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This is basically a lecture on support vector machines though you would see on the screen the

title statistical learning theory.

(Refer Slide Time: 00:24)

Let me tell you a bit of history there were two statisticians named ethnic and turban Incas they

are they are the main persons who created this subject statistical learning theory there are there

are statisticians from Russia you know there was a cold war period between America and Russia

and these people have done their work basically during the Cold War period and after the Cold



War was over after then when there were communications between Russia and America they

became normal.

These people they went to United States and they presented the statistical learning theory in a

conference in computer sense in a computer science conference they presented this one the basic

problem that they attempted to solve here is when you design a classifier you have a training set

using the training set you design the classifier then using the test set somehow you measure its

performance and then if the performance on the test set is also satisfactory then you say that fine

everything is fine with the classifier.

But is it really fine with the classifier even if it does well on the test set how do you say that your

classifier is generalizable the performance of the classifier that you have somehow got how do

you say that it has generalization capability is there any mathematical way of expressing edge

and if you express it mathematically is there any way of obtaining it, and if you also obtain it

then for the different classifiers that we are using is there any way in which you can calculate the

generalize ability of this classifiers.

So this is the basic question that they attempted to solve there since they are statisticians and they

attempted to solve the whole thing using statistical language, so they coined the term statistical

learning theory support vector machines which probably you have heard from many people it is

sort of a byproduct of statistical learning theory sort of a byproduct of statistical learning theory

this is the basic history and you will find a book by Vapnik on statistical learning theory which is

basically a book on statistics.

And you will find support vector machines being considered a part of neural networks you will

find them to be considered a part of machine learning and data mining and of course since we are

talking about classifiers and their performance you will consider them to be a part of pattern

recognition, so you will find support vector machines almost in all these fields you will find

support vector machines in all these fields and the generalization of support vector machines like

kernel machines etc.

This is sort of the basic little bit of history now let me try to explain the basic terminology you

look at your screens first one is you are given points in N dimensional space okay, you are given

small end points x1  x2 xn you see the very first step you are given small endpoints x1 x2 xn



they are in N dimensional  space  θi denotes the label of the class label of the point xi  I  am

assuming that you have two classes only and the class labels are given as - 1 and 1 and px θ px θ

this is the probability distribution on the data.

That means there is some probability distribution this is the p is the density function and P that is

the actual P of a is equal to  ∫ of P ∫ over a of p, p is the density function and P is the actual

probability, now these points are x1 x2 xn and the corresponding θi they are assuming they are

assumed to come from the distribution px θ where px θ is not known and here it is written they

are I independent identically distributed, now in classification what exactly is the problem the

problem is you are given n points n points.

And you have a corresponding class labels somehow you need to find the function from xi to

theta are you understanding it somehow you need to find the function if you find the functional

form which for every xi, if it gives you if you find you find the functional form where for every

xi the function gives the value θi then you are done you need to find the corresponding functional

form that is the basic problem of classification, these F you can call them as you can have many

names for it.

Okay and some FS when for one class it will give you plus one another class they are going to

give you - 1 and at some place they will get the value 0, if then the value is 0 then you call it as

the separation between the class 1 and class -1 right, when the value is given as 0 then you call it

as separation between the class plus 1 and between the class +1 and – 1.
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Now what is it that we are given we are given a set of functions script F that is the functions are f

xs are the input α is the parameter set α bar it is written it is the vector form, so all these α are

adjustable parameters and f is a function actually let me just try to explain it to you I hope all of

you know what multi-layer perceptron is you have an input layer and you have some hidden

layers you have an output layer when you are going from input layer to hidden layer you have

several connections and you have connection weights.

You start with some initial connection weights from input layer to hidden layer one hidden layer

one if you assume to hidden layers and hidden layer one two hidden layer two then hidden layer

two to output layer at between every two such layers you have many connections and you have

connection weights, put all the connection weights together and write it as a vector form that

vector you take it as α that vector you take it as α okay and the xs are your input okay given an x

and given a given an x given an x.

