
Performance evaluation of computer systems

Prof. Krishna Moorthy Sivalingam

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture No. # 10

Markov Chain

 (Refer Slide Time: 00:11)

In  general,  what  is  a  Markov  chain?  So,  we said  a  Markov  process  is  a  stochastic

process. So, what is a Markov chain? It is basically a Markov process with the (No audio

from 00:24 to 00:34) discrete set of states. So, when you have a discrete set of states, so

number of customer that is a discrete set countably in in finite, but countably infinite. So,

that is what is called as a Markov chain technically. So, this is on the state space right;

state space has to be discrete for something to be called a Markov chain, but your time

can be continuous or discrete.

So, we have two options, discrete time Markov chain or you can have continuous time.

By time, again I generally mean the parameter, discrete parameter or continuous speed

parameter, I flip my definition CTMC.



So far, we looked at these two classes, and see how we can given a system that can be

expressed as a DTMC or a CTMC, what kind of properties, what kind of performance

evaluation properties can be derived from the system; that is where, we are trying to

evolve towards. So, as a simple example of the discrete time Markov chain system right,

so if I am measuring let say q right of a system at every time instance a, t is some 1

micro second.

(Refer Slide Time: 02:18)

So, every micro second that is micro second, we measure the number of customer’s right

in the system. So, therefore, at time 0 right how do we do this, wait a minute. (No audio

from 02:57 to 03:07) So, now here we look this is going to represent the states of system

as such then, we start talking about probabilities of the system right. So, this is the state

space right.

And then given that, I am in state 0 at whatever time right, this is now time is setoff now

what  is  the probability  that  will  go to state 1? What the probability  I  will  have one

customer at the next time instance? I am only looking at every time instant I am sorry.

(( ))

Number of customer is a parameter. Now, I am trying to represent the system using this

Markov chain, where I start talking about probabilities now. What is the probability of

going from 0 to 1 right? Given that, I was in state 0 at whatever point in time, what is the



probability I will go to state 1, I could also directly go to state 2 right. If I started off with

no customers and in 1 micro seconds, 2 customers arrived then I have probably have

right I will be going to systems with state 2 customers in the system right. So, like this

you will start representing a Markov chain in terms of these transition probabilities.

So, from 1 I could go to 0 right, from 1 I could go to 2, from 1 I could go to 3 and so on,

and so forth. (No audio from 04:15 to 04:28) And you can also have self-loops in system

itself with some you know non-zero probability will continue to stay in the system and so

on.

(( ))

You might have no customers arriving.

(( ))

No no from I am currently in the system let us say your sometime instant t naught you

have 0 customer; then your next instant is 1 micro second later you are looking at the

state of the system at that time.

(( ))

Yeah yeah

So,  every  time  instant  I  am looking  at  the  probability  of  shifting  from one state  to

different state. So, here I am so the system state is measured at every time at every micro

second. So, it is possible that no packets arrived in 1 micro second; therefore, stay back

in arrival. So, in each of the state, if no packet arrives I would stay in the same state or if

there is a packet completion then, I will go from this 1 state to 0 states. If there was 1

customer in the system and then the customer has been serviced in is departed then we

got back you go to state 0 and likewise in each of these cases you will have those right

reverse (No audio from 05:34 to 05:43) ok.

So, now we start talking about the so called rate state transition probabilities. So, we now

need to define from right what is a probability of going from state i to state j right in

certain number of steps will get to that. This is essentially your state (no audio from

06:19 to 06:43).



(Refer Slide Time: 06:47)

So, let us first prepare this discrete time, DTMC for some definitions of derivations. So,

the  parameter  space  we  are  denoting  as  (no  audio  from  07:03  to  07:14)  discrete

parameter  (no audio from 07:19 to 07:29). Again whole series of definition they are

going to start cropping up. So, let p j of n be the probability that at time instant n, I was

in state j.

So, the system starts in time 0 and some states we do not know what that is right. As the

system evolves, there is a definition of that time n that should be in this particular state in

some given probability. And then let p j k we are interested in starting in one state and

then looking at how many like n steps later, what state I will be in right? What is the

probability of being in some particular state? The previous diagram that I showed, I am

talking of what is called single step right 1 step transition. What is the probability that I

am in state n, I will go to n plus 1 and n plus 2 and so on.

