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Continuous time Markov chain and queuing theory-I

So we stopped with the discrete time, Markov chain. The next part is our continuous

time, Markov chains, right. So, again, I will just give the highlights of it, and then I will

go along to the queuing theory; that is where we should have been last week itself.

(Refer Slide Time: 00:39)

So continuous time, Markov chain; again, the state space is finite, right, or it is discrete

and  go to  infinity,  but  with  discrete  set  of  values,  right.  And the  time  parameter  is

continuous, right. So the transition from one state to another can take place at any time;

that is the basic definition right. Whereas in the case of discrete time Markov chain the

transition was only at specified time ticks, time instance.

So the class, the standard definition of Markov chains again applies. The probability that

you are at a current state, and the probability of going into the next state, that depends

upon the current state and not any other past states, right. So or the past time... So the



future is dependent only on the present and not on the past;  that is again the classic

definition for that, right.

(Refer Slide Time: 02:14)

So if you want to represent this; it is basically this variable - x, right.. So x is the state

ofthe system at time t and that can… right.. So that represents your Markov chain; the t is

continuous.

Then, we talk about transition probabilities. So we used that last time, right. So here, we

will again define transition probabilities first, but we will find that it is more useful to

operate with something else. So this is probability or p i j in terms of v and t, where v

and t are time units, right. That is, what is the probability that x of t equals j, given that x

of v equals i.So time v i was in state i, and time j or time t now will be in state j,and this

is for and even equal to is also, right.

So again, we talk about the instantaneous probability of transmission from one state to

another  state.  So,  the  Markov  chain  is  fully  defined  by,  given  Markov  chain,  this

characterized by the initial state; in other words, the p M f of… So, the t naught is the

initial time and that time what is the probability that x will take any one of these umpteen

values, right.. So, that is the p M f, because x is the discrete set, right. So, state set is

finite or countable. So, that defines, that is one part of the definition as to what will be

the initial distribution for the system to be in one of those various states, and the second,

is of course,our p i j’s. Since I do not know how to change that, I will leave it.



So the book has some more other definitions, but time homogenous and all that; I will

simply skip that. I just want to get to this so-called q matrix. You have heard of the q

matrix - the infinitesimal  generated matrix.  I  will  just  generate  the matrix  over here.

((Audio  not  clear))  So  in  the  case  of  discrete  system,  we  talked  about  transition

probabilities; that made sense, right.. But in the case of continuous time space, we would,

we actually, we would like to get the rates - the transition rates - of going from one state

to another state. So, the rate is simply defined as the differential, right..

(Refer Slide Time: 05:49)

So we define for i not equal to j; so that is the differential or partial differential of the

transition function with respect to t and then evaluated atv equal to t.So this q i j  is

referred to as a transition rate.

(No audio from 06:20 to 6:41 min)

Then, we will define a time t, right. This q t, which is….

(No audio from 06:48 to 7:02 min)

For i equals j there is slightly different definition, but I will not go much into that. So, we

know the state offrom one state to another state what is the probability, but there is also a

small probability will stay in the same state, right. That is looking at this very tiny instant

t plus h, right h is very, very small h approaching 0,there is still a probability that it will

still stay in the same state.



So the only condition that in this particular matrix that we have to observe is that…

(No audio from 07:38 to 7:50 min)

So from a given state,  right,the sum of all  the transitions rates shouldequal 0, which

means the probability of staying in the same state will actually be negative or the rate for

the staying in the same state will be negative; we will see,we can actually derive when

we look at the  birth-deathprocess later on,butfor now the q iwill be all negative, right,

alongin this matrix.The diagonal elements will be all negative;there athat is the rate of

staying in the same state will be negative, such that, if I take a row, and sum at all the

values, it will end up being 0, right..Because is a rate of transition from one….In the case

of probability it adds up to 1, in the case of rate it is going to add up to 0; that is your

basic balancing equation.

(No audio from 08:29 to 8:48 min)

(Refer Slide Time: 08:49)

And then, for this the theorem that we will look at by itself. Again, I am using the term

irreducible without the full definition.So what I am interested in is, for this continuous

time  Markov  chain,given  the  transition  probabilitiesfrom  which  you  can  derive  the

transition rates, whatis the probability of being ina given state at time t equals to infinity,

right, what is the steady state probability of being in a given state.So that is again defined

by….