And given an α and you have the usual neural network which is feed-forward neural network it

will give you an output the output is this F okay, given the set up in given the given the set of

input x1 x2 xn input vectors given α digestible parameters then, if you apply your neural network

methodology the output is f okay these are the adjustable parameters and f is a function, now if

you changes the α if you changes α the corresponding f is going to I mean the values are going to

be changed if you change your network architecture then f is itself is going to be changed.



So for a given input x and choice of α f of x α will always give the same output if you have a

function f and if you have specified your α f of x α will always do the same output a particular

choice of α generates a trained machine by this particular choice when you are training a neural

network you start with some choice and you go on changing, it till by the end of your I mean you

have given some rule for termination and when it terminates you assume that you have got in

nice I mean values for α.

So you are training the machine to get nice value for this α  in neural network with a fixed

architecture course with  α  corresponding to the weights and biases is a learning machine now

when you have a function f when you fix α what is the exact risk that you are taking the risk is it

is observed is f of xα  expected is the actual one is θ take the difference take the difference

modulus and dp xθ do the integration over all these x is that will give you sort of errors or risk

what is it that we are calculating.

What we are calculating is θ for the ith point for an α θ I is the targeted output f of xi α is your

observed output the difference I is equal to 1 to N and 1/2 n this is empirical risk this is what

actually we are calculating what we are supposed to calculate is this here I needs to tell you one

thing I need to tell you one thing all these things are explained here using the sign modulus and

the similar results actually you will get when you take the square terms when you take the square

terms.

Which in neural network when you try to minimize the error you take the square terms and then

you  take  the  double  ∑  you  use  some  gradient  descent  and  then  you  do  that,  I  to  do  the

minimization okay there you take the square term for the error okay any of the results are similar

okay, so here everything is explained using the sign modulus this is one thing that I am telling

you there is another one you will get them all this material from a famous lecture notes or I do

not want to call it lecture notes it is tutorial it is written by Christopher budgets it is available on

internet okay a tutorial on support vector machines whatever I am going to tell you about the

support vector machines.

Most of it you will find you will get from that particular tutorial okay, now so this is the risk that

we are calculating and the actual risk that we are supposed to calculate is Rf α now choose η, so

that 0 less than or equal to η a less than or equal to 1 here I am sorry this less than or equal to

sign should not be there it should be strictly less than 1okay in fact I would prefer that the other



less other equality also should not be there 0 strictly less than E than strictly less than 1 this

equality sign should not be there okay.
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Then what was proved by Vapnik was the actual risk that we are supposed to calculate it is less

than or equal to the empirical risk plus square root there is an H here log 2n n is the number of

points divided by H + 1 - log E η by 4 by n with probability1 -  θ that means this relationship

holds with probability 1- θ this was what was shown by Vapnik this was I think in the year 1983,

84 R is it 93 94 I am not exactly sure 83, 84 or 93, 94 this thing was shown, now if you look at

this expression note that in neural networks we are trying to minimize this empirical risk.

We are trying to minimize this empirical risk but what we are supposed to be doing is we are

supposed  to  be  minimizing  the  actual  risk  actual  risk  if  we  minimize  it  actual  risk,  if  we

minimize it then that is the thing that we want to do it but by minimizing the empirical risk are

we actually able to minimize the actual risk the problem is that after minimizing the empirical

risk still this much term is there still this much term is there and the actual risk is less than or

equal to this Plus this relationship is holding with probability 1 – θ.

Now if we want this relationship to hold then probably we need to take the value of θ to be very,

very small we take it to be 0.05 then RF α less than or equal to empirical risk plus this that will

happen with probability 0.95, so usually people take the value of theta to be either 0.05 or some

0.01 some very small value.
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Now there is an unknown term here that term is H n is the number of points η is this parameter

0.05 or mean point yeah 0.05 0.01 n is the number of points and there is this H what is this H, is

a non-negative integer this is called VC - dimension Vapnik VC for Vapnik turbine in case okay

this is a non-negative integer H is called VC - dimension it has to be always an integer it cannot

take fractional values this H provides what is known as capacity we will come to what this H is

slightly later η is a small value say 0.05, now let us denote this term this one square root of H log

2n by H this whole term let us denote it by inside okay this guy is independent of the distribution

P, so in this one in this  xi η is a constant that we have already fixed n is the number of points so

the worldly term is H this H is a non-negative integer in fact H is independent of distribution

what is this VC- dimension we will define it slightly later this is something independent of this is

independent of the distribution of the points.

