
Performance Evaluation of Computer Systems

Prof. Krishna Moorthy Sivalingam

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture No. # 36

Programming Aspects of Discrete - Event Simulations-1

Today, we are going to focus on programming aspects of discrete event stimulation. We

are used to looking at mathematics models before. And we also talked about what is

discrete event stimulation is. So, there is are several software tools available that can

help us they realize models, right. Models for event stimulation and then based on the

two, performance evaluation and so on. This is a tool that goes back to, almost 20 years

and it might be old, but it is still useful, it is basically a collection of C routines. And

therefore, those who know C programming and C plus plus programming, can start

queries easily from this.

There are other more sophisticated tool like, n s 2 and ns 3. More recently things like

Omnet plus plus so on, particularly design for network stimulators, network stimulation.

And there are tools for other domains too. But the reason, the axiom is particularly useful

is, it is very generic, it gives you bare bones set of functions that you can use and with of

the help of that we can consider you can construct fairly reasonably, good size

stimulations. The advantage, we decide the abstraction you want. In the case of ns 2 and

ns 3, the abstractions are not that easy. You have t c p layer and i p layer and so on.

With reaction, u can just exactly decide what part of the system u want abstract and build

the model for that and realize that with the help of C code. So, we will go through is

some other details of reaction manner. It is fairly fairly large manual, 60 pages or so also,

but most of it is self understanding, self understandable. You can read once ones and

figure of out things, but we want to highlights some of the main function right. So, the

program itself, look at right, samples later on, that has a set of function that qualify a

logic that we want to relies realize to capture the system behavior and action the axiom is

still available, it still works and we can find it on net. If not, we will put not directly links

for that Indian Institute Technology website which we have.

(Refer Slide Time: 02:14)

So, again this is something which we already said right. So, this discrete describe even

event stimulation language based on the C programming language. So, it is the collection

of the data structures and Librans libraries and C of subroutines that can be linked to

with any program written in C and link that in C plus plus.

(Refer Slide Time: 02:35)

So, it is fairly flexible, that is the reason we are particularly talk talking about it today.

We going to, so the three main entities then that when we look at stimulation right in a

axiom environment. So, there are three objects and stimulation objects. One of this is

called activity and we talk about activity related later on. Then, we when we have on

queues or resources. When we are looking on at a system, this is particularly designed

for stimulating a set processor processes that communicate with each other. This is more

of parallel travel computing where, we also in use network based stimulation. We can

build any other form of stimulation where, if you fundamentally required require the

notion or of an event or process. That is the basic absorption abstraction, and also need

queue servers in the system, wherever is the queuing system we are looking about at we

talked about CPU, disk use earlier on in the course. If you want moral to model those,

then this is a pretty, good mechanism to achieve that. We have basically activities, queues

and satisfaction statistics records that is all.

So, the behavior of the system is going to be captured with the to help of activities,

queues and strictest the statistics records help us obtain mean, thorough throughput,

mean standard deviation and last lots of other histograms and so on. Some of these are be

the built in. you can always extend the way you want. Exton First, we look at activities

right; there are two types of activities. So, they describe stimulation system, the basic

entities in event right; the system is described as a sequence of events a that happen in

different point in time. of system And event one will take this at time and 0, event take

two will take at and 10, event 3 at time fifteen and so on. And as we it is discussed early

earlier on right, the system will simply jump from say, the first event time 0, the next

event say time 10, the next event say time fifteen and so on. So, that is why it is called

discrete event stimulation, described event stimulation The event is your desire basic of

unit of activity in a given system.

We can write programs using the event based model or processed based model. Those of

student s who are familiar with the, sorry unique Unix processors, we know how to write

but multi tuner threaded system or multiprocessor programs where we can create a very

set of processors and the processors can communicate with each others. The us for

example, we use the fork in Unix to create a new process, or use the thread library, we

can use corresponding thread create package. For example, we will create (()) new

thread for u right. So, you can imagine the system as of the sequence of events that

happen over a on period of the time or sequence, set of communicating processors. And

each processor will have responsibility for and managing some for other system activity.

So, sometimes you will find that we can find it is more efficient to write event driven

programs. First time For some application, it is easy to write process driven programs.

So, both are possible. And we look at combination of the examples as we go later on, and

role it.

(Refer Slide Time: 05:16)

So, I will just highlight some of the main commands in of the system right and this is

what we said and so there is a the process activity and event activity, and queues there

are different kinds of queues. For those of you, who have done operating system scores,

you what a those different kind of queues operating system is, what is semaphore is, flag

is and so on fly design. So, these primarily used when you have only have paralleling

processing and or thread base processors, which have do to coordinate quarantines and it

probably synchronization, you probably must have learnt about right. And semaphore is

basic construct constraint very as Barriers, flags, condition variables, all these are

different type of queue stature structure and what we will use on particular system in

since we talked about primarily what a queue is notation. Notion of what is called

resource? The resource is nothing but a server, which has a queue associated with that.

So, these are the 3 main. Statrec is the statistic record we talked about early earlier on.

And we just look at the program and just a couple of things about how to invent invoke

the program. You will have a function called write user main right. User main, is

equivalent of a main event of in the C program. The main in the action program, so the

axiom of the program is defined elsewhere. So, we cannot hat may user rewrite the main.

