics

Watten by: Krishna Sivalingam; Jan 1999; Modified Jan 2002
7l

" MurugaaPra yacum exten ycsim man MMIGBEpSF | alotu.cpdl [Tim's direct. cpudisk.c.pel]

So, the basic thing to run this code is as in follows right. So, this is the executable remain
minus thing action header the axiom thing which says do not print some headers.
Otherwise your axiom prints some useless headers. And parameters are basically 4
parameters. This is the your lambda in your mm 1 for 1. So, this point 5 packets for unit
of time whether it this is second or whatever, we do not care. It is point 5 units of time.
Service rate or departure rate; this is mu, departure unit This is 1.0 packet per unit time
and if I set this to one, it means terminate using replication. are Or if I simply look at the
other way, last value will be ignored if where use the same way this to one or if I simply
look at the other way, same thing right. Point 5 is the arrival rate point, 1.5 is the
departure rate. If the third parameter will is set to 0, it means simply run the this for the
process specified command line. So, this is the basic way we are going to run this system
and it is off course and it is very easy to extend this to multiple servers which I will post

in the assignments later on.

Therefore, I will tell you how to write related on various set of programs. And initially
also, this particular information implementation can support finite buffers, infinite
buffers and all those variations are also possible. support in finite purpose And also we
can easily change this; the duty beauty of stimulation is that, if you want exaction the
exponential service time with and some other service time, it very simple. I just need the
random number generator to be implemented. And if you look at Raj Jain’s book, there
are ways of stimulating other kinds of variable, very straightforward. input there way of
stimulation And likewise arrival process also right. And sometimes you find that the
arrival process is neither Poisson nor exponential. other kind of random variables and
like base arrival process also right the sometimes you find the process arrival process

exponential In that case, look for, you can simply encode whatever that we you want.

So, that gives you more realistic view of the system it was realize of the basic time,. But
you always use the corresponding theoretical resources for mm 1. Because for mm 1 is
easy easier to get theoretical results for, significant code off course there is g g 1 for in
Raj Jain’s book, there is gl there is mgl. is the All those results are system are available
and we find try to combine. And g g 1 right, combine system which is hard ware harder
to find. Those specific close formulations right; anyway this is basic program. You can,
you should right, try to play around with basic change of basic departure process, arrival
process, everything and see how a system can behave run for on time okay. And this is

been running for a long time.

(Refer Slide Time: 36:24)

2 Applications Paces System () [

File (ot Yiew Go Help

wet |1 1ofe | 20w

4

#include <sim.h>
#include <stdlib.h>

typedef struct _cinfo
{

int id;

double start time, finish_time;
} Customerlnfo;

void arrprocess():

void custgmer()

[* Global variables. */
double Arrivalrate, Departurerate;

BEROLRCE *queve 1;
I HasBmer id;

So this is for, the only thing is unique program is in this axiom program, you need to
include this, m dot h. This is supplied by or specify supplied by the action axiom library.
The sim dot h is the only thing you have to include, is enough everything else is right
whatever our you want to do. And by default we create a stature structure, ¢ info that
sources stores the start time in to and the finish time. And every time the customer
arrives, we give the customer, need id number, token number. We record the customer
time that the customer arrived and the time that at the customer finished. That is this
want is basically used to store here. Now, the arrival process and the customer; and so
this these are the functions that are there going be associated with two different activities.
So, the arrival process is going to be associated with the arrival process even that
processes is going to be created later related on and customer is simply another logic that
is going be associated with the departure event or departure process. So, this is the two
prototypes for your two functions. So, you have to simply and default by default it will

be voice void related on this function, corresponding to these functions.

(Refer Slide Time: 37:24)

2 Appliations Paces System () [l

file Gt Yiew Go Help
et 1 (1or 0N
void arrprocess();
void customer()

[* Global variables. */

double Arrivalrate, Departurerate;
RESOURCE *queue_1;

int customer id;

STATREC *CustomerDelay;

[* End of Global variables. */

16:08 Jan 18 2002 Page 1 of MM1Qb.c

The global variables, we need not use global variables. But sometimes in when you are
sharing data between processes, it is easy as easier to use global variables. But you
should remember that, when you rating writing a multi processor simulation and use
global variables you have to thing think about synchronization, global variables You
would need actually whenever a single variable is shared between the multiple

processors, you need remember holes semaphores or locks for synchronization purposes.