But now I am looking at series of steps right I can go through several steps before I go

from one state to some other state right; so that we will just define here. So, what is the

probability that, given that I started state in j at time m, then at time n where this relation

should goes right, so for some value m lager than n. So, at stay time m I was in state j,

then for n greater than equal to m, what is the probability that I am in state k? This is the

conditional theorem.

(( ))



Yes, they can be intermediate transmission. That is why your they can be other transition

also, there can be yeah yeah. So, it is not n equal to n plus 1 right sorry n n is greater than

or equal to m; so, m m plus 1, m plus 2 and so on.

(( ))

Yes. So, here dimension is step so how many.

Discrete can be state j for move then one time.

Yes it can it can yeah. That is why m can equal or yeah k can equal j right. It can stay in

the same state for several time instances before it goes some other instances states. So, as

an example, if we look at the number of customers at time 4 right let us say there is 1

customer in the system and that customer being serviced by the server. Then for the next

five instances, if no other customer comes, then my state is always going to be in the

same right is always in the state with with number of customer equals 1; therefore, there

is no change of state. So, again this is just a definition this is the conditional probability

that given a time in state j. So, this p m p j k somehow is defined to be this one right.

(Refer Slide Time: 10:32)

This  p j  k on the (m, n) is  the (no audio from 10:35 to 10:50) called  the transition

probability function. (No audio from 10:55 to 11:10)

(( ))



Yes you can that is that will come up later on with this c k equation it will come up. So,

we will (no audio from 11:39 to 11:50), so 0 eth step transition probability. So, what is

the probability of going from state j to state k in 0 steps that is again just for base line

definition right. So, if j equals k then it is 1 right 0 otherwise probability enough self-

evident, but we will just do that for notational convenient we will need this later on right.

So, basically I can go from one state to another state in 0 steps, only if you are in the

same states only if both j and k are the same states, otherwise it is 0 probabilities. Then

normally we can determine the 1 step transition probability. So, given a system my 1 step

transition probability is defined as follows. (No audio from 12:39 to 13:09)

So, this 1 step is whatever instant of time I am looking at there is probability that I am

given at time instant n minus 1 and I was in state j, and the next time instant I will be

some other  state  k;  and what  is  the  probability  of  that?  This  is  the  given right  this

somehow has to be determined. So, we will see how we can use this. Now, let us look at

one example, so for just equation have been coming yeah.

So, in the condition probability function that you are given same discusses suppose the

multiple  paths  from  one  states  to  another  that  is  possible  each  having  there  their

individual probabilities. So, will this be a cumulative of the other possibilities? Yes it will

be yeah. If you are going to transition to multiple path, it will be yeah.

(Refer Slide Time: 14:04)



That if you want (no audio from 14:05 to 14:17) so from i to j we can go through several

intermediate nodes right with m steps and n steps. So, then this is this the way we will

define that right. You look at the summation of all those probabilities right that will be a

total. So, the total probability going from i to j (m plus n) steps will depend up on how

whichever way you break that. So, m and n can be whatever combination, if it is 3 it can

be 1 plus 2 or 2 plus 1 and so on right.

But in that case if we consider special case, where say g equals to k we return to the

same state it means in same state.

Yes

It is possible that it might take the path and return to the same state in that?

Yes you can yes.

So, it might also take that path multiple times over?

Yes. So, you are talking of starting in a state and then going to several sequences and

coming back to same state, yes that is also possible that is that will be.

Is it possible that path repeated multiple times, we cannot capture that information?

Yes yes that their is possible

(( ))

But that is possible to go from one state to come back to the same state after several

other transitions. So, what do you mean that, the state that is not capture?

So, I am saying is, suppose it is moving from i to j to the state k we take two different

time instances, it goes form i to k and k to j and this transition i k and j happens multiple

times over. So, will that not affect the probability?

It needs certain time duration, suppose m and n has multiple like such transition present

in the

Number of steps will vary



Number of steps varies

For a given, so the probability you are saying does not depend upon, no the probability

will not depend upon the number of steps; you are only trying to see, if I am starting in

state i, what I will come back to state i in whatever k steps right. That is what this is

trying to tell you.

Number of steps will vary in case that he is finding out number of steps will vary.