So, we write the User Main and that is where and that is where your code starts

executing executed. So, the whatever our program you will write, it will start executing

right from the User main.

(Refer Slide Time: 06:29)

So, that is a small basic and there are several command line arguments, programs which

you can go through. And completion compilation is also very simple. That, there is file

called axiom dot o, which is the object file all the entities that contains all the complied

files. And then you simply have your files which is what our, a dot c b dot c so on.

Compile that with any other axiom C executable and others we can compare which I will

not can talk about which you can figure out in the manual later. So, now we come to

events and eighteen even in processes. I am and skipping many of this as we will look at

this only this week.

(Refer Slide Time: 07:16)

 So, let us look at us how to create the a process. So, the process if u look at thread 4

right, unique In Unix, it is a new process, the child process and parent process can do

something and child process can do something else. Here, it is here may be similar to

what you would do in a us windows based system where you call a function called

function called new process right based system

(Refer Slide Time: 07:35)

So, this is basic function that you are going to use create a new processor. When you start

the action axiom, there is no process in the system. There is just one basic process right

that is, you can now create additional processors as you need and then define the

function for inch each of these processors We with the corresponding function right.

So, this is the gain again new process in the function that you called to create the process.

And the pname is just the name given for the sake of shaking tracking purposes and

diagnostic purposes and debugging purposes. And there is function and definition. The

body name is simply the predefined name function that of you write in some other part of

code. For example, you can write the process say, simply count from one to 10 say. So

you will write the function the count one to 10 and define whatever our is going to have

happen there right. So, write this is basically process logic is defined as a in logic that

defined the function called the body name. So, there is called some tab functions

accessories, which we will skip for the time being. So, basically you need to give the

processor name and function that the contains the logic that is the process that is going to

execute. That is the main interface to create process; that how will you create a new

process.

(Refer Slide Time: 08:37)

So, the process will be containing C a sequins of C lines stricter (()) statement that is all

right. And then basically references it represents the logic. The couple of important logic

statement which are not available traditionally right, in numerical computation; one is

called the process delay. So, the process delay is the special function which is in work

when invoked within a process will simply delay of suspend the process for the

passepied specified amount of time. So, I can say for example, for process delay 10, and

will system suspend this process for 10 units of time. That unit of the time is important.

It is‘s not your real clock seconds; it simply the simulation time.

So, Intel internal to your simulator, there is a that clock that is running; that you are in

control of. And this is simply in terms of simulation time units, that there is something

very important; and if u want, and you can also make this also 0.0 which is the special

case, which, I will skip for now. 0.0 simply to eel yield process to some other processes.

So every ever action your axiom program action program can have 15 processes running

and u might want just this is running on single CPU right; actually emulating the

execution of multiples process on the single CPU. So, if you want to give up the CPU

and like let some other process, which is every action a axiom process run; this is the

way of doing that. So, it is simply to eel led yield and if there is molar weighting no other

waiting process that is executed that; then control will come back to this particular action

process that you are dealing with.

(Refer Slide Time: 08:37)

So, the process delay is use full useful, when we look at some example we see, where it

is to be going used. And process sleep is a special case of process is delay. It is more like

putting this process to sleep, but you do not specify how long this is sleep is going to be.

That will wake up related later on based on some condition variables right. That again we

do not know have an example in the particular class, but this gives more flexibility of

writing a generate generic system where for example, time work mode right. Simple

example using process sleep is, you put the process to sleep after sending a packet, and

you you accessions as soon as the acknowledgement comes back, you wake up the

process and process the acknowledgement. And in you never know when is this action is

going to come back. That can be done using a special condition variable or some other

flags with in which is used to wake up the particular process. So, there this is the process

sleep. So, two main activities are creating the process and leading letting the process go

to be delayed are or put to sleep.

(Refer Slide Time: 10:45)

Process join, priority and all those things are optional which you want we look at. If you

writing programs where if you remember where four can for ken join right, you can join

to wait for some other process to complete before those are particularly proceeding.

Those are specify particularly specific to parallel process kind of parallel kind of things

routines. We can send messages which again we going to pass over for now.

(Refer Slide Time: 11:06)

So, that is about the process. So, event is simulate similar to a the process. So, the

process has the body that right, the function that can be, associated with that the process.

And the process can be a long time running process. For example, in an arrival the

process in have, stimulation program can run for entire duration of the simulation right.

So, it has much longer life time association. That is the definition of the process. It

simply can run. You can kill process in any time, but in the theory process has can run

forever never. And event is similar to the process, only made major the difference is, the

event is instances instantaneous. It is gets created, it gets triggered. Whenever get

triggered, event anyone triggers; you take event, say some activities right. When

interrupt is triggered, some action is take him taken and that is it. And trigger is

programmed. The write event is forgotten, go back in you can reschedule the event if you

want to, but event typically happens only once. That happens, function code associated

with the event executes and that is all. That is the end of the (()) it simply dies ok.

So, you will find that events, so essentially it simply will give you less over head right.

Writing a program, event driven takes less over head and requires less memory, but on

the other hand the other hand tool the other two will require more memory is required

more than.