This probably thus does not have that but then other simplified complication that is to
simplify. Otherwise it is too complicated. Anytime, any particular variable is going to
updated by two different processes, you definitely need, the corresponding
synchronization process constraints. In the case, arrival rate or departure rate, both the
static values. They are not going to be changed. So, therefore we do not need that. Then
this resources is again the queue right, again the queue going to be the packets into this
particular system; the customer delay, the static variables and the Statrec. So this
customer delay is and statistic record that is going to this keep all the track of all the
packets that have been executed. So every departure process, we will record the delay
taken by the packet or customer in given variables. So, these are this are the four more
different variables that are primary necessary. So that is first part of the code this is write

there is first part definition.

(Refer Slide Time: 38:50)

2 Appliations Paces System () [

File (ot Yiew Go Help

Previovs et (2of4 | 200M

int MAX COMPLETIONS = 2000, ReplicateMethod = 0;
double maxTime = 100000.0;
PROCESS *ArrivalProcess;

if (arge < 5)
1
fprintf{stdout
"Usage: s Arrivalrate Departurerate ReplicateFlag maxTime\n"
argv[0]);

exit(—1);

Arrivalrate, = atof{argy|1]);
rate = atof(argv(2]);
plicateMethod = atoi(argv[3));

-\zELtTum- = atof{argv[4))

Let us move on to user main. I mentioned that the user main is the starting point of action
program right because main is already defined in the axim in the axim definition. So,
there are some simply default values. So far max time is what never we normally use for
terminating number of stimulation has you to run. And max time we can update for what
we obtain from the command line. So, what we the arrival process is the process I am
going to create. These are the command line arguments we are to read. The first
argument is going to be arrival rate, second in is departure rate and so on. And max time

again a to f. So, that is your standard convergence of ASCII to float or integer ok.

(Refer Slide Time: 39:36)

2 Appliations Paces System () [l

file (ot Yiew Go Help
Previous et (2of4) | 200%
!
J

/* Initialize Rondom Number Varioble. */

RandomInit()

CustomerDelay = NewStatrec("Delay per customer", POINT, MEANS, NOHIST
10, 0.0, 400.0};

[* Create 1-Server (Queue */

queue_ 1 = NewResource("Server", FCFS, 1, 0.0);
QueueCollectStats(quene 1, LENGTH, MEANS, NOHIST, 0, 0.0, 0.0);
QueueCollectStats(queue 1, UTIL, MEANS, NOHIST, 0, 0.0, 0.0;

ArrivalProcess = NewProcess("A_Process”, grmprocess, 0);
ActivitySched Time(ArrivalProcess, 0.0, INDEPENDENT);

- ReplicateMethod 1)

ewRenStatrec! Customer Delav, 99. 01.01)
* HPTEL
[[Ferminal]

MMAGR cpef

So, this is very important right. The random minute, you need random variables. unique
Anytime you run the stimulation right you have to initialize the random variable, you
have to call this random variable and so on. Even if you are using you always called
SRAM or Srandom, you always call the Srandom. Because when you have multiple runs
of same time the same system, you want to make sure that right there are seeds. That
initially, the randomness, way of packets are generation generated or the (()) thus does
not affect of the behavior of the system. You want to make that randomness has no

significant impact on the system behaviour.

In fact, on system behavior that is why this random minute is there. There are also other
associated functions like Set stream is there. But we will not get into that. So, the
customer delay is the statistic record that you have will creator created. So, this is the
function called, New Statrec, the simply name when we use for debugging purpose or
diagnostic purpose. So, that is straight forward. Queue is again, my new resources. So,
resource function is called. So, I am creating the server, so the name of that is simply
server. Remember that, the scheduling discipling, the queuing discipline in FCFS, I am

creating it with only one sever.

And, the last parameter not relevant and this is the slice time that we saw earlier. That is
all, that I have a will single server running, FCFS schedule in discipline. Done, I also

collect statics on this queue based on the length on net work of the queue. This is

particular enqueue in terms of the links of the queue. When you compute that, this is
server utilization. What is the fraction of time the sever is being utilized. Actually, be
utilities in mm 1 we say row equals lambda by mu, but that is definition. I would actually
measure this utilization, how often is this sever to be being utilities utilized. You actually
measure that and you record that. And that this called valid is to validate that where
utilization that actually equals to lambda by new mu. That is what this is for. And then
this is your basic. So, the sever will is being created. One particular statistical record has
been created. Now, we come to the main point part of the code. The main part of the
code is creating the arrival process. So, remember we saw arrival process, so that is the
name of process; and this is the function that contains, the logic for this particular

process.

