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So I shall be discussing about principle components which probably many of you are aware of

but in order to complete the things and as well as this  probably I will try to give I mean a

different way of looking at principal components. I think all of you may know what a covariance

matrix is.

(Refer Slide Time: 00:39)

If you have a vector X then its covariance matrix, covariance matrix which are represented by σ

and suppose this vector X has Here I am changing the notation slightly here say it has capital D

dimensional vector, let us just say then this matrix is going to be basically covariance of the first



variable with itself covariance of X 1 with X 2 and covariance of X 1 with XD then covariance of

X 2 with X 1 covariance of X 2 with X 2 covariance of X 2 with XD.

Then in the last row covariance of XD with X 1 covariance of XD with X 2 covariance of XD with

XD where this vector X curve is actually X 1to XD then this is the covariance matrix which is a

capital D / capital D matrix which is a capital D / capital D matrix, still now when we are talking

about feature selection we had a criterion function.  Criterion function is  defined based upon

some I mean some particular characteristics which we believe that the features should possess.

Now in this principal components here we are not going to talk about classification here what we

are  going to  do  is  we are  given some capital  D number  of  features,  we would  like  to  see

somehow where you have more I should say variance, the places where you have more variance

you are seemingly going to get, I should say more variance provides there more of an idea about

that particular variable or that particular I should say combination of variables.

(Refer Slide Time: 03:43)

Basically you look at a data set like this say here you have two variables and you have a data set

the variable X1 has some variance and the variable X2 also has some variance okay but probably

if you take a linear combination and if the linear combination provides something like this may

have more variance than this R than this am I correct? Basically in principal components this is

what we are trying to get.



That is let me explain it you have totally capital D number of dimensions, there were number of

dimensions is capital D then what we will see is that, in this capital D number of dimensions

number of dimensions is  finite,  we are we would like to look at  all  possible  directions.  For

example here how many directions are there you have this direction you have this you have this

like this you have directions right.

So basically your directions are 0 to uncountable many directions, uncountable many directions

you are going to have, then we would like to find out that direction where it provides maximum

variance,  what  is  the  meaning  of  providing  maximum variance?  The  meaning  of  providing

maximum variance is the following.

(Refer Slide Time: 06:20)

So this is your data set my direction is let us just say this axis my first direction, then you take

the projection of each point onto this you take the projection of each point onto this, say this

point when it is projected it falls here, then you measure this length which is basically because it

is already the x axis which is basically the x coordinate right. So if it is this axis you are basically

going to get the x coordinate values of each one of the points but if it is not this axis.

Let us just say an axis likes this one then what are you going to do? You take their projections

and each one you measure the distance from the origin you measure the distance from the origin

okay, you measure the distance from the origin M they will be the projected points the when this

point is projected onto this then the corresponding value is going to be the distance from the



origin to  this  one okay and similarly  for  this  point  the distance  from the  origin to  this  and

something is positive another one is negative.

Here somehow this is negative and this is positive right, if you are taking this as your positive

side of axis this as your negative side then from here to here you are going to get negative

distance from here to here you are going to get positive distance, so the corresponding values are

going to be that okay. So for any such direction say this  is your direction then this  point is

projected here this is projected here then you take this thing.

So you take a direction and project the points onto that direction, so then you will get single

dimensional values for each of these points then you can calculate the variance of this are you

understanding what I am trying to say you can calculate variance. So for each direction you will

get a value of the variance now you find out that direction for which the variance is maximum

find out that direction where the variance is maximum okay.

How to find it out I will come to it later, say suppose you have found it then you store the

direction, now look at all its perpendicular directions look at all its perpendicular directions, now

among them find the direction with maximum variance. Then you have two directions now look

at  all  of  all  the  all  the  directions  perpendicular  to  these  two  directions  all  the  directions

perpendicular to these two directions, then among them find the one which has the maximum

variance.

Like that you just go on and on and on doing it when you come to the last one that means from D

you will find 1,2, 3 up to say D – 1 you have found D - 1 directions always I mean if says you

have found somehow D - 1 directions then the Dth direction is uniquely defined is it uniquely

defined, there are totally capital D orthogonal directions sorry capital D orthogonal directions

you have already found D - 1 orthogonal directions.