(Refer Slide Time: 12:19)

So, that for therefore, an event is the other they took to create an activity, and then syntax

for creating a event is very similar right, you have the notion of event right. The new

event is a function that will create a event for you. And just like before, the name

associated for debugging and diagnostic and other purposes, whereas body name just like

the case of process, there is a logic there that is associated here, is also that a we function

you can define. That will handle this particular event right. This is event handler that is

trigger. So, the action axiom will take handle while calling this particular function when

this event takes place and there are other flags associated with that. For now, simply

ignore. So, all I can do is I can like create the event and I can define the logic that will be

executed and when the particular event occurs this system. And then there are again lot

of other functions that are associated you know.

(Refer Slide Time: 13:06)

I create an event right, sometimes I want to reschedule the event for some other function

point in of time. So, let us take say, some other packet arrival then take place time that

then the time t equals to 10 seconds. That is when the event is triggered, so you have now

to schedule the packet. Now, you are going to transmit this packet and you know you are

going to get that acknowledgement back in 30 seconds right, 30 time units of for the

stimulation time. So, you would want to reschedule the same event to occur at some

future pointer point in of time. That is for event reschedule purposes. You know how to

desire do you decide? That is your part of the logic.

The whole purpose of the simulation program writer is that to understand behavior of

system and capture all the behavior using this event processor right. So, if u know that

you want the same event to occur red in a future point in time; like to birthday for

example time you know that 365 days later the same event has to reoccur again. So, you

can reschedule the particular event at future point at time. That is the base case right that

we, but all know that I have event that I can schedule, that can happen at some other

point in future. There are other more sophisticated things like based on semaphore right,

based on flags, like there are some other things like that which I think are not relevant to

the examples you’re we were going to look at, that we are going to look for more

sophisticated things.

(Refer Slide Time: 14:14)

And something special is called the event reschedule, based on the resources availability.

So, I talked about the resource being the server; so server has a queue associated with

that and the server is normally a single server. We can have multipliers servers also. So,

the single server associated that is sever (()) given queue.

So, when I schedule an event to be scheduled with respect to resources. So, this

resources with event will in the go and weight in the servers queue; and when it’s turn

arrives right, then what will happen; the server will handle all other packets or other

event that is in its queue and this particular event will be handled when ever gets to reach

sever or getting serviced Servest at the server. And little bit continues confusing no? you

We will look at the example, but the other function you will see, would the event

reschedule, the resources and other thing we will see what a script early on? There is on a

general thing called activity reschedule resources all. So, which is also available. So, the

same thing can be done, it can you can also use the activity schedule, event schedule,

process schedule and so on.

(Refer Slide Time: 15:18)

You can simply call the thing for generate generic all activity schedule time; the same

function, the same functionality as saw before, where the event in the process, we can

schedule that to happen in some future point point in time. For example, this case your

saying that, the I want this process to scheduled at 4.5 units in the future or we can also

schedule this activity based on a resource which particular on example is not there, this

starter.

(Refer Slide Time: 15:40)

When we come to our core we will see that. That is the basic of creating events and

creating processes. And we know that, know by action codes has punches of process that

would be running, each process contains some part of system logic right. For example,

get have an arrival process, departure process, CPU process, disk processors, all those

different processors each executing some core logic of the system. And in between, I can

through throw in a bunch of events that will created, that will get deleted as and when

went near it is needed in the system. That is the these are two main things much most of

which pretty much the code is know taken and care of.

And we can create severs from by ourselves, but we can write our notion of the sever we

know all node we know how to create a link list right. A sever basically queue or link list

stature right. There are five or more structure stature or some other more complicated

stature which want to right. So, you can create packet or add packet to queue and serves

service the queue the queue any how we add that you want. That is something we can do.

It offers all nodes, singly linked list, doubly linked list, even list stack queue whatever

you want to implement, they can implement, but action axiom gives you some set of

predefined queue stature structure that saves you has that hassle, because you because

maintaining pointers, all those things can always leave bulls bugs in the system. So, we

have no a special node notion of what our are called as queue as right. So, these are

queues are called resources. That is described the stature structure is called queue right.

(Refer Slide Time: 17:11)

Let us see. This is the resource. So, the resources action in the axiom consists of set of

queue and set of servers. And important what an activity can do at any event or process is

to request service time on a particular declare resource. So, the service time is to. So, you

need 4.5 units of service time on the particular resource. If it is the CPU time, for the

example, you want to use it for 20 milliseconds, the disk you want to use it for 500

milliseconds right. Whenever an activity makes the request for a resource and if resource

is free, then that all are the maintenance is done by the axiom action itself; if the resource

is free, it will utilize immediately service you. If the resource is currently is servicing in

some other activity, then some other packet whatever, then this packet will simply

queued in some later pit of service related point in the time. So, that implicit queuing is

done whenever you simply schedule an activity on a given resource. And then on all the

business of the queuing, de queuing, all that is transparently handled by action axiom

itself right. We do not have to see that. As to how that is getting that done.

(Refer Slide Time: 18:08)

So, let us see how to create resources. So, basically again, will like new event, new

process, we have something called new resource. New resource will simply create the

resource or some other parameter as before. So, the name of the resources again the for

diagnostic purpose what we will use that and then discipline, queue the queue discipline

we are used to; first in first out, but there are last lots of other discipline of last come first

out is there else so let us look at some of those queuing discipline.

(Refer Slide Time: 18:38)

So, first come, first out simply order of getting in to the queue, that is what is the that is

used full for. Removing packet from queue, last come first out, and then last come first

out, pre empty to the process right. And then you can do and then FCFS with preempty to

resume with priority, write right. And same thing as the sharing; some of you have the

done at the networking course might remember. It is your GPS, which comes from this

are or we can simply have the basic round robin scheduler.