So the whole ξ is independent of the distribution pz is called we see conference, now if we know

H we can compute inside now learning machine is another name for a family of functions if we

take that the machine which minimizes the right-hand side of one this is the right we actually we

minimize  this  is  something  independent  of  that  independent  of  the  independent  of  the

distribution and we minimize this and by minimizing this, we hope that Rfα and empirical α they

are somehow very close.
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Now let us see what the VC dimension is VC dimension it is actually a nice quantity xi θ are the

given point they belong to xs they belong to RM and our number of point it is they take values -

1 R + 1 and these are the family of functions under consideration, now if you have small n points

in how many different ways you can label them to power in different ways do you agree to that if

you have small n points you can label them in to power and different ways that is all the points

you put it in class one that is one way one point you put it in class one the rest n my sorry one

point you put it in class – 1 n – 1.

You put it in one point all the points you put it in class one that is one way n -1 points you put it

in a class one point you put it in class two then n – 2 points you put it in class one you put it in

class two if you do liked it you have to power indifferent ways in which you label end points.

(Refer Slide Time: 21:19)



Now a set of functions  τ  is said to shatter end points a collection of end points if for every

labeling of these end points we can get a function f which provides that labeling is this clear to

you let me try to explain you have you have a set of functions you have a set of n points this set

of n points can be labeled in 2 power n ways for every labeling you need to get a function note

that when I started this lecture I asked you what is our aim from the set of points you need to get

a function to theta θi.

The corresponding labels once we get a function then we are through our aim is just to get that

function okay, now you have got 2 power n different labeling is possible okay for each labeling if

you have a function with use that labeling then we say that this set of functions is said to shatter

n points, I will explain it to you slightly more D in a more detail after a few minutes now we see

dimension  for  a  set  of  functions  is  defined  as  the  maximum number  of  points  that  can  be

shattered  by this  VC dimension is  the maximum number of  points  that  can be shattered by

suppose the maximum number of points is 10.

That means a set of 10 points if it is shattered by the collection of functions and no set of 11

points 11 points or twelve points or 13 points or 14 points no set of 11points or 12 points or 13

points or 14 points can be shattered by the set of functions then the VC dimension then the VC

dimension of the set of functions is that value 10 VC- dimension for a set of functions is defined

as is defined as the maximum number of points that can be shattered by τ.
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VC - dimension is H implies there exists one set of H points that can be shattered by τ but it does

not mean that every set of H points can be shattered by it does not mean that every set of H

points can be shattered by it I will explain all these things by using an example, now I can do the

example on the board I will do the example on the board okay I can do it on the board suppose

you take set of straight lines suppose you take set of straight lines and you take two points you

are function now.
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You are set now is all possible straight lines all possible straight line okay and let us say we are

in two dimensional space let us say we are in two dimensional space, now you take two points

how many labeling are possible you have four labelings okay, now you take one straight line

here and this arrow denotes they are the given the sign positive sign that means all these both the

points they are in the class plus one this is the straight line that is giving you this now the second

one for the same two points this is another straight line.

That is putting this point in class 1 this point in class -1 for the same two points we have a

straight line which puts this point in class 1this point in class -1 and you have the fourth one both

the points are in class-1 and this side is class +1 it is clear, so two points they can be shattered by

the set of straight lines I have taken these two points like this I could have taken them like this I

could have taken these two points in this way I could have taken these two points in this way I

could have taken these two points in this way.

In any way I take okay if it is set of two points it can be shattered by set of straight lines am I

correct every set of two points, now what I will do is that instead of two I will take 3.

(Refer Slide Time: 27:27)

I will take three this is 1 2 3 4 5 6 7 8 here first I will put all of them in class one all the 3 of them

in class one then I will start putting two points these two points are in class one these two points

are in class one and then these two points are in class one okay, now I will put one point in class

one this is in class one this is in a class one this is in class one then I will put low point in class



one for this one no point in class one, so here I have taken a set of three points this is one set of

three points this is shattered by all the lines he is shattered by the set of possible lines is this

clear.