So, again this is only this the definition. If I simply live leave the arrival process in new
process; that will simply create a data structure called as the arrival process, the new
process. But you also have to schedule that. So, unless it is scheduled it is not going to
get executed. So, the scheduling is important. So, that is your activity in your schedule
time which simply takes the arrival point process pointer. And then 0.0 means that says
that this is going to start write right away. We schedule the process to start running write
right away. Independent is the parameter, which will skip for now. So, all that we away
say is we have all created the process, which will start running straight away. Then what
will happen? The system simulator will create the event at the time 0.0 which will, the
event or a process with the process will be created to start executing in the sequins time
0.0, and that will in turn run the code that is given in this particular purpose process, of

the arrival process.

(Refer Slide Time: 42:33)

2 Applications Paces System () [

flle gt Yiew Go Hep

Previous Nt (L))
;;umw_{ = ,\w\\[ir-w:t'uj"Ser‘:er” FCFS, 1, 0.0);
QueueCollectStats(queue_1, LENGTH, MEANS, NOHIST, 0, 0.0, 0.0);
QueueCollectStats(quene 1, UTIL, MEANS, NOHIST, 0, 0.0, 0.0);

ArrivalProcess = NewProcess("A_Process", arrprocess, ()

ActivitySched Time(ArrivalProcess, 0.0, INDEPENDENT);

if (ReplicateMethod == 1)
{
NewRepStatree(CustomerDelay, 99, 0.01);
SetDeletions(1);
Driver AutoTerminate(30000.0,maxTime);
}
('lﬂl"
DriverRun(maxTime)

QueueStatPtr{queve 1, LENGTH));
peneStatPtr(queve 1, UTIL))

Let us ignore the (()) method for the time being session and then all the day So, now that
all that I’ve wanted is now in place. all object of the day Now, the important point is to
get the stimulation run going and that is other driver run. So, the driver run max time,
and this max time if you I want to change it from the default value, I can specify max

time command line argument. Given, and so it will simply change that.

Now, what happens is, now look at the code, this this is it the right. I have created the
code, I have created the objects, I create the process. I have driver run access max time.
So, what happens is what happen after that driver run when it returns, it menas that the
stimulation of is finished. And it is not very obvious, but that is what is happening. At the
end of driver run, when the driver run returns it means that the stimulation is run for max

time units.

Then what will we do? We want to print out of all the statistics. So, I simply called stare
Statrec report for queue one because all the it has already been collected. it was static I
do a statrec report collect on the utilization on on customer delay and so on. This is not
needed for all the stimulation. I am using this to show how we can actually invoke these
particular things. And then we will then look at finally, how do we print, what do we ant
to be print. So, I am looking at customer delay right. There is default function is stare
Statrec mean customer delay. This will know, is not automatically compute the main for

you. So you do not have to go on figuring all the values as long as we have done the So

want as long as corresponding updates correctly. values So, this is what is going to

happen.

(Refer Slide Time: 43:55)

2 Applications Maces System () [l LK ied May30, 1250PM ', shrishnam | ®

File gt Yiew Go Help

Predous - Mext (20f4) | 200%

NewRepStatrec(CustomerDelay, 99, 0.01)
SetDeletions(1);
Driver AutoTerminate(30000.0,max Time)
}
else
DriverRun(maxTime);

StatrecReport(QueneStatPtr(queve 1, LENGTH));

StatrecReport(QueueStatPtr(queue_1, UTIL));

StatrecRepart{CustomerDelay);

fprintf{stdout,” Average Customer Delay from simulation is %0.2f and from th
eory is %0.2f\n" 5!.1!wu‘\[i-.ulp'('wmuwrlM.u\ 1.0 / (Departurerate - Arrivalrate

fprintf{stdout," Average Number of Customers from simulation is %0.2f and from
theory is %0.2f\n", StatrecMean(QueveStatPtr{queve |, LENGTH)), 1.0 * Arriva
Irate/ (Departurerate — Arrivalrate));
184 18 2002 Page 2 of MM1Qb.c
H P EL 5

" MuruganPra yacumesten yacsim man MMIGBLpSF | lotu.cpdl [Tim's direct cpusisk.c.pef|

Then we try to do compression comparison between what the theory gives us, what is
does the theory say? The theory says that mm 1 departure delay is simply one over new
mu minus lambda; departure minus arrival rate right. We want are comparing what the
stimulation gives us at to the value given by at the theoretical formula. That is the first
statement here. This is e of t, the delay value. I can also measure e of n. Average number
of customers in the system also can be measured right. And what is that? This is simply
is one over sorry this is simply lambda divided by new mu minus lambda right, (())

formula remember?