(Refer Slide Time: 19:03)

 So, the round robin scheduler for the example of it you put 10 packets in queue and each

packet is called got hundred bytes right. And with round robin, you can simply say the

that each packet say, 10 byte is may the make a quantum or time slices.

So, there is the notion of the slice argument that are given; that have you to file. We also

have to specify in round robin u also specify the time quantum that going to use to be

every process execute for the particular sever.

(Refer Slide Time: 19:36)

So, that is what we specify. So, we specify the name, we specify the queuing discipline,

and also the number of severs. We called M M 1, M M 3, M M 5 and so on right. So, we

can specify the number of servers in axiom. It will automatically create that many

servers. But this is a the single queue right, there are no multiple queues, but one queue

in the system. And then but I can M M (()) system. Then slices is the basically it can be

round robin alone. We are have to specify what is time slice, the basic unit of schedule.

So, you can now create the a resources. So, we are now seen processes, we have seen

events, we can see resources, that is that we need. Everything else can come in.

(Refer Slide Time: 20:12)

So, event sometimes whatever be the schedule you are using, with similar using the

weather Omnet or whether it is the ns two; ultimately that is called is happening. You

create a bunch of logic and it is organized is term of modules. In for example, Omnet

derides the module of action ns two, you have write various objects in that are created,

ultimately underlying what happens is there are events scheduled; and this happens over

and over again, and finally you can stop the stimulation is at some point of in time.

So, the before the stimulation terminates, what do you we want to do? Want to measure

performance. So, whole idea running the stimulation this is which gives values of some

system. So, we need to measure performance matrices matrix. And performance matrices

matrix, we can do that all sources ourselves right and depending on the system. In case

of Opnet probably, you can have a whole bench bunch of performance matrices that it

you will have go and search right, depend dig up and find what they are. In the case of n

s two, you normally have trace file right; that the simply dumps everything into a round

large file, new script or script right, what the packet are; what the throughput also this is

done manually are or in all our case of we can choose to dump in what our values.

So, you keep on aggregating some statistic variables as go long. And we can just for

example, number of packets completed right, you can simplify count that. Count every

time packet is finished, to keep incrementing the count. And at the end of the time

system, we can say we delivered 10,000 packets, whatever 50,000 time units. Therefore,

throughput is point 5. So, that is something that the we can do. The axiom provides you

with a set of basic static record right, which little bit which help you. In some cases

mostly we write other our own statistic our routine also.

(Refer Slide Time: 21:51)

For example, we can initiate collection of statistics the for particular queue. So, the

resources we created above, we can ask the axiom of to keep track in various things

right, the amount of time, the busy, for the example, let us That is one thing, utilization of

sever right, row value; that we defined in M M 1 system. For example, you can keep, you

can ask the axiom to do that for you are or the service time for you, different packet. You

can just calculate name mean service time; you also calculate statistics in terms of

histogram right.

So, we you defined what your different number of bins are and write values of and then it

will keep atomically keep track those things. So, there are So, there very sophisticated

things you can do that. And decide besides the queue is alone right, u can directly gather

statistics for the queue queue collect, but you can we can also gather other statistics for

example, number packet are delivered or delayed of the particular packet right. All those

things you do with the help, notion of the statistic record that is the predefined in the

axiom. So, new static Statrec, that is the function that is available and here we can

specify right whether it interval point interval and interval, very where you want to write.

It computes number of samples, maximum value of the sample, minimum value of the

sample.

(Refer Slide Time: 22:57)

So, every time you transmit the packet, you will call the this new satiric Statrec.

Automatically, it will increment the number of the samples. It updates the max value,

min value right and mean value all of things are automatically taken it care of it. This is

the conveying convenient way of doing it. We are also doing it in different ways.

(Refer Slide Time: 23:19)

And so function, will call to every time you want to update the new value or update the

new value for the static collection is called as static update Statrec update collection

function, which will see in the example of as we go. So, now we have they are satiric set

of routines now we are everything in place. We have the process, events, queue all the

satiric statisitic records, then only one important thing is remaining and that is, and

actually running that stimulation, actually some out of the trigger stimulation. What we

look at the stimulation core code, you will see the raw definition here, all set of process

here, all set of events, all those get created here. But somewhere you have to give the

initial trigger right. It is like creation; somebody has come in and start that the first event

right to occur. Then the rest of events the will automatically start happening right. So,

that first event creation function is this handled with the help of a set of special function

which we will talk about.

(Refer Slide Time: 24:16)

So, basically called this is called stimulation driver right. Only when the stimulation

driver start executing do all the events has start scheduled and process has starts

scheduling and so on. And until then it is a static set of definition and nothing this is

really happening right. So, this is the main part of stimulation and that is actually

controlling all the sequencing events of all the activities of the system right.

(Refer Slide Time: 24:36)

And, the basic function that you would C see is the driver run. The driver will start the

stimulation to be get executing executed and specify the time line of how long you want

it to run. You can say, 10,000 second; again time is important. This is not micro second,

millisecond. This is simply stimulation time unit right. This is something which you have

to aware of. something And whenever, creating the system 100 m b ps links and so on;

you have to know how to translate that real time values into stimulation time values; and

again you can define the granularity of the clock in this particular one. It can be one

stimulation time is equal to 10 micro seconds or 10 milli or 10 seconds whatever. You

want define and based on that you can advance the clock internally create and delete.