Now let us see whether every set of three points can be shattered the answer is not the answer is

no you take three points on a single line, let us say this point goes to – 1 these two points are +1

can you get a single straight line which gives you this result no okay, so now here you have a set

of 3 points that can be shattered by straight lines, now you take any set of 4 points take any set of

four points no set of 4 points can be shattered by straight lines no set of 4 points can be shattered

by straight lines.

You have this famous example you remember this example now you are seeing the connection

between  this  one  and  neural  networks  many  persons  when  they  introduce  support  vector

machines they I mean they into banner introduce this one they first tell this example and then

they go to all these shattering x' and other things in fact this can be proved mathematically that

no set of 4 points can be shattered by straight lines, so in R2 for the set of straight lines the VC

dimension for the set of straight lines is 3.

Let me repeat in R2 the VC dimension for the set of straight lines is three because there exist a

set of three points that can be shattered by the set of straight lines a set of three points okay and

no set of 4 points are anything more than 4 can be shattered by set of straight lines okay, so VC

dimension for the set of straight lines is this is the one.
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So in two dimensions τ consists of all straight lines this is the example.

(Refer Slide Time: 31:59)

VC dimension of straight lines is greater than or equal to 3 they note that VC dimension of

straight lines is not four because no set of 4 points can be shattered by this one, so VC dimension

is three now it can be proved that VC dimension of hyper - planes in RN is n +1 VC dimension

of hyper- planes in RN is n + 1 that means, if you are looking at RN and if you are looking at all

possible hyper planes then you will be able to get a set of n + 1 points which can be shattered by

these hyper- planes.



And no set of n + 2 RN + 3 RN +4 points can be shattered by it why this shattering is important

the shattering is important because note that in MLP we assume an architecture okay, we assume

an architecture and then we make it learn, now the moment you have Schumann architecture you

have assumed certain functional form right you have assumed certain functional form, now with

that functional form by varying all those α if the given set of x1 x2 xn that, but if the given set of

points if you are not able to forget about given set of points if you can if you are in a position to

shatter.

At least a set of n points then probably we can think about getting the classification properly for

that given set of n points let me repeat, if the with the function under consideration if you are

able to shatter at least a set of n points say you are given smaller number of points then we can

think of whether we can shatter the given set of n points the given set of n points it has two

classes some labeling is there and you are assuming a functional form by Schumann architecture

you are assuming a functional form.

By assuming an architecture you are assuming a functional form whether this functional form

whether it at all can it shatter at least a set of n points if it is not able to shatter it whatever you do

I mean it is not going to I mean if the VC dimension is less than that then you have a problem are

you understanding me if the VC dimension is less than the value is smaller than you do have a

problem. 
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Now there  are  some comments  it  is  not  necessarily  true  that  learning  machines  with  more

parameters will have a high VC dimension and leveling machines with less parameters will have

low visualization examples exist in literature. The second one is that a family of classifiers will

have infinite VC dimension if they can shatter a set of n points however large n may be okay,

now examples exist in literature various set of functions has infinite VC dimension but they are

not able to shatter a set of four points.

Here I wrote set of finitely points finitely many point the example that was given there was four

points it has infinite VC dimension but on the other hand a finite point set having just four points

it is not able to shatter, why the problem is that if you have a set of n points that can be shattered

by the given function set then the VC dimension is at least equal to that value smaller, a set of n

points.

We are not saying that every set of n points is to be shattered so VC dimension by the very

definition it is a very weak one I hope you are understanding this it is very weak because you are

satisfied if it shatters a set of n points one set of n points if it shatters you are satisfied, but then

our given point set that also has n points but then one set it can shatter but this meet may not be

able to shatter then you have a difficulty here right.

Then you have a difficulty here this is one of the problems that is actually I mean because VC

dimension as per definition it is a very weak one yes, if VC dimension is ten means at least one

set of ten points it can shatter so if it is something 11, 12 or 13 you know that you probably may

not get the what is that you may not get the classification that is there. But VC dimension 10

means 89876 whether you can get the classification of this 876 point that is not clear.

