
Performance Evaluation of Computer Systems

Prof. Krishna Moorthy Sivalingam

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture No. # 32

Balanced Job Bounds

Balanced Job Bounds.

(Refer Slide Time: 00:10)

We saw before those R of N bounds. R of N is greater or equal to D, but there is no real

lower bound, except when it is less than or equal to 1 over D max at… But, then what is

the corresponding bound on the other side? That is what was attempted to solve. Again,

this was back in the 80s with the help of this so-called balanced job bounds, which had a

flipped back quite a few pages.

What is the balanced job system? There is a definition for that. A system with technically

no bottleneck device, there is enough… where all the demands are equal. A system

where all demands are equal for all the devices is a balanced system. So, that is the

definition. So, all the D’s are equal; D is are equal. Therefore, there is no single

bottleneck device. Basically, all devices are bottlenecks. Whereas, if there is one device,

which has D max, then that tends to be one the dictates the throughput. Consider a

balanced system such that D i is equal to D by M. So, this is a system, where there is a

no terminals; only their c p u discs and so on. This is the central subsystem as you call.

So, let us not get look at. So, there are M devices in this queue; and, the total demand is

D. Remember, D was sigma D i. And therefore, D i equals D by M for all i.

(Refer Slide Time: 03:11)

Remember R i of N. So, R i of N is basically S i into 1 plus Q i of N minus 1. This is

from before, where in the ith queue, if there are N minus 1 customers already waiting,

then the demand that response time for the Nth job is just this one. So, since all the

queues are equal, that (()) Since all the demands are equal, their expectation is that all

the queue lines will be the same. So, Q i of N minus 1 is simply Q of N minus 1 by M;

where, Q of j is the total number of jobs in the central subsystem.

(Refer Slide Time: 05:03)

Now, R of N is summation R i of N into V i for i is equal to 1 to M. Write this we know

from before. This again we write this as summation V i into S i into 1 plus Q of N minus

1 by M; equal to summation D i into 1 plus Q of N minus 1 by M for i equal to 1 to M.

So, this is the R i – S i into 1 plus Q N minus 1 by M. And, V i S i is D i. So, that is that.

And, this is now equal to summation i equal to 1 to M; D i is defined as D by M. So, this

is D by M into 1 plus Q of N minus 1 by M. Since there is no need for i anymore here,

simply multiply this whole thing by M. So, this is D into 1 plus Q N minus 1 by M. This

is R of N. So, for a balanced system, R of N equals D into 1 plus Q N minus 1 divided by

N, which we can again expand this as D plus D by M into Q into N minus 1. That is step

1; long derivation. So, this is part 1 out of the four steps. So, this is fair enough.

Now, let us assume that… Here we have a shared system. There is a central subsystem

that is shared among these n users in the system.

(Refer Slide Time: 08:18)

Let us look at the system, where let each user have his or her own system. So, there is no

queuing as such here anymore; I am giving like a PC that is given to each of the n users

in the system; total of n users out of which I am giving each user their own system. So,

there is no queuing here. This is like zero-queuing system, because here everybody has

their own system. So, what is the total time spent? The user spends D times… Write D in

the central subsystem. This is the CPU plus disks. And then, Z in the terminal; where we

saw that D is the total demand by any job on the entire system. Therefore, D in a (())

Therefore, if you look at this, each user has a probability of being in the central

subsystem that is equal to… So, it is a probability that given user will be in the central

subsystem. Either you are in the central subsystem running the computation or you are in

the terminal subsystem, where you are simply processing and idling.

What is the probability? D by D plus Z. That is the probability (Refer Slide Time: 10:12).

Total time is D here, Z there. Therefore, given probability is just that. Then, if you look

at our original definition, we have a system with N users; out of which, some of the users

are in the central subsystem; others are in the terminal subsystem. So, the total number of

users in the central subsystem is given by Q of N. Q of N is the sum of all the device

queues. Therefore, the total number of users in the central queue would basically for

processing either disk or CPU is Q of N.

(Refer Slide Time: 10:48)

Now, Q of N by N; out of the N users, queue of N are in the central subsystem; the others

are in the terminals, where there is no processing; simply the delay center. So, Q of N by

N represents what? Probably that user is in the central subsystem. Out of the N users,

queue of N are in the central subsystem, the remaining are in the terminal subsystem. So,

Q N by N is the probability that the job is in the central subsystem in the original shared

system. In the original system, Q of N by N is the probability that the given job will be in

the central subsystem. So, which should be more? This one or that one? This is the

probability. And, you have nobody else sharing your system. So, the probability for

queuing will be more in the other system. The probability that…

Here there is no queuing at all (Refer Slide Time: 12:10). This is therefore, Q N by N

should be greater than or equal to D by D plus Z. So, one system with queuing; one

system without any queuing. And therefore, this should be the lower bound. We have to

be at least as large as that depending on the value of N. If N is very small, N equals 1,

then there is (()) queuing in the system too. If N becomes larger, then the probability that

you going to be Q is larger. Therefore, the probability of being in the central subsystem is

greater than the probability that you will have in a system, where you have your own

unique system assigned to you. So, that is a part a.