Right see one thing I am trying to list is the actual sequence of possibilities and other

thing I trying to look at the probabilities right. So, the two the probability is trying to

capture what is overall probability that I have; you are looking at specific instance if you

have, run the simulation then yes you will find that there are several ways in which this

can happen right. This is simply looking at the probability of going from one state to

another not the number of ways in which you can go from one to the other or number of

instances that such sequences occurring.

Because at each, if you are running this as the (( )) simulation right; you will randomly

toss the coin and then it will probably go to one of those case states and yes you might

come back in different points in time. But quite looking at is a long term steady state

probability that I will come back to same state right that is what I want to find out.

So, if I write to have say 1000 seconds of monitoring the system and that you find that in

five instances, I started from i and actually came back to state i right. So, I started in state

i  and  I  ran  through  several  sequence  of  this  right  time  instance  then  you  keep  on

monitoring. Each of them you will be giving you different flow of states right; you will

have different state transition each of this simulations.

And the probability tells you that, what is the rate with some finite probability I will

come back to the same state or not right that is what right. Others did not follow that

even around (( )) right, but anyway

(( )) increase steps

 (( ))



So, it is the one probability or even calculate in first step went to 0 to 1 then 1 to 2 then 2

to 2 then 3 to 4 cumulative probability ending all those.

No, I did not get.

What happens is, probability i to j and steps.

Yeah or m plus 1 step ok in this case I took (( )) steps.

So, i to j is going to take some path, directly also we can take some paths also.

Yes. So, this i p k will be against split into, it would finally expressed as sequence of 1

step transition.

(( )) cumulative

Yeah it  will  be  cumulative,  because  all  this  singles  fives  only you know the  1  step

transition; from this we have to start building that second which is word I am trying to

get to, but have not got to that it. So, I am so with this 1 step transition, I can actually

figure out the probability of the 2 step, 3 step and so on; from which I can essentially

compute from any state to any state, if you want to do that x number x plus y steps I can

compute.

So, if now what I am trying to get is let me give this examples. Say, I have a two state

system right this is a state of channel it see there good or bad (Refer Slide Time: 19:18);

and if is in state 0 right it will stay in that same state probability 0.5 and then leave it

with probability 0.5 and like wise. So, this is this is an example of such a system ok.

So, if I measure the system, I found this right. Now, the question is so what? So, you are

representing this system behavior with this Markov chain. Now, he would like to derive

some properties of the system using this representation right. So, the first question is, in

the long term right this is one time instant, at one time instant I go from this to the other.

In the long term, what is the probability that system will stay in state 0 or the probability

system will stay in state 1? That is something that you want to calculate right big for

what whatever reason; I will leaves this later on for computing the average number of

customers in the system or for computing some other matrix or I could be having some

sort of revert function for each state right r of 5 for state 0, r of r 0 for state 0 1 and so on.



And  you  want  to  compute  compute  them  expected  reward  of  this  system  as  its

progressing through this right.

So, this is procedure from this. Now, I need to find out in the steady state in the long run

right what is the probability that system will be in state 0, it will be state 1, and how do

we compute that?

(( ))

Now, just assume that everything is known with that the index is simply 1 2 3 4 and so

on right. So, in the 1 step transition I know; that is what this problem. This is the 1 step

transition right.

You are say probability that x n equal to i equal to probability of x n minus 1 equal to j I

mean sigma over j probability x n minus 1 equal to j into probability of x n like giving

that x n minus 1 equal to j.

Minus 1 equal to j we can will be equal to x n equal to j, because n is large. Then we get

the (( )).

(Refer Slide Time: 21:27)

So,  to  get  to  that  what  we  will  do  is.  So,  now we  will  represent  this  state  1  step

probability matrix. So, we will call this as p, again p is appearing in several different, this

is 1 step transition matrix. So, instead of trying to do that, we can use this matrix itself



right to do some of our computation. So, for I am, so what is the probability going from

state 0 to state 0 or basically staying there and so on right I can represent this as my

matrix. Remember that, the state is can be infinity t0o just that it is right it is discrete.