Something more you know that you cannot get it but something less than that you do not have an

idea that is the basic difficulty with VC dimension that is the place where theory needs to be

developed it should be something more strong than that, that a set of points can be shattered. 
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This I do not want to dwell into these things okay, 
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Theory connecting SVM's to structural risk minimization principle is not deal there so I do not

want to deal with this thing.
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These  are  extremely,  extremely  highly  mathematical  subjects  these  are  highly  mathematical

subjection I do not want to go into all that mathematics atleast  now. Now maximum margin

classifier  so I do not want to go into the connections between the VC dimension theory and

SVM's I am directly coming to SVM's, so you have excise θi=1 to n belongs to 1to +1, xiRn.

Now I am assuming that data is linearly separable that means there exists a hyper plane which

gives you on one side of the hyper plane you will get the positive points +1 points and on the

other side of the hyper plane you will get negative points that is -1point. Now there is a basic

theorem here if the given data set is linearly separable the given data set is linearly separable if

and only if the convex hulls of those things do not intersect.

I hope you know this result okay, I will repeat it the data is linearly separable that means the +1

point set and the -1 point set they are linearly separable that there exists a hyper plane where on

the positive side of the hyper plane you get all the +1 points on the negative side of hyper plane

you got  all  the -1 points this  is  possible  if  and only if  you take  all  the positive  points can

construct its convex hull take all the negative points it is convex hull and this convex hulls they

do not intersect this is different only if that is if the convex hulls do not intersect then you get a

hyper plane.

And if you get a higher plane then the convex has do not intersect both these things are satisfied.

So data is linearly separable so there exists a hyper plane w, so w xi greater than 0 for all i forʹ



which theta is equal to 1 less than 0 for all i for which theta is equal to -1 or you multiply by θi

then θi times this is w  xi is greater than 0 for all i.ʹ

For when θi is equal to 1, 1 times w xi that is greater than 0 when it is -1, -1 times this is alsoʹ

going to become greater than 0. So if there exists one such vector w for which this is greater than

0 this place this i and this i they should be replaced by prime transpose then there are infinitely

many such vectors how does one choose one optimal classifier, I hope this is known to all of you

if you have one hyper plane then you are going to have infinitely many hyper plane.

You are going to are infinitely many hyper planes if you look at the basic the hard limiting

simple  perceptron  okay,  simple  perceptron  then  in  the  convergence  theorem  in  the  simple

perceptron you assume the linear separability of the classes and you assume a hyper plane and

you go on changing it till you go on changing it and then you can prove that as the number of

iterations  increases  the  error  actually  I  mean  it  goes  to  actually  0  that  can  be  shown

mathematically that is called perceptron convergence theorem.

And so and you have too many hyper planes it will go to one of the hyper planes. Now here the

question is how does one choose an optimal classifier, optimal from the point of view of what.
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Now if there exists w such that θi into w  xi is greater than 0 for all  i  then you take any  ʹ �

multiplied by any � then �w also satisfies this condition okay, then what we can do is that what

we can do is that we shall set the margin that is minimum distance of hyper plane to the positive

point same as minimum distance hyper plane to the negative points that is positive points and

negative points we shall set the margin as 1.

And achieve it with minimal weight now let us see the meaning of that let us see the meaning of

that.
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Now you please look at it here you have two classes in this class 1 2 3 4 5 6 points in this class 1

2 3 4 5 6 7 points,  two classes. Now this is one hyper plane with respect to this plane this hyper

plane you take the distance of this hyper plane with every one of the point find out the one that

has the minimal distance the minimal distance is this.

Again with respect to this hyper plane find out the distance of the hyper plane with everyone of

the points find out the one that has the minimal distance the minimum distance is this, okay. now

you can choose this hyper plane in such a way that this is the shift is 1 and this shift is 1 okay,

this shift is 1 and this shift is 1 so that this totally it becomes 2 and the distance is actually two by

norm of the way to at norm of the vector it is 2 by a norm of the vector.