Sopij is the probability, is the steady state probability, of being in state j, right..

(No Audio from 9:40 to 9:48 min)

Technically, at every instant of time, this probability will change,but at time approaching

infinity this reachessteady state, so there is going to be no variation, right. So this is the

steady state probability just we calculated for the discrete D t M c’s right. So this p j’s

will always exist, and this is for….

(No Audio from 10:04 to 10:42 min)

So how do we determine this i j’s? We had in the other case pi into p equals oh sorry v

into p was equals to v, right. That is the steady state probability in the case of D t M c,

because  there  we  used  the  transition  probabilities.  Here  we  are  using  thisgenerator

matrix; so pi of pi into q, where pi is your vector, right.. And so on… and so pi is 

(No Audio from 11:00 to 11:22 min) the pi is changing….

So that is the normalizing, right..(( )).So steady state probability should sum upto 1; this

is the probabilities,and so I basically need to solve this equation.Just like we solved the

other case, pi vv p equals v, here we simply solve pi q equals….Again,I am skipping all

that. I am sorry; that is actually 0 and again if you are keen on the derivation, you can

actually go through that, this book here; I am bypassing all that. I just want to get to the

fact that if give you a Markov here, continuous time Markov chain, then I give you the

transition rates of probabilities, then from that we can construct this q matrix and then

bring over here.And then, if you can solve this and if you have solution for this, for this

particular  equation,  then you have your steady state probabilities  for a given system,

from which you can derive lots of other things, right. So this is what you want to do.

(Audio not clear from 12:19 to 12:33 min)

Which one? Which one?



(Refer Slide Time: 12:41)

Yes, so if you look at the steady state probability, because if you….

(No audio from 12:38 to 12:45 min)

So this is pi 1, pi 2, and so on, right right And this is let say q 11. So this is… and then

this is probability of going from state 2 to state 1 and so on up to state n, right.

So this will be your, the rates of transitioning from…. See pi2 into q 21 is the probability

between this state and the rate which it will transition into this state, right. So the sum of

transitioning from all these states.So let ussee where it is? I have a separate equation for

the time. Without the equation, you cannot get the expression. This is….

(No Audio from 13:34 to 13:48 min)

So given state j,  right, the rate of transitioning to this state from all  the other states,

right.So pi represents state of being in state i, q i j is the rate of transition from that state

to this state j.So the summation of all those states should equal the probability of staying

in thesame state, which is actuallyI am not defined it.This is pi i q ithat i is equal to j.So

that is again a balance equation;let us say that it is the rate of which… when you are in a

given state, right, the rate of entering the state, the rate of leaving the state is going to be

the same.And the rate of entry depends upon the probabilities of being in the different

states, and transition with this particular state, right;that is what this is trying to tell you;

makes sense.



Sir q i’sare actually not…

Sorry this is q jit…so what happens?

Q’sdependent right…

(Audio not clear 14:45 to 14:50 min)

This q’s will  be time dependent;  we assume it  time homogeneous,  and then a lot  of

assumptions I am skipping there.So if it is the case that is the time homogeneous system

where at  when, when…it  is,  it  is  time dependent  yes,butif  it  is,  then we say thatthe

system stabilizes aftersome long time, then this holds good,but it need not happen.In fact,

the more general equation would D pi of by D t equals q of t.This is if you are keen, if

you do not want to, if you do not want to no this, do not know this, but this will be

essentially.

(Refer Slide Time: 15:33)

So this is actual equation out of which, if pi f k stabilizes, right, to some steady state,

then D pi by D tgoes to 0, right.. So the trade oftransition of the… there is no more

change, right, when pi becomes constant.So that is why pi q becomes0,butthis  is the

actual equation, which we simply skipped, because we are mostly interested in steady

state.

(Audio not clear from 16:05 to 16:12 min)



For the irreducible or for irreducible or did I skip some condition?

Actually, it  says  if…yes  this… that  is  the short  proof  for  that,  but  that  is… if  it  is

irreducible, then that is what they will claim. I have to go back look at the proof for that,

right. But intuition for that is…. For now, we are just assuming that if the, if you can get

from any state any state, you understand that the irreducible definition is that you have a

set of communicating states, right, which you cannot reduce any further. All states you

can reach to any state, from any state you can go to any other state with some non-zero

probability after some infinite amount of time or some long time in that case claims that

it is a (( )).I am sorry…

 q equal to pi x…

But q is independent…

Pi q equal to 0.