So, therefore, it essentially extent all the way here, if it is finite set if it is finite set of

states then you can do some easier computation.  It  is infinite  set,  we cannot  do this

computation. (No audio from 22:13 to 22:25)

(( ))

So, it is fine actually. But, if you look at a queuing system that will be an infinite system;

because, number of customers could be infinite in the case of M M 1 queue, only if M M

1 B it will be finite. (No audio from 22:36 to 22:52) So, then I will use this term. So, p i j

(n) is the probability of going from (No audio from 23:08 to 23:22) where step by mean

time interval or n time right. This system is moving on a every time interval from one

state to another state depending on the probability that the 1 step probability distribution

the transition that we have seen.

And if I denote p of (n) to be basically this matrix; so, p of (n) is the probability this as

transition probability matrix of going from state i to state j in n steps. This is probability

of right this is this, so this is going in 1 step right, this represents going in n steps (Refer

Slide Time: 24:15). As n approaches infinity, then we finally approach so called if you

have you can derive, if the system that have a steady state distribution then you will find

out that the probability of going from right state i to state j in n step is this much. And

that will help us finally derive out so called final probability that will come to just a

second.



(Refer Slide Time: 24:45)

So, this p of (n) is nothing but, your p raise to the n times. This is your right matrix p

multiplied or raise to the power right (No audio from 24:56 to 25:37). So, will see how

do we use this in just a second right. So, your for that example that we saw p was this

right 0.5, 0.5, 0.3 and then 0.7. This is the 1 state transition 1 step transition probability

right.

So, what is p squared then? (No audio from 26:09 to 26:30) I am sorry now going from 1

to 0 is 0.3 in that example right read it. I read it the other way around you know, now

yeah. So, there is that (No audio from 26:49 to 27:47) 0.4.

0.6

I think you are using my incorrect matrix;  correct matrix is 0.4, 0.6 is correct or not

correct.

0.6, 0.4

This is the value I have, but because matrix is wrong.

0.6, 0.4

Now, I just derive it then correct it yeah, so then you are calculating I changed.



Now, let us repeat the values again. So, it is p squared. (No audio from 28:27 to 28:40)

So, this is this so called right the probability of going from one state to another too. So,

this is basically to go from state 0 to state 0 into 2 steps is 0.6 right and then so on.

(Refer Slide Time: 29:08)

This  is  the  meaning  of  this  one.  So,  if  I  let  this  p  0  are  the  initial  state  or  initial

probability vector. So, the initial probability vector let say that you are going to start the

system with right being in state 0 probability of either 1 right. So, for example, let say

that I am always starting the system in a good state as you are state 0 right I will never

start in state 1 I always start in state 0. That is my initial probability vector p of 0 or it

could be something more generic that I never know right it is like when you wake up in

the morning if you are good mood or bad mood we never know right. So, 50 50 it is not

always you wake up in a good mood. So, this is your initial state in the system right.

So, this could be some other distribution also. This is again based on right measuring the

system, estimating the system behavior function measurements. So, want to you some

initial vector is known that is starting point for your system; then as system progresses

after while then what is my after n steps, what is the probability that will be in in state 0?

And what is probability will state 1? That is your p of n right. So, that is nothing but, p 0

times p n. So, that is where this it slowly coming towards this much of steady state right.

I am just trying to establish, why we need to compute this, this is one way of doing it

right.



So, I start to the original as 1 step transition then, I can keep on computing this p of (n)

until I am board and or until you converge. So, there are some systems for which we can

where some non-properties are there, where this finally this p of n will simply converge

to the value it is the independent of you are n, the starting value right. Independent of the

number  of  steps  as  well  as  you  are  independent  of  initial  vector,  you  will  finally

converge to  a steady state,  which will  tell  you that  after  thousand iterations  you are

always be in state 0 with probability x and state 1 with the probability y. That is what we

want to find out. What is the steady state probability of the system right you start of in

this case at towards the end, what is that you will end up I am sorry.

(( ))

This  is  the  square  matrix  you have  n  states  this  is  the  finite  matrix,  your  transition

probabilities from every state how do you go to every other state.

(( ))

You have a system like this, in that case you will not you have system like this right. If

you start in state 0 or stuck in state 0 yeah. In this case there is no communication at

these two, these almost like two independent systems; in this case, yes you cannot. Say,

you will if depending on various start you struck in this state. So, depends upon you are,

so the I  am saying it  is  not  true for all  kind of  system right,  where there  are  some

properties defined you will you can derive this transition probabilities.