Now basically if you take this distance is some value but then you look at this hyper plane this

hyper plane when you take the distance of this hyper plane with every one of these points the one

that has the minimum distance is this and for this hyper plane again you do the same thing here

the one that has the minimum distance is this now this is more than this, this distance is more

than this.

So basically what we would like to do is that we would like to choose a hyper plane in such a

way that for that hyper plane with the same shift that you get a negative point and the same shift

then you should get this positive point so that then basically you are going the distance between

these two is 2 by actually norm of F norm of W, where W is the W gives you the equation for this

hyper plane that W x okay W gives you the equation for this hyper plane.ʹ



Similarly in this case also W use the equation for this hyper plane okay, now you are what we

would like to do is we would like to maximize this or another way of putting it is normal w is

same as w w and you take the square root then you will get the norm so you like to maximizeʹ

this  because  you want  to  take  the  distance  to  be  same and distance  to  be  the  maximum if

maximization  of  this  is  same  as  minimization  of  this  you  want  to  maximize  the  margin,

maximize the distance between this changes the distance between this and this is taken as the

margin and this classifier there is another name for it that name is maximum margin classifier.

The word margin is  used as the distance between this  hyper plane and this  hyper plane the

distance between this hyper plane and this hyper plane here if you take the distance between this

and this hyper plane this will give you some margin here and this will give you another margin

this margin it is maximum of all the possible margins that we can have so this is maximum

margin classifier.

So a way of saying it  is  you get the margin you maximize it  are you minimize this  or you

minimize this if you write 1/2 here it does not matter, because 1/2 is a constant you minimize this

or you maximize this. So minimization of half of w  w where θ  θi into w x is greater than 1 forʹ ʹ ʹ

all i is equal to 1to n. Now this is what is known as QP problem quadratic programming problem.

Many results in fact there is quite a bit of literature on convex optimization there is quite a bit of

literature on convex optimization the functions under consideration here they are all they are

mostly convex functions in fact I am W that is a convex function do you know the meaning of a

convex function, a function is said to be convex a function is said to be convex a function is said

to be convex, f is  said to be convex if for every x and y these are vectors f(λx+(1-λ)y) is less

than or equal to λ times f(x)+(1- λ) f(y) as an example you please look at this say this is your x

this point is x say this point is y okay.

And this is your function now λx+1-λy is a points here (λx+1-λ)y this is the point in between

now this is f(x) this is f(y) right, λ(fx+ 1 –λ)f(y) this is if you vary λ over all 0 to 1 this is for all λ

belonging to 0 to 1, if you vary λ in the interval 0 to 1 then you will basically get this line

segment. Now you consider every value of the function in this interval that value is less than the

corresponding value here so this is convex it is clear.



You take any value of the function here and this is less than this value λf(x)+1-λf(y) so this is a

convex  function  there  is  quite  a  bit  of  literature  on  convex  optimization  and  this  quadratic

programming problem of how to get this w’s that is basically solved by using many results that

are available in convex optimization many results that are available in convex optimization. As

you can see the main problem here is a quadratic programming problem.

I hope all of you know what linear programming means, linear programming means you have

constraints linear and the function that is to be optimized that is also linear then the problem is

called  linear  programming  problem.  In  quadratic  programming  problem  the  function  to  be

optimized that is quadratic as you can see w  w that is quadratic that is why actually it is calledʹ

quadratic programming problem QP problem.
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And so we have  assumed that  the  data  is  not  is  linearly  separable  now if  it  is  not  linearly

separable then what people would do is θi w x is greater than or equal to some 1-γ or you canʹ

take this γ to be dependent on i, you can take this γ to be dependent on i that also you can have it

either you can have something fixed but usually if you look at the literature you have this thing γ

as dependent on i 1- γi.

So minimum of again w  w subject to these constraints now this is going to be an extremely  andʹ

in fact it  is  an extremely complicated problem to solve and this  is when the classes are not

linearly separable then we make what is known as a soft formulation of the problem.