Yes, Yes.

But q is time dependent

So that is what I am saying, if it is steady state, then we are saying that the pi changes

will not be there and the q also will not change with respect to time. Again if it is a time

homogeneous system, we actually look at more in terms of the time intervals than the

times the time itself; the system change, the probability of going from one state another

state, this p i j we take v t will depend upon the difference between v and t than actual t

itself, right. That is called thetime, again that I have skipped all those definition for the

sake of not defusing a further, but for time homogeneous system these things will apply.

If it is time homogeneous, where the transition probability and rate depends only on the

interval elapsed, right,then, then these thing will hold good, because most of the systems

we  look  at,  sort  of  meet  this  conditions,  we  are  generally  side  stepping  all  those

definitions, because we want just get to the main research.

(No audio from 18:03 to 18:19 min)

That is the first first….



So if you want to solve the….So we have now D t M c for which we can solve that

equation, right. v into i minus p or p minus i equal to 0i or this one, right..pi q equals to

0.

So one of thesetwo we will  have to solve for pretty  much each of these systems.So

besides  this  Markov  continuous  time  and  discreet  time,  then  there  is  also,  in  again

continuous time Markov chain,the other definition which is that the amount of time spent

in every state is exponential, right. Because now if I look at my system state, we will

look at m, n and q, right, to begin with; so then some of these things will….

So now let us actually get into some queuing models.

(Refer Slide Time: 19:02)

So now, we are getting into the queuingtheory.Then I come up with M M1 q, these things

will sort of make sense at that time, as to why each state the time spent is exponential,

because in the discreet D t M c as I said, the time spent is geometric with probability that

p i as what we defined.Likewise here the same thing will apply; the time spent in each

state in a continuous stay Markov chain is going to be exponential;and the exponential

parameter will we will see how we can derive thatas we will along. It will depend upon

simply that q i i the probability the rate of staying in the same state; that is what will

define the parameter for the exponential time spent in a given state.



Now we are going to do a slightly quantum leap to queuing theory all of a sudden. So

queue we will have define some basic concepts here.

So queue is simply represented by buffer and a server, right. So you have a few things:

one is the arrival process; so that is… so a queue is characterized by whole bunch of

things.  So  one  is  the  arrival  process,  and  then  the  second  is  the  buffer  capacity.

Sometimes  we  talk  buffered  capacity,  sometimes  we  talk  system  capacity;  system

capacity the total number of customers in the system, right, including once being queued

and the one that is in service that is also refer to system

So if you look at a bank teller, then including the guy who was serviced we will say total

capacity of each queue is 5, right. So then, this, as far as the server is concerned, we can

classify the system in terms of the number of servers, right. It can be more than one, and

for every customer what is the service time, right. So we need to define the service time

distribution.So what is  the service time for per customer, right.  That  can be either  a

constant or a totally random or it could be exponential or some other, right.. We are get

high exponential something of that nature; we do not know this stage.

Then also, one other characterization would be the scheduling discipline, right. Usually

we assume FIFO, but there are results for some other specialized scheduling disciplines

also.

(No audio from 21:34 to 21:59 min)

Then there is one more characterization and that would be the total number of customers

allowed in the system, which is actually the buffer capacity, no, that is already there; then

we have service time distribution; there is one more, which I forgot.

(No audio from 22:20 to 22:43 min)

So besides that, there is also notion of population size, which is what I said. We will see

how that is going to make sense.

(No audio from 22:50 to 23:05 min)

When we get to this population size, we will seehow it is differentfrom the capacity of

the system.



Demands are coming from or request is coming from total people in system.

The total thing is total number of jobs in the system.For example, in a closed queuing

network,it is going to be finite, right. And so we might have a smaller capacity,butthat

that  no,  let  me  go back look  at  that;I  am not  able  to  intuitively,  right,  explain  that

population case again. For closed queuing, it makes sense; where as in this case, they

have buffer capacity, which tells me the total number of customers in the system. Besides

that having one more parametric size….

Numbers of servers are more; number of servers are more.