(Refer Slide Time: 13:05)

Then, will go to part b. Now, we say that instead of every user having their own system,

they still have the same system, but it is N times slower than the original system. So, the

capacity of this new system… This is one kind of system. This gives you this bound. We

will look at a different kind of system, where every user has their own individual system.

But, that is N times slower. Therefore, the effective capacity is same as the original

system.

Let each (Refer Slide Time: 13:35) user have his or her own system that is N times

slower; which means each device service time S of i is going to be N S i in the new

system. That is what it means by being N times slower. If I had S i service unit, S i

service time in a particular device in the original system, then in the new system, I have

N into S i as the service time. That is what I mean. Therefore, what happens if D i is now

N into S i into V i? Therefore, all the D i’s become multiplied by a factor of N. So, D i

dash becomes N into D i in this new system, because each device is N times slower. And

therefore, S i is also lower. But, V i’s does not change; the number of (()) to every device

is the same. Therefore, it should be N times D i. The total time taken to process will be N

times the original time. That is what (()) Therefore, time in the CSS equals N into D.

What is the probability that a job will be in (Refer Slide Time: 15:16) the central

subsystem is N D by N D plus Z? N D is time spent in the central subsystem; Z for

terminal processing. Therefore, this is another bound for the same probability of finding

job in the central subsystem compared to the original subsystem. For Q N by N in the

original system, will this be more or less than that? This is N times slower system;

whereas, that is N times faster.

(Refer Slide Time: 16:11)

Therefore, this should be less than or equal to ND by ND plus Z, because the system is N

times slower. But, there is only one user in the system at a given point of time. Other

system is N times faster, but you will have in the worst case, all N users in the particular

system. Therefore, this should be the other end of the bound. Therefore, combining these

two fellows, we have D by D plus Z less than or equal to Q of N by N less than or equal

to ND by ND plus Z. So, for a balanced system, this is one step. You have some more

steps here. So, we will now write the same thing with N minus 1.

Replace (Refer Slide Time: 17:05) N by N minus 1. What do you have? D by D plus Z is

less than or equal to Q N minus 1 by N minus 1 less than or equal to N minus 1 divided

by N minus 1 into D plus Z. That change.

(Refer Slide Time: 17:54)

Then, we will multiply this entire expression by N minus 1. So, what we will have? N

minus 1 into D divided by D plus Z is less than or equal to Q N minus 1, which is less

than or equal to N minus 1 into N minus 1 into D divided by N minus 1 into D plus Z.

Here we multiply by N minus 1. Now, you add D and multiply by D by M. So, multiply

first everything by D by M; then, simply add D for this entire expression. So, what do we

have? This is D by D by M into N minus 1 into D divided by D plus Z. This is less than

or equal to D plus D by M into Q N minus 1 less than or equal to D plus D by M N

minus 1 into N minus 1 into D divided by N minus 1 into D plus Z; just routine algebraic

manipulations. So, multiply by D by M first everywhere; then, add D to both sides. So,

what do you get know? So, what is this expression finally? R of N. So, that is what we

wanted to get to. So, for a balanced system, R of N is given by this (()) where all the

demands are equal. And therefore, all the queue lengths are equal. So, for this system, it

is given by this expression. That is step one.

Now, we have to do two more experiments to finally come to the bounds that we want

for an unbalanced system. For a balanced system, this is good enough. Then, two more ((

)) strips later will come with some better bounds. In fact, you will find that the bounds

are actually really much stronger compared to what we saw before. So, I am not sure

how much enthu you have for knowing those bounds, but we will anyway proceed with

those bounds. But, it will be useful at some point in time when somebody says, here is a

queuing network; just give me the bounds; I do not care about running these MVA and all

that stuff; just tell me what the bounds are; give me better bounds. In that case, you can

simply just run this formula in two seconds and tell them these are the bounds. That is

enough; exact values are not needed; just upper lower bound, which is fairly close to the

actual…

After all this computation that we do with x n and all that, we do not have to do that if I

can actually use this. That is the reason for going through this. We did all these

calculations and finally found that it will give you a fairly narrow set of bounds, which is

adequate in most cases. If you are talking to your customer, customer says, tell me what

will be the delay for this particular system. You are going to sell them your web

processing system from transaction processing system. And then, that they says, there

was so many steps in the transaction; give me bounds on this performance. And then, you

do not have to go – let me write my axiom code and come back to you in three days from

now. You do not have to do that. Or, let me check my spread sheet to do this MVA

calculation and come back to you. We can take this as a shortcut and get back to you.

That is the reason for going through this.

We will stop here; come back and then use these two stages of the expression that give

better delays or better bounds for both R of N and then X of N.