So capital D each one is uniquely defined okay and there also you project the points onto that

then you get the variance okay. So now for each one of the points in this suppose one point is let

us just say y it is a capital D dimensional point, then corresponding to the first direction that is

the one maximal variance you will get the corresponding coordinate value to that corresponding

to the second direction for this point you will get a value to that.



Like that  corresponding to all  these chosen D directions  you will  get a value,  so that  is  the

transformed value of this vector Y from the whole set of axis that you are given two new set of

axis.  We are  basically  going  to  get  a  new  set  of  axis  is  it  correct  because  all  these  are

perpendicular directions and you have an origin and all these are perpendicular direction, so you

are basically going to get a new set of axis right.

These directions are called the components, if you want to get small d number of components

then 1 2 3 up to the small d you have to take they will be your small d components they are

called  principal  components  and there  is  also another  term associated  with this  comes from

electrical engineering, do you have any one of your background in electrical engineering? Honan

low this is discrete carbon and low expansion this is discrete in low expansion.

So why the variance is given importance variance is given importance because variance will tell

you  where  you  have  the  more  variation  in  the  data  set  and  you  do  not  want  to  lose  the

information on variances, so if you have to represent the whole data set by a single component

and you are choosing that principle that component with maximum variance that is why each

time you are looking at  the maximal  variances  okay. Now the next  question is  how do you

calculate?

This is the basic principle but then it  looks to be extremely complicated you have to take a

direction for which you have the maximal variance and then you take the perpendicular direction

off you consider all the perpendicular directions to this chosen direction, again find the one with

maximal variance this seems to be a very highly cumbersome process. So there is a simple way

of doing it that simple way is you take the covariance matrix of this vector from which you have

got all these observations. And find it is Eigenvalues and eigenvectors find and write down the

Eigenvectors eigenvalues in decreasing order that is.

(Refer Slide Time: 15:36)



There is a very basic question, here I just said write down the eigenvalues in decreasing order

what happens if an Eigenvalue becomes a complex number? Can I write it in decreasing order?

After all this is a matrix square matrix variance covariance matrix is a square matrix for every

square matrix you can calculate Eigenvalues and eigenvectors and it is not necessarily true that

Eigenvalues will be real, there can be complex numbers also, if they are complex numbers you

cannot write down the eigenvalues in decreasing order or something like that right.

Now my question is that is it possible that for a covariance matrix the eigenvalues are complex

numbers,  the  answer  is  no  for  a  covariance  matrix  eigenvalues  can  never  be  complex  why

covariance  matrix  satisfies  several  properties  one of  the properties  is  covariance  matrix  is  a

positive semi definite matrix are non-negative definite matrix, positive semi definite are non-

negative definite they mean the same thing it is if I write down the covariance matrix as σ then a '

σ a is ≥ 0 for all a.

If it is rather than or equal to zero for all a ≠ 0 vector here equality is introduced then this matrix

is  said  to  be  positive  semi-definite  are  non-negative  definite,  non-negative  means  it  is  not

negative that mean it can be zero or it can be > zero non negative is same as positive semi-

definite positive means strictly greater than zero semi means you are including zero okay. So

then σ is said to be non-negative definite matrix are a positive semi definite matrix and for a

positive semi definite matrix the eigenvalues and this matrix is also symmetric σ is a symmetric

matrix.



And positive semi definite matrix then the eigenvalues they are not only real they have to be also

strictly ≥ 0 this is a I mean is a proven statement and from matrix algebra. Now for in for σ the

eigenvalues are not only real but they are also strictly ≥ 0 that happens because for a positive

semi  definite  matrix  the  determinant  is  can  you tell  me what  the  determinant  will  be?  The

determinant is actually for these matrices its product of eigenvalues the determinant is product of

the eigenvalues.

So if the equality holds then there is at least  one eigenvalue which = 0 then that means the

determinant = 0 there is at least one eigenvalue which = 0 that means the determinant is also = 0,

usually the covariance matrices are positive definite that is usually they satisfy this usually they

satisfy  this  and  if  they  satisfy  this  then  this  is  true.  Then  that  is  true  that  means  all  the

eigenvalues will be strictly > 0.