Lambda into to delay gives you the number of customer. And and I can also get the
number of customers from the stimulation value stare Statrec mean value right. So, this
says, this is mean value right; is I am looking at link length of the queue. What is the
number of packets queued in that particular queue over time average. So, at every point,
every point 0 units of time I look at O the length and record that. So, that is why time
average link e of n value; this is E of n from stimulation; this is ¢ of n from what
theoretical class studies derived in class earlier on. This is the way may be to compare

theory to practice. So, what is this stimulation giving you? What you are looking for?

(Refer Slide Time: 45:15)

2 hoplications Paces system () [l

File £t Yiew Go Help

Predous - et (Boke |200%

[* Function assocaled with ArrivalProcess */
void arrprocess()
{

EVENT *new event;

double service_time;

CustomerInfo *c info;

customer id = 0; [* Initilize Customer D */

while (1)

1
| * Let Phocess Sleep till next arvival */
ProcessDelay(Fxponential(1.0/ Arrivalrate));

|* Customer arrived. Schedule new event and quene it at Server, ¥/
new event = NewEvent("Customer®, customer, DELETE, 0);

: E Set ID and stort time of this customer. */
o . a P w i s

SN MMIGBCpdf | [alova.cpdl [Tim's direct. jepuish.c pe|

Now, let us look at what are arrival process is going to do. So, arrival process is basically
a simple process. It is the endless loop. So, the arrival process is the process whose job is
to keep on reading generating packets for even ever until the stimulation terminates. So,
what we do is So, we the create the first process write right away. But we have special

notion of process delay. Remember, we talked about the process delay.

So, one what I do this is, I can delay the process. How long do I want to delay the
process? I want to delay it till the process next arrival time. So, inter arrival time of a
Poison arrival process is disturbed exponentially. We know some of that from our theory
right. So, if the arrival rate is lambda, if the departure sorry inter arrival time is
exponentially disturbed with parameters with one over lambda; that is again something
with is which we have covered in class right. Therefore, I want delay arrival process by a
random arrival of time. And the random the random randomness is defined by this
exponentially variable with parameter one over lambda. So, which been that, will with a

period of time 0.02 seconds, nothing is happening. There is no packet generating.

(Refer Slide Time: 46:21)

2 Applicatio

o Paces System () [

File £t Yiew Go Help

Predous

wet |3

while (1)

—d

L MPT

[verminal MuruginPra s enten HCHIM man MMIGB.Cpdr [ahoba.c paf [Tim's direct

So, then actually now I am creating a packet and I the packet creation is given again an
event. So, now, I am using event examples here right. So, event is I am creating the
customers and I am associating this customer function to be executed whenever this
event finishing finishes. And I am filling customer id, start time. So, getsim time is a this
function defined in the axim and action tells you the current stimulation time, not current
time real stimulation time. This is the time when this packet was created and that is what
we are recording here. Then we activate Setarg, | am going to all skip that. It is the
statement and simply to associate with this data stature structure with this and then
particular event. And then So, later I want to retrieve this event, all that I want to, is So,

its simply stored in ¢ some convenient place. So, we store this C info as a part of data

{
[* Let Process Sleep till next arrival */
ProcessDelay(Exponential(1.0/ Arrivalrate));

[* Customer arrived. Schedule new event and queue it at Server. ¥/

new event = NewEvent("Customer", customer, DELETE, 0);
|* Set ID and start time of this customer. */
cinfo = (CustomerInfo *) malloc{sizeof{ Customerlnfo))

cinfo->id = customer id;
¢ info->start time = GetSimTime(); /* Current Time. */

ActivitySetArg(new gvent, ¢ info, sizeof{ CustomerInfo]);

[* Schedule Customer on Server */

7 \g; rvice time = Exponential(1.0/Departurerate);
\;}TJ\H_\'FE]U dRes(new event, queue_l, service_time, INDEPENDENT);

stature structure and associated with the event.