Numbers, that comes, that comes, in your number of capacity, the server capacity

Buffer plus people getting service states, is a population sets,something like that…

I will at those…. 

Including the ones that are getting serviced….

Including on service

Or is it that the things that entering queue or entering from this population or something

like that.

This if it is consider a system, you have a system buffer

Multiple regarding service time so this the total population it will…

Thetotal  population if  I  have a guess is  the total  set  of customers  that  can enter  the

system, out of which your queue can only hold some b plus m, number of buffers plus

the number of servers,but now let me find queue where the population size is actually

necessary, right, and then it will make sense.



(Refer Slide Time: 24:46)

So we have this so-called Kendall notation, right. So, it is arrival, service, some number

of servers, buffer capacity and then our….So this is for arrival, this is the service time,

this is the servers….

(No audio from 25:20 to 25:42 min)

So many times, you only will only see three of them; first three is the one that you will

normally see, because often we assume infinite buffers, especially theoretically analysis

we want to see asymptotic capacities for performances, delay, throughput, so on and so

forth. B is often set to infinity; K again is set to infinity, so it does not come into the

picture; and scheduling, if it is not specified, is simply FIFO - first come, first served,

right. So, for example, right. And then, we use M for memory less.So if arrival process is

Poisson, then, that is represented by M because it is Markov again, and this service time

is  also  exponential,  that  is  what  the  second  m  stands  for.  So  if  the  packets  arrive

according to a Poisson process and are serviced, the service time is exponential, then we

have an second (( )). And one is the number of service.So your set of classical queue is a

M M1 queue, right.

So we use the terms M is used for Markovian or memory less, and then we have, D for

deterministic.So  deterministic  is  when  you  have  fixed  length  packets.For  example,

service time is fixed, so that will be D or if your arrivals are uniformly spaced, right,

there  is  no  randomness;  you  have  every  5  seconds  apacket  arrives,  that  is  also



deterministic. So D d1 will be deterministic arrival deterministic service time, right. Let

us take, for example, if it is voice over, if it simply voice, voice sample gets a, generates

every 100 milliseconds. So, therefore, that is D and the packets are always 100 bytes

long, and therefore, you have fixed packets.So that is D d1 queue and sometimes we

simply call it general, g.

So you find combinations. M M1, M D 1, M G 1 - this are the things that will normally

we are interested in, because we can always pretend that thearrival is Poisson, and then

we have closed form results for a M M1, M G 1, and M D 1, that we always use as the

first cut analysis.Even if you do not no if it is v’s M G 1, we simply need to know the

mean and the standard deviation of the service times.If you can measure that over some

sampling, you can simply use that and plug that values into M G 1 queue to get that

delay results and so on. And G g1 is the worst case;your arrival is also unknown and

some general distribution is being followed and this service time is also some general

distribution.

(Refer Slide Time: 28:11)

So you are sort of family of would be say MM1, M D1, then we go for M G 1, right. And

then here again we have some additional flavors, where I might go for M MM is also

more interesting,  right..  Where we have looked at  M servers,  we saw some of these

results, only the results,right, in the networks class, and the special cases where… and

then or buffer, right..



So, MM 1… 

So from M M 1 B we can derive them M M B, right, all those various....We have M M 1,

so M M B where B is sort of unrelated to M,but this is special case where M equals the

number of customers in system equals to the number of servers, and of course, so GG

1.It is when your arrivals to…. goes to in a bank define that you find that…because you

can measure the mean and the standard deviation,but there is no particular process that it

is fitting into, right. And simply have those (( )). Likewise the service time also.Service

time,for  example,  if  looking at  a queue,  if  you look at  the packet  length distribution

nobody is, there is not necessarily exponential service time, right. There may be some

distribution is being observed and let us say only 10 different packet is possible, and for

each of those there is some histogram that is given to you. And that is a histogram and

that is we only measure it, that is about how you write over a one our period of finding

that, and so for that, simply use the D G 1 result in terms of the mean as for as the

standard  deviation  of  what  you  measuring.So  that  is  usually  when  you  have  set  of

samples and you cannot fit that to any particular distribution.

There is some other category, right, that has to go at the end. We cannot fit it in M D or

G, right. Now if I am able to,if am able to analyze the ….