So, this is the main thing. Once you call the driver run, it will keep running until and

unless it is interrupted. You can always interrupt using a special call called as driver

interrupt. So, early on you can interrupt right the existing stimulation, or it will simply

run to his million units or whatever, it will simply keep running. The most important

thing is stimulation is when to stop the stimulation right, whether 10,000 unit ok, 100

1000 units ok, we never really know. And each stimulation run can converge in a

different stimulation time. So, want we do is, we simply talked about terms and

termination condition right.

So what we do is we have 1 thing we talked about in the other lectures right, in theory

part other lecture we talk about terms and terminating conditions based on mean values

right and also lots of different condition that we have discussed. And trying to we find

out of is little bit of a challenge. So, mostly people just pop out and specify some large

value right. Whatever the guides says you simply follow that. If it says run million units

of time then you want to because it takes two and of days to finish the work. That is not

option right. You prepared 100 units of time, you get some samples and it get some you

are very happy; but unless you collect statistically large number of samples, but you

can’t get significant results. If you run 1000 time units, you may get about of 50 samples.

that There is no way near to get meaningful interpretation of the results.

So, running it for large number of samples is important, collection of how much time is

not as relevant as large number of samples how time samples you are collecting. not to

relevant has a number samples required Because if you are collecting sampling for delay

you need to know. For example, time you are trying to find out to bit error rate in a

particular system right or a packet draft drop rate in particular system right; and the

packet error rate is 10 to the power minus 6. Then you have run at least the a million

packet generation or packet completions before you can see the first packet drop. If

really you want to stop at 1000, then you would say that the packet drop rate is 0.

But, even for 10 to the power 6, you have at least 1000 times; 10 to the power 9

completions you have to get to make sure that he your packet drop rates are remaining

meaningful. So that, and those are also important condition right. And right now, most of

the time we just select a large enough number. But what we actually do is, we run it for

increasing units but it by increasing number run for 2 million units, 5 million units and

what you will find out what that compromise between the time taken, the real time taken

the for stimulation hand and the accuracy of the values. can be That you will find that the

out code is converging reasonably well, so you can stop the earlier.

In fact, it is the exterior extension to the axiom, called as the new Statrec, which is

actually called the driver auto of terminate, which I will go to that later on where can

related where we can automatically terminate the stimulation once at converge

conditions are attained. Again, we talked about termination conditions so those are again

actually programmed as the separate set of function. So, ideally what we can do is,

converge on delay. What I will we do is, If delay converge of delay if delay with every

500 samples that change the mean delay, the mean delay after the 9000 samples, after

10,000 samples is roughly he same; then simply you want to stop at 9000 samples the

right. You want special converge condition, you can define, assuming that the delay

converges right, then you want to, because you want to know running for one parameter

value you want the parameter value for 30 replications, 10 replication; that simply takes

time. And several combination of parameters values those have are finished M Tech

recently will know 8 number of replications, amount stimulation that takes place.

No Know those to working and on stimulation know, how long it takes to get the basic

result. That you take 10 times a day, 25 days for one data value, you have value hundred

parameter combination right it takes for even ever. And unit you need more machines,

then are you have to be claver clever to stop your termination as soon as your converge

takes place. So, that is something that is very important.

(Refer Slide Time: 29:02)

So, driver run 10.0 which means you can run the driver for the good point 10 unit of

time. So, that is the basic thing that will see. If you can reset the driver in between if you

want to. That means, you can the start again reset driver and start it again. The driver is

basically 0 round zeroed on or bringing down are stratification the statistics record to the

original sate and keep quiet going after that. So, that is, these are all the main functions

that you will have to require in order to execute the basic stimulation. So, before I

proceed, any question from the class? (()) It is important because you have to think

about the So, students who are hearing outside things about learning the outside right

And this is a very basic introduction. How does the stimulation time mentioned in the

driver run function appear in the real time Sir? That is something that you will have to do

the translation right. So, you you have to define one unit of time is equal to say, one

microsecond. So, that is something you will have to figure of right. So, that of translation

you have to do. And the unless we see an example you wont be able to do it. For

example, if you say, that the I am generating eight 30 packets, 30 million packets per

second right and correspondingly in that case you will have your…you will be

generating , that you will generating, just second as the basic unit of the time. Then your

will packet arrival rate, inter packet arrival time will be one over 30 million packets of

time, but if you want say that I am not able to make it. And you are going to generate one

second interval, you want to you can say that to convert time skill to one unit of the time

equal to 10 second or so if you desire decide to do the translation that way.

So, one stimulation time is equal to 10 second that then you will we translate your

correspond 30 million packet per second to time 3 million packet per stimulation packet

per second unit of time. Because you know, you are condensing the time scale that way

contains basic of time skill the page write, that is you will have to try to do that because

if you run into systems where we are talking about 1 gbps links and so on. Then what

happens is the number of packet that get generating generated is very, very large. And the

time between these packets is also very, very small and that leads to that is number of

events that is getting created and so on.