Now right  let  me  ask  you  a  question,  corresponding  to  an  eigenvalue  how many  different

eigenvectors can you have? We generally write corresponding to this eigenvalue you have this

eigenvector  okay.  My  question  to  you  is  how  many  different  eigenvectors  you  can  have

corresponding to a single eigenvalue? Do you have a unit eigenvector unique in the sense of the

magnitude and the direction both have to be same or the direction is same the magnitudes are

different can you say anything about it, Direction is same magnitude is different right.

That means suppose for the matrix σ suppose λ1 is an eigenvalue then σ X I s land okay so X is

an eigenvector so σ X =λ 1 X and suppose I take some constant C times X then σ of constant C

times X =C times σ X this  is  C times λ1 X which is  λ1 times C  X all  right.  So that  means

corresponding to an eigenvalue you are going to get vectors the same direction but different

magnitude okay.

Now pose to eigenvalues are same okay before that let us just see suppose all the eigenvalues are

different  then  can  you  say  anything  about  the  corresponding  eigenvectors,  suppose  all  the

eigenvalues are different and can you say anything about the corresponding eigenvectors here

what is the meaning of corresponding eigenvectors I take only those vectors with magnitude as

one I take only those vectors with magnitude as one.

So corresponding to an eigenvalue you are going to get basically 2 eigenvectors since you are

going to take √ okay - 1 2 is 1 and 1 2 is also 1 right so + running in two different directions you



are running it is the same thing in the same axis okay. So you might get two eigenvectors with

magnitude as one but you take any one of them no problem, similarly for λ2 you take one such

eigenvector so for λ B Capital D also you are going to take one such eigenvector.

My assumption is all these lambdas are different then what can you say about the corresponding

eigenvectors we have an answer if  eigenvectors are if i call them a1 a 2 a D then a I ‘AJ =1 if if i =j

you are going to get aI ‘aI which is actually the magnitude right square of the magnitude that =1

but if two eigenvalues are different here I am assuming all the eigenvalues are to be different

then the corresponding eigenvectors this exercise this property that means they are orthogonal.

They are orthogonal am I right a ‘aJ =0 when I is ≠ j and a ‘aJ =1 if i=j, so if all the Eigen if no

two eigenvalues are safe that means if all the eigenvalues are different, this property is satisfied

but if two eigenvalues are same, can you say anything about eigenvectors. The eigenvectors first

you are going to have several problems about eigenvectors.

(Refer Slide Time: 26:30)

This is identity matrix what are the eigenvalues of this matrix this is identity matrix what the

eigenvalues of this matrix are? They are 1 and 1 they are same every vector is an eigenvector

right am I correct, so if I eigenvalues are same then this sort of property may not hold are you

understanding,  if  eigenvalues  are  same  this  property  may  not  hold  but  if  Eigen  if  all  the

eigenvalues are different that means no two are same then eigenvectors are orthogonal.



And now you try to remember what I told you in the very beginning I said that you somehow

find a direction now find all the directions perpendicular to that, so each vector is perpendicular

to all the others am I correct, every if all the eigenvalues are different then eigenvector a with

eigenvector is perpendicular to all the other vectors because of this okay. Now if you take the

first eigenvector a one corresponding to this I said that you should get a real number.

What  is that  real number? That real  number is a1 ‘  for that particular  X you remember this

diagram, say this is the direction for this one you should take this for this you should take this

again for this these are the values. So for a particular vector X the corresponding value is this

corresponding to a1 corresponding to a2 the corresponding value is this corresponding to a d the

corresponding to a D the value is this ad/‘X these are the product projected values.

And I was talking about variance the variance of all these values is actually for a 1 it is λ1for a 2 it

is λ2 for a D it is λD, that is if I have to write it in mathematics.

(Refer Slide Time: 30:17)

Variance  of  a  I ‘X =  1  it  is  λI variance  of  a I ‘X  =λI so  these  are  all  the  eigenvalues  and

eigenvectors of this variance covariance matrix. So the eigenvalues are going to give you the

variances in those directions and eigenvectors will provide you the directions since we are trying

to look at the one with maximal variance so you take the eigenvalue which is the maximum and

corresponding to this you find eigenvector this is your first component.