Yes, if it is able to still analyze,but what we have usually is closed form for M and D. If it

is something else, like if it is hyper-exponential, then I will simply use again the mean

and the standard deviation if you compute that.So even if it is aknown distribution, but

closed form is usually available for one of these. I do not know of closed form for other

types of distributions, right. The classic ones are these. So, M G 1 could be, even if it is

N or some other known distribution, but for which you cannot get the close (( )) right..

So you just want to get the average distribution; you the mean is what you are interested

in,  but M M1, we can also find out other secondary parameters.  We can look at  the

service time, distribution or the yes, the delay distribution. We only calculate average

delay, right, but what is distribution of delay, that also you can define it in some cases;

other some cases it is not user defined.So it depends on whether first level, first order

metrics are (( )) or if you want to go into more detail, in terms what is a percentile of the

delay, right. What is the, what is the, what is the probability that 90 percent of packets



will have less than, right,100 second delay; those things are harder to define as other

distributions. So that’s our so basic classification of queues.

(No audio from 31:33 to 31:48 min)

(Refer Slide Time: 31:49)

So, now let us see what we can do in terms of analyzing M M 1 queue.

(No audio from 31:58 to 32:12min)

So in M M1 queue we needed figure out what will represent state of the system and what

are the transition probably the rates, right. Is it continuous time? Discreet time, what is

this like? So here, you have customers getting added to the queue and then customers

leaving this system, right. And so, therefore, we will use these terms; so lambda is the

parameter  for the Poisson arrival,  right.  So,  this  is  number of packets  that  come per

second. So, in general this is number of arrivals per second.

Then mu is the parameter for the… so we will assume that the process… this is again M

right; so, therefore, the service time is exponential; so this is exponential.

(No audio from 33:15 to 33:28 min)

So for an exponential distribution I used, we usedA before, because we did not want to

confuse; sometimes we also use lambda, lambda 1, so on, but from now on, it is going to

mu for this service; this is capacity of this server.So the mu for a queue will depend upon



two things, right.. One is the average time that this person, that each customer will need

in terms of whatever, packet size and things like that; it also depends upon the capacity

of the server, right, in terms of number of bits per second it can send; that is the simplest

way you can look at  it.  It  depends upon both things. Somebody would just see  their

case…So this will be departures per second, right, or service per second.So it is actually

not departure per second, but that is roughly we will call that, right. So this is the number

of customers…so we will not use that… serviced per second.So that lambda and mu are

both in same units, right. Something per second, so this is the rate, right. So this is the

arrival, right. This is departure or service, rate, right. That is what we will call this. So

this is the arrival rate; so this is the service rate.So the rate is basically the number of

customers it can handle per second.

So, some teller will be very fast, if that is only simply cash giving teller or if it is a DD

teller then more processing is needed there, therefore, there will be only three customers

per ten minutes or something like that, right. So that is simply capturing the capacity of

the system; the arrival right and the service rate, right,this is captured and there is only

one server in the system.

(Audio not clear from 35:18 to 35:26 min)

Where? yes, yes that is correct?

In this, we assume this only one server,so I am just looking at one particular say DD

counter is one counter,that is all we are looking at.When you look at themultiple contours

that we will have little bit of analogy. This is only a single counter that you are looking at

and we know this counter can handle x number of customersper second; that is all. 

Now for the, now to represent this as a Markov chain, right. Somehow we know Markov

chain; so everything is Markov chain, right. So what should be the state of the system?

What is the state and the queue 0? The number of customers; the number of customers,

we saw this earlier on, right. So, the number of customers in the system is the state. So

the state is discreet set. So, the possible states are 0, 1, 2, 3, with infinite queue, you can

go up to infinite customers in the system. Therefore, it is satisfies my Markov chain; well

at least the chain property, right. That set of state is finite or countable.



(Refer Slide Time: 36:33)

So then we start of with state 0, state 1, all these fellows we will draw and this goes on

up to some state iand then so on, right.

(No audio from 36:40 to 36:58 min)

Now, is this continuous time or discreet time? Only continuous time or can it be also

discrete time? 