In this case, we can state that these transition probabilities are 0, so that will give us

square matrix 0 to 1 and 1 to 0.

Yeah you will you will get a state like this right. But, you will always being you are how

many whatever you multiplied always been 1 0 right this will be your identity matrix. So,

if you keep multiply this entire you always have I; finally, whatever state you start with

you are struck with that state. If you are state is initially 1 and 0 then going to be in that

state  forever.  So,  that  is  also  technical,  but  this  is  right  this  not  like  this  a  not  an

irreducible matrix or Markov chain ok.



(Refer Slide Time: 32:54)

So,  you just  started  again  scratch  the  surface  of  this  Markov chain  business  that  is

continuing with over DTMC discussion. So, this is as we talk before set up this state

space discreet could be infinite,  but still  discreet and time is also discreet.  So, move

along in terms of time steps then whatever the time step is whatever unique we want to,

but its processes moves along from one state another in sequence of different time steps

ok.

So, have to completely specify discreet time Markov chain, one is we need the 1 step

probabilities right 1 step. So, this is 1 step probability transition probability matrix which

is your p. So, if we recollect this also our matrix that we had last time; and to know the

current state of a system after some sequent of some n steps right we need to also specify

the initial matrix or the initial probability.

So, this is p 0. So, this is a vector that specifies the initial state of the system. So, if there

are n states right, they use n differently. If there are total of say k states then, you specify

what is probably system will starts with in state 0 with some probability right; and state

this is the initial set of probability that you have.

So, for example, (No audio from 34:49 to 34:57) right we said that the system some

funny business going on here I could set my p (0). This simply states that, in the two

state Markov that Markov process that we saw last class (No audio from 35:17 to 35:29)

rights. So, the p below states here this is your transition matrix of going from one state to



other and then initial state could be anything that is dependent on the system, it could be

simply always starting in state 1 or state 0 and so on.

So, these two essentially start the, or specify the initial state of the system. Then as your

system progress with time then the state of the system also changes right. So, there are

some cases  for  which  we can  actually  end up with  steady state  probabilities,  where

regard after some 8, 10 iterations or 10 steps or 100 steps and so on. The system ends up

in some steady state that tells you the probability of being in state 0 is x, state 1 is y and

so on right. So, there are some cases where we can actually derive that and it exists. So,

will try to talk little bit about that.

(Refer Slide Time: 36:18)

(No audio from 36:19 to 36:30) So, this is the expression that we saw last class right. The

probability distribution of the states at time step n is simply raising that matrix p to the

power n right. So, p squared was we did this last time (No audio from 36:52 to 37:04)

and other was 0.56, 0.44 ok. So, one way to find out the steady state probability, steady

state is as in a process infinity right all this probabilities will converge to some common

value right it  was single value.  So,  you just  use that  yeah. (No audio from 37:34 to

37:43)



(Refer Slide Time: 37:46)

So,  let  us  define  this  it  is  actually  called  the  visiting  probability  V j  is  the  limit  in

probability of p j (n) as n approaches infinity. So, this what we want to figure out right;

for  a  given  Markov  chain  thus  such  you  know  such  a  set  of  limited  limiting  state

probability  exists  and if  so,  what  is  it?  (No audio  from 38:30 to  38:44)   For  some

particular type of Markov chains this exists we will define that way. (No audio from

38:52 to 39:15)

So, one way to find this V j, so will let V right will use this. So, V is the vectors that are

present these limiting state probabilities. So, to calculate this V, one way is to simply

keep on multiplying this matrix p by itself until you find that some point it converges

right. So, that is we look at the example we did last time right. So, if you you can just

write a small program to do the matrix multiplication or use MATLAB whatever it is,

after 5 or 6 iterations or 5 or 6 steps this will simply converge right.



(Refer Slide Time: 40:02)

So, for the above example, the steady state probability right does exist and V becomes,

the probability being in state 0 is 7 by 12 steady state and state 1 is 5 by 12. And the

tutorial I ask and we guess we thought a little simply end up in state 0, because the high

probability of going back to stage 0, but this not the case. This we can actually generalize

this also for a given setup systems.