So that is, something you have to desire decides at what level of whatever absorption

abstraction is okay. Even though is your know system says 30 m b s, it will translate to 3

million packet per unit time. Is that sufficient to give that is that level of accuracy that

you are looking for? That is something end you will have to figure out after

experimenting and seeing if that is okay. And if at the end you translate that back to. So,

do we have to specify this on our code? you to Yes, you would have to specify it in your

code, the user parameters terms will be in the parameters of and make up our mega bits

per second. It is up to you say lambda says 30 millisecond, in your code you say one unit

of time is 10 second. Then in your the system will be stimulation the lambda will be the

original lambda is 30 m b s, because your having it on larger gross scale have and it will

be just 3 million packet per unit stimulation of time. So, that is on something that you

will have to program manually in the beginning of your system.

(Refer Slide Time: 32:10)

So, now, that is the this is basic. Now, let us look at the program right? IS it clear

enough? Here it is looking clear enough. You want me to zoom? We can zoom. Is that

better? I want the entire screen to show up. So, this the basic M M queue right. Whoever

has followed the lecture so far will know what the M M queue is all about right followed

You have exponential service time, exponential arrival process, poison arrival process.

And there is exactly one server in this particular system. So, how do we build the

models? So, you we have seen the theoretical vassals results for M M 1. We know the

that delay is one by mu minus lambda right. All those derivation we have seen. How do

be we validate that.

We have seen time that there are two days ways of validation; one is where theoretical

vassal results are known or none and one is validation with the help of stimulation with

real system. We can actually we build a system where the files people come and go and

actually pretend that they exponential service times and so on. It is easy actually these

days to do it a stimulation based verification. So, this the definition; l Packets arrive on

the system are based on the Poison system on the poison arrival process and then they

are queued arrive and at the server has So, the service time for the packet is exponential

right. And each packet will have exponential service time and we are exponentially

servicing packets is in first compression come, first serve mode right. It is simply FCFS

or F I F O right as we know that. And this system actually terminates based on two

properties; one is run, it will by simply run by maximum unit of time or we can simply

converge maximum early on by which I mentioned earlier on.

Looking at the reputation replication method, you can converge. At the time of converge

conversion, you start stop the stimulation. We will you not look at convergence initially,

converge you we will simply look at stimulation for large amount of time. That is the you

specify at that command line.

(Refer Slide Time: 34:02)

So, the basic thing to run this code is as in follows right. So, this is the executable remain

minus thing action header the axiom thing which says do not print some headers.

Otherwise your axiom prints some useless headers. And parameters are basically 4

parameters. This is the your lambda in your mm 1 for 1. So, this point 5 packets for unit

of time whether it this is second or whatever, we do not care. It is point 5 units of time.

Service rate or departure rate; this is mu, departure unit This is 1.0 packet per unit time

and if I set this to one, it means terminate using replication. are Or if I simply look at the

other way, last value will be ignored if where use the same way this to one or if I simply

look at the other way, same thing right. Point 5 is the arrival rate point, 1.5 is the

departure rate. If the third parameter will is set to 0, it means simply run the this for the

process specified command line. So, this is the basic way we are going to run this system

and it is off course and it is very easy to extend this to multiple servers which I will post

in the assignments later on.

Therefore, I will tell you how to write related on various set of programs. And initially

also, this particular information implementation can support finite buffers, infinite

buffers and all those variations are also possible. support in finite purpose And also we

can easily change this; the duty beauty of stimulation is that, if you want exaction the

exponential service time with and some other service time, it very simple. I just need the

random number generator to be implemented. And if you look at Raj Jain’s book, there

are ways of stimulating other kinds of variable, very straightforward. input there way of

stimulation And likewise arrival process also right. And sometimes you find that the

arrival process is neither Poisson nor exponential. other kind of random variables and

like base arrival process also right the sometimes you find the process arrival process

exponential In that case, look for, you can simply encode whatever that we you want.

So, that gives you more realistic view of the system it was realize of the basic time,. But

you always use the corresponding theoretical resources for mm 1. Because for mm 1 is

easy easier to get theoretical results for, significant code off course there is g g 1 for in

Raj Jain’s book, there is g1 there is mg1. is the All those results are system are available

and we find try to combine. And g g 1 right, combine system which is hard ware harder

to find. Those specific close formulations right; anyway this is basic program. You can,

you should right, try to play around with basic change of basic departure process, arrival

process, everything and see how a system can behave run for on time okay. And this is

been running for a long time.

(Refer Slide Time: 36:24)

So this is for, the only thing is unique program is in this axiom program, you need to

include this, m dot h. This is supplied by or specify supplied by the action axiom library.

The sim dot h is the only thing you have to include, is enough everything else is right

whatever our you want to do. And by default we create a stature structure, c info that

sources stores the start time in to and the finish time. And every time the customer

arrives, we give the customer, need id number, token number. We record the customer

time that the customer arrived and the time that at the customer finished. That is this

want is basically used to store here. Now, the arrival process and the customer; and so

this these are the functions that are there going be associated with two different activities.

So, the arrival process is going to be associated with the arrival process even that

processes is going to be created later related on and customer is simply another logic that

is going be associated with the departure event or departure process. So, this is the two

prototypes for your two functions. So, you have to simply and default by default it will

be voice void related on this function, corresponding to these functions.