I can also model

I can also model this as a discrete time system, where I take a verysmall interval delta t,

right. Then if I am in state 0, from any state to any state we will use something like what

we saw in that (( )) probability, right. So, I need to know what is probability of getting

one packet in some small delta t, right. So delta t is my time, they even call it t to be

simple, right.. So t is approaching 0. Then I can also model this as a discreet time. So

every t, where every one nano second we look at the system’s state, right. So, mostly it

will  be in the same state with some probability;  small  probability you will  have one

packet, right. And the probability of getting one packet, more than one packet, in this one

nanosecond is presumably very small, right.. If my lambda is the sufficiently small; if my

lambda is a million, then of course, taking it is a several packets in 1 nano second or 10

million.



So I can model it that way, right. As we have looked at the system, every nanosecond and

modulate  as a discreet  time process.  That,  then we can simply have to compute  this

transition  probabilities,  then  we  can  simply  solve,  right.  That  is  one  way  of  doing

that.Then we will try both; let see if this first, this second one; so that is one. The other is

to look at this as continuous time system, where at any point in time I can go from state 0

to state 1;so what is the time spent before the…. So then, we have to look at this whether

this Markov property holds or not, right..

So what is the distribution for the time spent in a given state? Let us just look at state 0;

there is no customer, right. So I am looking at the time required to go to state 1, right.

There is some, there is what is that inter-arrival time, right.  There is simply interest,

when to go from one state  to another  state,  the time is  simply the inter  arrival  time

between such subsequent customers a packet. We know that the source, the arrival packet

is Poisson, and we know the relationship that if it is a Poisson arrival, the inter arrival

time between, right, two consider arrivals is exponential with parameter lambda, right.

So, therefore, this state 0, I can… so this basically a continuous time. If you look at

thiscontinuous  time system,  the  amount  of  time  spent  in  state  0  is  exponential  with

parameter lambda.So that is one part of the story that we have so, right.

So now, here, actually, we will find it easier to define the transition rate. What is the rate

at which I will go from state 0 to state 1? I can simply say lambda, but we have to do

some justification for that, right.. So the rate of transitioning from state 0 to state 1 is

simply defined by the arrival rate, right. So with rate lambda I will be going from state 0

to state 1. We can later on derive the discreet (( )), probably it will a little more intuitive,

but let us look at this, right.. So here, I am looking at a system where I go from state 0 to

state from 1 with probability lambda. Likewise, in state 1, I am servicing a customer,

right. The service time is exponential. So the amount of time I will spend in the same

state is simply exponential. So, if any time I can simply go back to saying that I have

finished, the customer has finished service and I switch over to state 0 with rate mu.

So why do you call this the rate? Because….actually for that I should go back to the

definition. But, if you look at it, the number of customers, right, no, actually this should

be the probability, fine; next time I will try to work out theprobability, right.. 

The rate of arrivals is the rate at which the lambda arrives?



The rate  at  which,  yes,  lambda is  rate  of  arrivals  ((  )); the rate  of  ((  ));  the rate  of

transition from one to the other it is simply is lambda (( )). So for now we will just…. So

to go from here to here, again it is lambda; from here to here, it is lambda. So, now this is

your simple birth-death process. So to go from one state, you only go to neighboring

states, always, because there very right. Because only one arrival that will come, right.

So one arrival comes, you go to the next state.And the rate at which anarrival comes is

defined by this parameter lambda, right. And likewise, you will go from 5 customers in

the system to 4 customers, when one customer finishes service, and the rate of finishing

the service is simply the service rate of this system, right. So, with rate mu you will go to

neighboring, to theone state below.So this is…

So,but unlike the example that we saw for the D t M c birth-death process, there is no

self-loop in this particular case, right.. Why is there is no self-loop?

Rate is not 0…

Probability is not 0.

Rate…

Rate is not 0; rate is not 0; the rate summation of all the rates is going to be 0. So I am

not  showing  the  self-loop,  because  that  is  implicit  in  the  definition  that  this  is  a

discreet.So the itspins a certain amount of time in a given state with the particular rate,

right. And that we will see how we can actually get that.

So this is quite basic like, right, rate equation. So if I were to look at this matrix, right. So

I will, from 0 to 1 at this lambda, this will be minus lambda, everything else is 0. This I

am simply using that this  is the row elements,  right.  The rows of the or the sum of

elements in a row will add up to 0. So, the rate of transitioning from 0 to 0 is given by to

minus lambda. So, the rate of staying in the same state is minus lambda. The rate of

going to the next state is 1. So, from 1 to 0 I will go with rate mu; 1 to 2 I will go with

rate lambda. So, what is the probability of staying in the same state is?