So, this we can write,  so after 5 or 6 steps right regardless of the initial  state of the

system; this is what will end up with, we can also verify right. So, you have p of it or you

say infinity (No audio from 41:06 to 41:34). So, ultimately this is what we want, we want

to know the probability of the system being in a given state right as steady as in the in the

steady state situation, quick questions ok.

In this V row will be the same sir?

Yeah. So, that means whatever state we start with, you will ending there is a row the

probability of going the one of those other state right along row is the same. So, we start

in state 0, the probability of going to state 0 1 2 3 will be the same. So, what are the

initial states is starting with, will end up with the same, that is that is what it is.

So, all the rows will be similar.



Similar  yes that again.  So, now we look at  there is lot  of definitions with I think as

simply I have to skip slightly behind. There is notion of transient state, the recurrence

state and irreducible and so on. So, I just want to specify the main thing all right.

(Refer Slide Time: 42:44)

So, this under some conditions I kept saying right, this will we can have the steady state

vector. So, for an irreducible, a periodic Markov chain with all the states.

(( )).

Recurrent non null sorry non null I am I am not define what recurrent is, what non null

is, but I just leave it that for now I need to move ahead. So, for the special set of Markov

chains,  this  limiting probability  vector  right V which is  nothing but,  the steady state

probability of being in state V 0 or state 0 and so on right is unique. (No audio from

44:00 to 44:12)

So, this vector will satisfy the following condition right. So, your V is equal to V p. So,

one way of arriving at the steady state probably repeatedly multiplying the power raising

p to the power to large numbers; and other way of looking at this, if I start in some state

this steady state V; and I have one more transition right which is what is represent V into

p right this right side simply represents the current side is the system is already in the

steady state. The probability of that is denoted by this V of being in each of those states.



I have one more transition p will end up being back in the same state right that the same

probability of the states will be the same. The probably distribution of being the different

state just not change even after one additional transition. That is what this steady state

means right. I start with the, I go through one more transition and the distribution of the

probably different states, they still unchanged; that is what V equals V p s.

So, this is in other way of actually determining our where vector V. So, given p I can find

out the steady state probability we are simply having this V equals V p. So, we saw one

case where simply right rising to powers of n; this is in other way of getting out steady

state probabilities right. And there are some other conditions also, this is V equals V p as

well as, all V j should be greater than equal to 0 with all this this sigma V j should equal

to 1. Because, otherwise V equals V p can be satisfied by all V is equal to 0 right as a

trivial solution with does which do not care about.

So, this V j should sum up to 1, otherwise 0 will also satisfy all 0’s will satisfy V equals

V p right, 0 equal 0; so their is no regardless of p we will end up with right. (No audio

from 45:59 to 46:12).

(( ))

Which one? No, that is equals to 1, if V j equals 0, then the this condition would not be

satisfied like.

Yeah otherwise that this should be equal to that theirs non-zero probability of being in

each of those states. That is solution that we want to we simply solve V equals V p; as

one solution will be simply V j equals 0. But, to get to unique solution and this we have

to satisfy this condition too ok.



(Refer Slide Time: 46:50)

So, now let us go back to our previous example that we saw right. So, if I were to solve,

so so my p was (No audio from 47:01 to 47:08) and V equal V 0 V 1 right. So, from our

equation we simply have to solve for this. So, you will have a set of linear equations to

solve. So, technically V equals V p, but I preferred write as V p equals V, because the

equations will come out looking better then we start.

So, that is the, so to find out the steady state, this is what we would have to solve. So,

what does this equation work out to? It some of you already worked out on the board last

time. So, you just see if I can squeeze this here. So, 0.5 (No audio from 48:01 to 48:13)

anywhere make a mistake (No audio from 48:15 to 48:55) right. So, that is your set of

equations. And this we can now solve which I do not have to go to we can pick any of

those equations to solve. So, this will end up giving you. (No audio from 49:12 to 49:31)

So, for given any as long as your matrix is finite right you can end up with these (No

audio from 49:37 to 49:48) make sense. Now, there are some cases where this would not

hold we would not able to right get to the steady state probabilities.



(Refer Slide Time: 50:09)

So, the couple of right, for example look at this system here right. (No audio from 50:17

to 50:25) So, in other words if you start in state 0, you stay in state 0 forever; if you start

in state 1, you will stay in the same state forever right there is no transition between the

states. So, this is an example of that is not reducible. Irreducible simply means that you

have a set of states from which one side you can reach any other state in a finite number

of steps right. In periodic again skip the definition for now.