Then I am assuming that the second one is strictly less than the first one the second eigenvalue is

strictly less than the first, one then I get a 2 this is your second eigenvector, so this corresponds to

the second component now you take this and up to you take D λ small d and corresponding to

this you have the direction a d and you are small d these are your d principal components these

are  your  small  D  principal  components  and  the  corresponding  variances  are  λ1 λ2 λD the

corresponding variances are λ1 λ2 λD.

In fact principal component analysis it is used extensively because of these properties that I told

you and there is also another property, since I have been talking about variances is there any

connection between these values and this diagonal note that every diagonal element is a variance

term this is variance X 1 this is variance X 2 is variance X D. So is there any connection between

these diagonal elements and the λ1 to λ DS the answer is yes.

There is a connection what is the correction? The connection is some of the variances this is the

trace of the matrix σ trace of σ I hope you all remember the meaning of the word trace is the sum

of the diagonal elements, the main diagonal elements this is nothing but I want you to check

these things, I want you to check this I am not giving you any proofs for these things but please

check it summation i =1 to capital D of λI that means we are just summing up all the variances

that we have got this is nothing but ∑ i =1 to D of variance of excise.

So basically what we are trying to do here this variance of X is the sum of variance of excise we

are trying to make a partition, where somehow we are just trying to keep the information about

the larger variances and we are removing those things smaller variances and now what is the

meaning  of  this  is  a  linear  combination  of  the  original  variables  right,  a1 ‘X  it  is  a  linear

combination of the original variables original variables are X 1 capital X 1 capital X 2 capital XD

and this is their linear combination of that.

We have taken here small d such linear combinations originally what we have is capital D such

linear combinations, that is the original set up where you have capital D such linear combinations

and these are all orthogonal to each other, we have taken small d of them corresponding to the

larger variances and the other capital D - small d they correspond to smaller variances and if the

variance is small and if we remove those things, would it create a problem or I would like to ask

the question in another way?



Variance is small how is it going to help you can you? Tell me if the variance is small we can

replace all the values by the corresponding means are you understanding but the corresponding

means because since the variance is small from the mean the distance will be very small so we

can actually replace the values by the corresponding means, so in that way we are losing some

information I am not saying that we are not going to lose any information but the information

loss is small.

So when the variance is small you can replace the values for the corresponding means okay, so

by keeping the larger variances and removing those things which smaller variances, yes we are

losing some information I am not denying that since the variances are small, if we are place by

the mean yes there will be some information loss but it is not really that much okay, it is not

really that much and the information loss or the loss in this procedure is actually measured by

this, the loss in this procedure is actually measured by this.

And some people may do this also that means maybe some people may take this ratio also you

can measure the loss either by this quantity are this divided by this ratio okay and so that whole

theory  that  I  was  mentioning  that  can  be  easily  done  by  looking  at  the  Eigenvalues  and

eigenvectors of the covariance matrix. There is a theorem and proof for this relationship between

those  directions  and  the  covariance  matrix  Eigenvalues  and  eigenvectors  of  the  covariance

matrix.

That  is  generally  available  in  many  pattern  recognition  books  it  is  also  available  in  many

electrical engineering books and I will not go into the detail so f that I will not go into the details

of the proof of these statements, if the people who so ever is interested in these things they can

always go through the corresponding proofs in the books and that they can find very easily okay

and this is really a popular procedure.

Because of all these properties that I mentioned because of all these properties that I mentioned

and it  is  used was that  just  too many, to many places  it  is  used just  to many places where

principal components is used, this also resulted in I mean in fact usually computer scientists are

statisticians they have to go through these Eigenvalues and eigenvectors because of principal

components this is one of the reasons why he statisticians are computer scientists they have to go

through the literature on Eigenvalues and eigenvectors because of this principal components.



And because of those wonderful properties of I mean the covariance matrix and when you see

that there is a division that takes place the summation variance X is same as summation i=d to be

λ I this is a very strong property this is a very strong property and so just divides partitions that

that is very nice you see that is very nice and there is a PCA LDA about which Dr. Sukhinder das

goes anyway he will teach okay.