(Audio not clear 43:24 to 43:42 min)

Now, this lambda plus mu, right. So this is of course, intuitively same; same, makes

sense, because the rate of being in a state, right. The transition rate should all add up



to0,but this, this lambda plus we have some other significance also.Other than simply say

- I know this lambda means this,therefore, it adds up to 0; therefore, I am choosing my

mid element to the minus lambda plus mu.

So let us look at this state 2.State 2, I have two processes happening - either an arrival

comes,therefore I go to state 3 ora departure takes place,therefore I go to state 1. And

these  are  both  exponential  processes,  right.  This  is  with  parameter  lambda;  this  is

parameter mu.So I will leave the state 2, when the min of is the, right, at the when first of

these two events takes place,I will go to the,I will leave this state, which ever state I go

to, lambda plus mu is, right, lambda mu, or right,so I am going to either this state or that

state  respectively.  So  if  you  remember  the  tutorial,  right,  min  of  two  exponential

variables, we worked it about two weeks ago, right. So if x equals exponential or x 1 is

exponential with rate lambda 1, x 2 is exponential with lambda 2, right..

(Refer Slide Time: 45:03)

So we saw this one. If I have two such variables, right, so two events taking place, and if

I define x to be the min of x 1 and x 2, right, so what was x? Actually the… we show it is

also exponential with rate lambda 1 plus lambda 2, right.. So that is what…that is why

here,  so  actually  the  rate  of  leaving  this  state  or  staying  in  the  state,  isthe  rate  of

departing is the lambda (( )); therefore, therate of staying is simply minus lambda plus

mu, right.. So with rate lambda plus mu, I will either go to one of those states with that;

that is what these arrows indicate, right. And therefore, because I am talking of a rate,



rate of staying will be simply negative of that. So same, just like the case here, right.

Lambda minus lambda equal to 0.

(No audio from 46:29 to 46:39 min)

So now, this is my queue, right. So, assuming that steady state probabilities will exist for

this particular system,I can try to solve my pi Q equal to 0, right..

(Refer Slide Time: 46:48)

So basically I will say pi naught, actually, it should be…technically speaking it should

befinite matrix,but with assume it is somehow finite.

((No audio from47:07 to 47:37 min))

I am sorry, which one?

If assume a finite …

Finite last one will (( )); last one will be simply…

Mu

Mu lambda minus one.

So just to be consistent with the book’s definition we will use from now on, right, that

Iwant to use that let p i, be the steady state probability of being in state i.



((No audio from: 48:03 to 48:13 min))

So, if I simply multiply thatmatrix and you start, right,you will see a bunch of equations

popping out; one for each state, you will have an equation that is popping out, right. So,

what is the equation for thefirst state?

(Refer Slide Time: 48:30)

So for the first state, this is p naught,0 up to 1; so this is mu, right. And then 0, mu, so

on.This equals 0, right. So what is the… so from the… for taking this… first step of

multiplication would be minus lambda p naught plus mu p 1 equals 0. So, this is your

first so-called balance equations, right. So you… this is basically telling you that the rate

should always sum up to be 0.

Therefore, mu p 1 equals lambda p naught p 1equals… right. Now, of course, if we do

some definition, which we kind of skipped in the beginning. So we will let, right, rho

equals lambda by mu and rho is less than 1. So your arrival should always be less than

the service; otherwise, what will happen to this system? If just lambda is larger than mu,

then you will… all then  for along time you will never come back to the steady state,

right..  You will  always be approaching infinity;  there will always be more customers

arriving; you will simply keep jumping to the future, to higher state, and that you should

never come back to a steady state.So you will always have infinite queue, right. Infinitely

large queue and the probability of being in any state is going be essentially0. So that this



condition is needed.So my first equation gave me this balance form, right. My second

equation.

(No Audio from 50:56 to 51:16 min)

So this is my second balance equation.

(Refer Slide Time: 51:02)

So, what is this? So,

lambda p naught is  also

equal  to  minus mu  p1,

right.  We  saw that last

time  or  equal  to p  mu p

1;  so,  this  is  mu into p 1

minus.

Therefore,  mu  p 2

equals lambda; p 1 p 2 equals….