So, in this case, you once depending on here p of 0 right whatever that is; so, if you

going to be if you starting in that state, that is the state always be right, if you start at 0 or

1 you are struck with that state. You can also have another example, where we start with

state 0, but it is right and if you ever from the probability 1 will go from state 1 to state 0

right this is also an example of system ok.

So, this is here 0 is an observe, observing state right. So, in the long run the probability

of being in state 0 is simply 1, you will never go to state 1. And these are also valid

system’s  right.  These  could  be  for  example,  life  time  right  some  decay  is  there,

decreasing life time some point have to come back to this state 0 after for whatever

reason right. I am sorry they both of them steady state yeah the second one as steady

state yes yeah yeah only think it is from 0 we are not able to so yeah.

So, this does not satisfy the irreducible thing, because it should be able to go from one

state to all other sate. In this case, once you go to 0 each an observing state. So, I am not



saying that you will  not have steady state;  for these cases you carry or guarantied a

steady state right, but do not saying anything about the other thing. Then in this case

steady state is 1 0.

So, if you look at the matrix itself identify your steady state matrix right (No audio from

52:25 to 52:33), additional steady state where the rows are the same right, whereas here

is the identity matrix; so, simply 1 0 1 0. So, whatever you start with you struck with that

right.

So, you rise these n times you will end up with simply identity matrix. So, whatever your

p 0 is will be your p of n. And in this case, whatever be your p of 0 you will end up with

1 0; this is simply multiplying each row by the first column which is all 1. So, you will

end up with 1 always. So, these are two special cases which do not fit with this definition

that we saw earlier (No audio from 53:23 to 53:38). We will look at one more examples

for DTMC’s, then we go on towards CTMC’s yeah; we look at two examples, we have to

go to this one.

(Refer Slide Time: 53:59)

(No audio from 54:00 to  54:10) So, now we are looking at,  so we just  saw the toy

example right with two states. And now, let us look at some more realistic couple of

realistic examples right. So, one is where you have program that is only execution. So,

this is typically an operating system. So, we know that in OS, you have CPU burst and

IO burst right. So, let us say that there is process right.



So, thus 0 represent the state of the system when it is running on the CPU. So, process

runs  in  the  CPU for  say  1  unit  of  time  right;  and then  at  the  end of  it  that  is  the

probability  q 1 that  it  goes  to  devise  1  this  these  are  all  I  O queue’s right.  So,  we

remember we saw this queuing right.

So, this is your, you go  to on join end up with input output. It is assumes that, there is no

queue as such simply devices alone, you simply gets serviced on the CPU for time unit

are and then after that with some probability q i will go to one of the various. So, let us

say we have total of m devices and then at the end of the getting serviced you will simply

come back to state 0. So, that is that is only transition. (No audio from 55:40 to 55:52) 

Then there is a non-zero probability that it is the CPU will the the process of program

will finish execution in a current burst in which case always assume that, there is one

more  process  always  waiting  to  be  run  on  the  system.  So,  there  is  not  exactly

multiprogramming, this still unique programming right. There is only one job at a time in

the system, it gets the CPU then it goes to the one of the device queue’s gets serviced to

the device then comes back to the CPU again.

In the mean time,  when this  devices  getting  when the process being serviced to  the

device  queue  there  is  no  other  process  that  is  occupying  the  CPU.  That  is

multiprogramming will come to the later, this is simply unique programming. So, in case

thus process finishes execution with the current CPU burst, then this indication that goes

back to the state 0 simply mean there is some other process that is occupying CPU right.

So, there is always a job queue there is ready that is waiting with some jobs that are

allocated.

So, this will be generalized, because I am assuming that all service times are only 1 right;

we will have to modify this to later on to have a system, where the service time is not

unit is not simply 1 unit of time, it can be multiple units of time. And there is also no self

queue as such right self queue is an I would have self-loops around each devices it means

I spend several right amount of time that I  staying in each state I can capture by self-

loops; so, all that is taken out of the picture.