(Refer Slide Time: 47:09)

2 Applications Maces System (i) [l

File [t Yiew Go Help

Predous | Mest) (Bof4 |200%

[* Customer arrived. Schedule new event and quene it at Server. */
new event = NewEvent("Customer”, customer, DELETE, 0);

[* Set ID and start time of this customer. */

cinfo = (CustomerInfo *) malloc{sizeof{CustomerInfo))
cinfo=>id = customer id;

cinfo->start time = GetSimTime(); /* Current Time. ¥/

ActivitySetArg(new event, ¢ info, sizeof{ CustomerInfo));

|* Schedule Customer on Server */

service time = Exponential(1.0/Departurerate)

ActivitySchedRes(new _event, queue_l, service_time, INDEPENDENT);
| * Now the event has been scheduled to wait until Server 1s */

|* available. The event will be serviced for service time units. */

Bstomer id++;

L NPTEL

[Ferml MuruganPra yatsimnten ysimman MMIGBCpSF | [alotu.codl rim's direct

So, now, the event will be creator has been created. The as packet or customer has
arrived or the event get is now getting created, has been created. And what is next thing
do? It is to schedule this event. Where do I what is the schedule event? The schedule on
the server queue one that I created right. So, the service time again for this packet is
exponential and out of from our definition and we saw that the departure rate is mu right.
new Now, the service time one over mu is the parameter that is passed to this exponential
variable. Now, the service time is also going to be automatically exponentially generated.
Now, I know what the service time is; now I automatically schedule the event right to run
on queue one with service time which is this is the basically the length of the packet time

of service for the customer.

So, I am have created the this particular customer and I schedule the this particular
customer. Now, the queue one is empty; what happens? This particular customer will get
serviced right away. And the customer finishes the service at the time after the service
time for the particular customer is over, this customer function that we defined here that
is going to get called okay. That is be that is the basic idea. Again, as soon as this packet
is finishing the service, at the end of finishing the service, this event will actually take
place. So, I am creating an event that does not take place right away. [am simply putting
queue of the server. When the sever selects the event or this packet of for service, and
after that finishing service of the packet, at the time this event is actually said to occur

that is way of action how this axiom definition is...

So, at the time of occurrence of that event, you called the corresponding event handler
which is defined in this function called customer. So, this customer function will contain
all the things need for recording end the departure of the particular customer. All are our
statistics are complete when the customer with lead leaves the system right, entire (())
simply store storing the start time. Halt time, this is basic logic given in this arrival
process and then this goes on. The, what happen after this customer will is generator
generated? When is the next customer going to generator generated? Again, based on this
random inter arrival time. So, this is the loop that we have. So, every And this is every
inter arrival time is basically exponential distributor. So, you will be packets uppering
appearing in the system at periodically periodic points in time. They all get queued in

sever. That is all we try to do.

(Refer Slide Time: 49:35)

2 Applications Places System () [l

file gt Yiew Go Help

Predous Mest |1 (3aF4) |200%

[* Function assocated with Customer Event */
void customer()

{
int id;
CustomerInfo *info;

info = (CustomerInfo *) ActivityGetArg(ME):
info= >finish_time = GetSimTime{);

[* fprintf(stdout,” Customer Hd Started at %0.2f and Finished at %0.27\n", info
=>id, info->start time, info—> finish time);*/

StatrecUpdate{CustomerDelay, (info->finish_time - info—>start_time), 1.0);

[* Customer Event Terminates, Customer leaves system */
."—"-
i i@; 18 2002 Page 3 of MM1Qb.c
* HPTEL
L (el

MuruganPra pcsmlen " 4 [akohu.c Tim's direc [cpusisk.c.pef]

Then, what is the customer? The customer thing is very simple. In the info data stature
structure associated with the particular event, I store the finish time, which is basically
the time will that this packet finished service. That is given by GetSim time. So, again
this is actually then again something image this is something you have to imagine right.
This is not a sequential program. These are all things happening in different points in
time right. And At some future point in time, this packet will finish service. Therefore,
GetSim time some time will be the time when this packet has finished service. And then
simply apply update the customer delay, Statrec delay chat with update with info finish

time minus info start time. That is all. Wait is weight again ignored above. They are more

complicated. This simply says, the sample value for this new sample value is info finish
time minus info start time. The customer event terminates; the customer leaves the
system. Now, on the automatically, this is de queued from the server; all those things, we
do not have to worry about. All the packet has arrived, the packet has been queued, will
queue the packet as been serviced and we have only captured the departure services

statistics in this particular system. That is all. That is the main part of the code.