(Refer Slide Time: 37:24)

The global variables, we need not use global variables. But sometimes in when you are

sharing data between processes, it is easy as easier to use global variables. But you

should remember that, when you rating writing a multi processor simulation and use

global variables you have to thing think about synchronization, global variables You

would need actually whenever a single variable is shared between the multiple

processors, you need remember holes semaphores or locks for synchronization purposes.

This probably thus does not have that but then other simplified complication that is to

simplify. Otherwise it is too complicated. Anytime, any particular variable is going to

updated by two different processes, you definitely need, the corresponding

synchronization process constraints. In the case, arrival rate or departure rate, both the

static values. They are not going to be changed. So, therefore we do not need that. Then

this resources is again the queue right, again the queue going to be the packets into this

particular system; the customer delay, the static variables and the Statrec. So this

customer delay is and statistic record that is going to this keep all the track of all the

packets that have been executed. So every departure process, we will record the delay

taken by the packet or customer in given variables. So, these are this are the four more

different variables that are primary necessary. So that is first part of the code this is write

there is first part definition.

(Refer Slide Time: 38:50)

Let us move on to user main. I mentioned that the user main is the starting point of action

program right because main is already defined in the axim in the axim definition. So,

there are some simply default values. So far max time is what never we normally use for

terminating number of stimulation has you to run. And max time we can update for what

we obtain from the command line. So, what we the arrival process is the process I am

going to create. These are the command line arguments we are to read. The first

argument is going to be arrival rate, second in is departure rate and so on. And max time

again a to f. So, that is your standard convergence of ASCII to float or integer ok.

(Refer Slide Time: 39:36)

So, this is very important right. The random minute, you need random variables. unique

Anytime you run the stimulation right you have to initialize the random variable, you

have to call this random variable and so on. Even if you are using you always called

SRAM or Srandom, you always call the Srandom. Because when you have multiple runs

of same time the same system, you want to make sure that right there are seeds. That

initially, the randomness, way of packets are generation generated or the (()) thus does

not affect of the behavior of the system. You want to make that randomness has no

significant impact on the system behaviour.

In fact, on system behavior that is why this random minute is there. There are also other

associated functions like Set stream is there. But we will not get into that. So, the

customer delay is the statistic record that you have will creator created. So, this is the

function called, New Statrec, the simply name when we use for debugging purpose or

diagnostic purpose. So, that is straight forward. Queue is again, my new resources. So,

resource function is called. So, I am creating the server, so the name of that is simply

server. Remember that, the scheduling discipling, the queuing discipline in FCFS, I am

creating it with only one sever.

And, the last parameter not relevant and this is the slice time that we saw earlier. That is

all, that I have a will single server running, FCFS schedule in discipline. Done, I also

collect statics on this queue based on the length on net work of the queue. This is

particular enqueue in terms of the links of the queue. When you compute that, this is

server utilization. What is the fraction of time the sever is being utilized. Actually, be

utilities in mm 1 we say row equals lambda by mu, but that is definition. I would actually

measure this utilization, how often is this sever to be being utilities utilized. You actually

measure that and you record that. And that this called valid is to validate that where

utilization that actually equals to lambda by new mu. That is what this is for. And then

this is your basic. So, the sever will is being created. One particular statistical record has

been created. Now, we come to the main point part of the code. The main part of the

code is creating the arrival process. So, remember we saw arrival process, so that is the

name of process; and this is the function that contains, the logic for this particular

process.

So, again this is only this the definition. If I simply live leave the arrival process in new

process; that will simply create a data structure called as the arrival process, the new

process. But you also have to schedule that. So, unless it is scheduled it is not going to

get executed. So, the scheduling is important. So, that is your activity in your schedule

time which simply takes the arrival point process pointer. And then 0.0 means that says

that this is going to start write right away. We schedule the process to start running write

right away. Independent is the parameter, which will skip for now. So, all that we away

say is we have all created the process, which will start running straight away. Then what

will happen? The system simulator will create the event at the time 0.0 which will, the

event or a process with the process will be created to start executing in the sequins time

0.0, and that will in turn run the code that is given in this particular purpose process, of

the arrival process.

(Refer Slide Time: 42:33)

Let us ignore the (()) method for the time being session and then all the day So, now that

all that I’ve wanted is now in place. all object of the day Now, the important point is to

get the stimulation run going and that is other driver run. So, the driver run max time,

and this max time if you I want to change it from the default value, I can specify max

time command line argument. Given, and so it will simply change that.

Now, what happens is, now look at the code, this this is it the right. I have created the

code, I have created the objects, I create the process. I have driver run access max time.

So, what happens is what happen after that driver run when it returns, it menas that the

stimulation of is finished. And it is not very obvious, but that is what is happening. At the

end of driver run, when the driver run returns it means that the stimulation is run for max

time units.

Then what will we do? We want to print out of all the statistics. So, I simply called stare

Statrec report for queue one because all the it has already been collected. it was static I

do a statrec report collect on the utilization on on customer delay and so on. This is not

needed for all the stimulation. I am using this to show how we can actually invoke these

particular things. And then we will then look at finally, how do we print, what do we ant

to be print. So, I am looking at customer delay right. There is default function is stare

Statrec mean customer delay. This will know, is not automatically compute the main for

you. So you do not have to go on figuring all the values as long as we have done the So

want as long as corresponding updates correctly. values So, this is what is going to

happen.