And that there are many other variations of PCA which are used at many places and about one of

them I  shall  take a lecture  probably tomorrow okay where that  is  PCS are used for  feature

clustering where principal components are used for feature clustering in fact PCS, have been

used at I mean several places. One of the recent works is regarding principal components for

sparse matrices, a sparse matrix is a matrix where you have more 0 elements than none zeros you

have more 0 elements than non0 okay.

And then that means basically your data set is such that you have too many dimensions and in

those dimensions too many of them, let us just say I was mentioning an example yesterday I will

tell the same example today, it is you are your data set is something like a web mining data set

that is say you have what a collection of web pages. Let us just say some documents let us just

say you have 100 documents you have 100 documents okay.

So in each document you have some sentences some words and some sentences, let us just say

the number of words per document is of the order of just give me some number let us just say 50

words are there of the order of 50 it may be 51, 52, 53 or it may be 47, 48, 49 or some of them

may be even it may be much smaller let us just say 50. So for each document on an average you

have let us just say 50 words now you have hundred documents.

So100 x 50 let us just say 5000 words and for the sake of convenience let us assume that all these

five thousand words are different even if some of them are same the number of words will be

quite a bit okay. So let us just say you have 5000 words and all these words are different now

what we will do is that were present a web page by a 5000 dimensional vector a word one is

present you write one otherwise 0 if word 2 is present and that location write one otherwise 0.

So your vector is going to be a 5000 and dimensional vector where you have 0 or 1 like that you

have 100 documents, that means 100 vectors but your number of dimensions is 5000 number of

dimensions  is  5000 but the number of such vectors  is  100. Now if  you have to look at  the



corresponding variance covariance matrix to find principal components you are going to have

some problems, if it is instead of 5000 in fact if you look at WebPages you have too many words.

The number of words may be in lakhs then your variance matrix will be 1 lakhs x 1 lakhs such a

big matrix right, so but then most of the elements are 0 if you have to describe one web page

where you have hardly 100 or 250 words 100, 150, 200, 250 or just say 500 words but then your

number of words that you have taken is 1 lakhs you know one lakhs words among which 500 are

here so the rest all of them are 0, so your data matrix is basically a sparse matrix.

And nowadays many data sets are like this and for these sort of data sets if you have to do all

these things then you may have to develop some new methods, the reason is that whenever we do

this sort of thing we assume there is an inherent assumption, that the number of points is much

more than the number of dimensions. The number of data points is much more than the number

of dimensions as for many real-life problems that may not be true for many real-life problems the

number of data points may be much less than the number of dimensions.

I have mentioned for a remaining data set okay and you have many other data sets many data sets

involving bioinformatics, you have cancer patients, you have many gene expression data sets

where again the number of dimensions is after order of two three four thousand but the number

of points may be of the order of 100 or 150 or 200. So these are some of the latest problems

where when you are trying to apply principal components you may face some problems because

of since the number of dimensions is much more than the number of data points.

Then and your computer may not be able to support finding a finding eigenvectors for a letter

just a 5,000 by 5,000 matrix your computer may not be able to support it but for the same thing

for a 100/100 matrix probably our computer can support, it so sparse data and sparse matrices are

occurring many times and in many applications in real life.  So there are some papers where

somehow people are trying to find the principal components for when you have sparse matrices.

There is one paper by tipsy Ronnie on this Riga in this regard I think that they appeared in one of

the statistics journals, tipsy Ronnie is a famous person working in machine learning and I hope

by now you know that many of these things are we are calling it pattern recognition some people

are calling the data mining, some people are calling it machine learning and some people are

calling it artificial intelligence.



So many of these things are actually occur in too many disciplines okay and Tipsy Ronnie and a

few  such  others  statisticians  they  call  themselves  as  machine  learning  people,  so  they  are

working on this thing some papers are already published and there are several problems related

to principle components in very high dimensional data sets because your computer may not be

able to support such high dimensional. I mean finding eigenvalues and Eigen value vectors for

such high dimensional matrices, I am stopping it here if you have any questions please ask me,

no more questions okay.
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