This is very simple process that we are looking right; get serviced for 1 unit at a device

and go back to the CPU. So, now for this system one can try to find out right, what is the



steady state probabilities and based on that you can find out they utilize section of the

system right and so on.

(Refer Slide Time: 57:35)

So, if I look at my p matrix right. So, this is an m plus 1 by m plus 1 matrix right. So, the

rows the entries for row 0 are simply q i’s right q naught to q m; and for the rest of the

rows from every devices simply come back to the queue state 0, so it simply 1 0 0 0

(Refer Slide Time: 58:19).

So, with this representation if I ask you the question, what is the average number of

times some particular device right i is used in the the system? Given the inputs are this q

I’s that is pretty much it right. So, given q i, what is the probability system will be the

CPU is going to be used in the system right. So, what is the probably being in state 0 will

tell you the CPU utilization right, and the probability that you will be number of visits to

a particular device will be dependant upon the visiting probability for a particular state.

So, that V i for the state is what you tell us, the probability that you will be in state 3

means you have been serviced device number 3 right. So, that is why we need to we need

to define those V i’s to determine the probability the utilization of the system as well as

the the probability of being serviced at a given device right. So, now we can simply solve

this.

(( )) cycle goes back to



Yeah there is no loop here I will could have know this queue, if the time spent is some

other it is not unit it is not unit or some unit time then yes will have a more realistic

system. So, this will little bit simplified system right, because we not moral the service

time at the queue’s right at the device queue’s; that we will come to, when we go to

closed queuing networks then will model queues then  will model the waiting time of the

queues and so on.

(Refer Slide Time: 1:00:00)

So, now let us say that for example, right. So, if m equals to we can solve this for the

general case to, but let us you look at a m equals 2 fairly straight forward this all this

particular system it is not at all. So, your equation to solve is (No audio from 1:00:17 to

1:00:59) right (No audio from 1:01:01 to 1:01:29). Some one if you are used a program

or software package for solving system of linear equations. Any of you used, any one

who, what did you use?

Package called java matrix.

Java matrix that actually

LIM package

LIM  package  that  is  LIM  package  is  free  right  IBM,  but  even  our  MATLAB  and

mathematical should solve right. So, either you can do this by hand or you should you

can look at some of those tools also right for doing that for you. And those are symbolic



too right, so you can symbolically also you can get not just numerical value for also

symbolic value also some some of these cases we can actually derive ok. So, to solve this

it is fairly straight forward rights. Solve the the V 1’s are expressed in terms of V naught;

all you are do this solve for V naught.

(Refer Slide Time: 01:02:37)

So, that simply V naught q naught plus (1 minus V naught) equals V naught right. V 1

plus V 2 is equal to 1 minus V naught that is our last. So, many times we will find that

third last equation convenient. So, anyway so we can now let write that, 1 over q naught

and V j is simply (No audio from 1:03:05 to 1:03:20). So, therefore, now I express the

probabilities of being in the different states simply in terms of this q naught.

So, if it asks you the question right, if q naught is say 0.4 then, q 1 this 0.5, q 2 equals 0.1

right; what is the CPU utilization? What is fraction of time the CPU is being utilized?

(No audio from 1:03:45 to 1:04:02) So, what is the CPU utilization in this particular

case? 1 over 1.6; so, that is 0.667 or (( )) 0.625. So, that is where your chain comes in

handy. So, you can now determine the CPU utilization with this very simple system,

where the time spent in each of the states is just 1.

And if I ask you the question what is the number of visits right number of times that

device 1 was used in 100 seconds. So, what is that right? So, the number of times (No

audio from 1:04:53 to 1:05:09), so that is simply the visiting probability V 1 into t right.



So, that is simply V 1 into 100; and what is that? (No audio from 1:05:23 to 1:05:35) V 1

is 6.25 there is another half there, it is 0.5 right its 0.5 or 6.25.

V 1 is q j divided by q minus so q j is half; so, it will be half of this. So, it is 31.25,

because V 1 is q naught into V naught or divided by sorry q naught into V naught yeah, if

you remember the previous expression right. So, V 1 is q 1 into V naught right remember

the previous. So, once you know, V naught simply plug in right and keep going, so 31

times. So, this is what once one basic example of how these Markov chains come in

handy  in  terms  of  performance  evaluation  right.  That  is  why  these  steady  state

probabilities are computed.