(Refer Slide Time: 55:39)

Now though it is quadratic programming problem that is true but then when people try to solve

this thing quadratic programming is coming slightly later okay, and you see the optimization

function that is under consideration is 1/2 w  w – Σai[θi w xi-1] where this a is are the Lagrangeʹ ʹ

multipliers  use  Lagrange  multipliers  the  basic  problem  is  quadratic  programming  problem

because the constraints does the function to be maximized is quadratic that is 1/2 w  w.ʹ



Now you when you want to solve it one of the ways of that you do it is by using Lagrange

multipliers this is our Lagrange multipliers now you do differentiation partial differentiation so

you get this as one so you take this thing to be equal to 0 that gives your W as this now with a

dual  formulation  the  minimization  can  be  achieved  that  is  true  but  it  is  quite  intensive  in

programming minimization can be achieved which is true.

But then the programming part of that thing is not actually a simple one is not actually a simple

one, so when this is generalized this is generalized to a case where the data sets the true class

problem is not linearly separable which we had discussed in the previous slides then you take 1-γ

or 1- γi.

(Refer Slide Time: 57:33)

The second one is that suppose you have more than two classes suppose you have 3,4,5 classes

and then the problem becomes more complicated there are two ways in which people have tried

to solve it one is one against the rest it belongs to class 1 and not belonging to class 1, belongs to

class 2 and not belonging to class 2, class 3 and not belonging to class 3 so one against the rest

that is one way and the second way is you take every pair 1 2, 1 3, 1 4, 1 5 and for each pair you

try to get the linear boundary are the soft boundary for each pair you try to get either the linear

one or the soft one.

Now the problem formulation in all these cases it becomes the solution of the problem becomes

extremely complicated and this has given rise to another class of problems which are known as



support vector regression problems. You see in this one this is the actual decision boundary this

is the one that is giving you the maximum margin, now this decision and this one it is passing

through this point which is a data point this one it is passing through this data point what is the

support vector.

In fact these two points are actually known as support vectors because this is the actual decision

boundary and then if you give -1 it is coming here if you +1 is coming here and the +1 line is

passing through this one the -1line is passing through this now these are known  as support

vectors. Now what is the usual regression problem, the usual regression problem is I will do it

here.

(Refer Slide Time: 01:00:01)

The usual regression problem is you have a data set suppose you are looking at linear regression

then you are you would like to approximate this data set by a line like this, now you have a line

draw two parallel lines with the same distance in such a way that on this side there are no points

and on this side there are no points all the points are lying in between these two lines. Now

getting hold of this line amounts to getting heard of these three lines and which amounts to the

problem of support vector machines.

Where in support vector machine that problem formulation the points are lying either on this side

of the line or on this side of the line two classes here all the points are lying in between are you

understanding me, it is basically the complementary one here all the points are lying in between.



So when you have all the points lying in between when you get this flight this is basically your

regression line, which best approximates this.

So it gives it has given rise to what is known as support vector regression and regression has too

many applications any forecasting problem is basically a regression problem or let me say most

of the forecasting problems are regression problems for the past 20 days thus the price of the

stock  is  so  and so  tomorrow, what  is  the  price  so  what  line  approximates  this  what  curve

approximates this, this regression.

So  and  regression  has  too  many  applications  even  classification  has  too  many  applications

regression has  too  many applications  and quite  many people  are  working on support  vector

regression there is one another common that I would like to say I have been talking about linear

boundaries when linear boundary is non-existing then what I am saying is that I have put a

margin there soft margin.

Now there is an extension of this one to non linear boundaries where people actually consider

kernels  people  consider  quadratic  kernels  are  some  other  kernels  for  getting  for  obtaining

boundaries nonlinear boundaries. You will find several topics are several subjects named say one

subject is kernel machines you might have found a book titled kernel machines it is basically

extension of SVM's to non-linear when you have non-linear boundaries then you basically use

kernels to obtain them to at least try to obtain the non-linear boundaries.

So this is another extension from support vector machines one is linear but not exactly error zero

and another one that is soft margin another one is non-linear where you consider kernels and

another one is support vector regression. So lot of work is going on in all these fields and the

work on these fuses nowadays is termed as machine learning so with this I stop the lecture.
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