(Refer Slide Time: 43:55)

Then we try to do compression comparison between what the theory gives us, what is

does the theory say? The theory says that mm 1 departure delay is simply one over new

mu minus lambda; departure minus arrival rate right. We want are comparing what the

stimulation gives us at to the value given by at the theoretical formula. That is the first

statement here. This is e of t, the delay value. I can also measure e of n. Average number

of customers in the system also can be measured right. And what is that? This is simply

is one over sorry this is simply lambda divided by new mu minus lambda right, (())

formula remember?

Lambda into to delay gives you the number of customer. And and I can also get the

number of customers from the stimulation value stare Statrec mean value right. So, this

says, this is mean value right; is I am looking at link length of the queue. What is the

number of packets queued in that particular queue over time average. So, at every point,

every point 0 units of time I look at 0 the length and record that. So, that is why time

average link e of n value; this is E of n from stimulation; this is e of n from what

theoretical class studies derived in class earlier on. This is the way may be to compare

theory to practice. So, what is this stimulation giving you? What you are looking for?

(Refer Slide Time: 45:15)

Now, let us look at what are arrival process is going to do. So, arrival process is basically

a simple process. It is the endless loop. So, the arrival process is the process whose job is

to keep on reading generating packets for even ever until the stimulation terminates. So,

what we do is So, we the create the first process write right away. But we have special

notion of process delay. Remember, we talked about the process delay.

So, one what I do this is, I can delay the process. How long do I want to delay the

process? I want to delay it till the process next arrival time. So, inter arrival time of a

Poison arrival process is disturbed exponentially. We know some of that from our theory

right. So, if the arrival rate is lambda, if the departure sorry inter arrival time is

exponentially disturbed with parameters with one over lambda; that is again something

with is which we have covered in class right. Therefore, I want delay arrival process by a

random arrival of time. And the random the random randomness is defined by this

exponentially variable with parameter one over lambda. So, which been that, will with a

period of time 0.02 seconds, nothing is happening. There is no packet generating.

(Refer Slide Time: 46:21)

So, then actually now I am creating a packet and I the packet creation is given again an

event. So, now, I am using event examples here right. So, event is I am creating the

customers and I am associating this customer function to be executed whenever this

event finishing finishes. And I am filling customer id, start time. So, getsim time is a this

function defined in the axim and action tells you the current stimulation time, not current

time real stimulation time. This is the time when this packet was created and that is what

we are recording here. Then we activate Setarg, I am going to all skip that. It is the

statement and simply to associate with this data stature structure with this and then

particular event. And then So, later I want to retrieve this event, all that I want to, is So,

its simply stored in c some convenient place. So, we store this C info as a part of data

stature structure and associated with the event.

(Refer Slide Time: 47:09)

So, now, the event will be creator has been created. The as packet or customer has

arrived or the event get is now getting created, has been created. And what is next thing

do? It is to schedule this event. Where do I what is the schedule event? The schedule on

the server queue one that I created right. So, the service time again for this packet is

exponential and out of from our definition and we saw that the departure rate is mu right.

new Now, the service time one over mu is the parameter that is passed to this exponential

variable. Now, the service time is also going to be automatically exponentially generated.

Now, I know what the service time is; now I automatically schedule the event right to run

on queue one with service time which is this is the basically the length of the packet time

of service for the customer.

So, I am have created the this particular customer and I schedule the this particular

customer. Now, the queue one is empty; what happens? This particular customer will get

serviced right away. And the customer finishes the service at the time after the service

time for the particular customer is over, this customer function that we defined here that

is going to get called okay. That is be that is the basic idea. Again, as soon as this packet

is finishing the service, at the end of finishing the service, this event will actually take

place. So, I am creating an event that does not take place right away. I am simply putting

queue of the server. When the sever selects the event or this packet of for service, and

after that finishing service of the packet, at the time this event is actually said to occur

that is way of action how this axiom definition is…

So, at the time of occurrence of that event, you called the corresponding event handler

which is defined in this function called customer. So, this customer function will contain

all the things need for recording end the departure of the particular customer. All are our

statistics are complete when the customer with lead leaves the system right, entire (())

simply store storing the start time. Halt time, this is basic logic given in this arrival

process and then this goes on. The, what happen after this customer will is generator

generated? When is the next customer going to generator generated? Again, based on this

random inter arrival time. So, this is the loop that we have. So, every And this is every

inter arrival time is basically exponential distributor. So, you will be packets uppering

appearing in the system at periodically periodic points in time. They all get queued in

sever. That is all we try to do.

(Refer Slide Time: 49:35)

Then, what is the customer? The customer thing is very simple. In the info data stature

structure associated with the particular event, I store the finish time, which is basically

the time will that this packet finished service. That is given by GetSim time. So, again

this is actually then again something image this is something you have to imagine right.

This is not a sequential program. These are all things happening in different points in

time right. And At some future point in time, this packet will finish service. Therefore,

GetSim time some time will be the time when this packet has finished service. And then

simply apply update the customer delay, Statrec delay chat with update with info finish

time minus info start time. That is all. Wait is weight again ignored above. They are more

complicated. This simply says, the sample value for this new sample value is info finish

time minus info start time. The customer event terminates; the customer leaves the

system. Now, on the automatically, this is de queued from the server; all those things, we

do not have to worry about. All the packet has arrived, the packet has been queued, will

queue the packet as been serviced and we have only captured the departure services

statistics in this particular system. That is all. That is the main part of the code.

