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We were discussing about the properties of a minimum within cluster distance criterion in the

last class then a way of implementing the criterion in practice though women are we are now we

may not be assured of getting optimal clusters is by using k-means algorithm as I mentioned

there are several versions of k-means algorithm the version that I am going to give you is by 4G

1965 FORGY 1965.
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So this is the version the word K it denotes the number of clusters and we are going to assume

that number of clusters is known to us K is known to us and we have got these n points in M

dimensional space and D is Euclidean distance basically what we do is that we generally we

consider a partition of the whole space into K subsets the partition is I have just denoted by

A11A12 A1K it partitions S into K subsets now I am going to assume A21 A22 and A2K is equal to

null set.

What are these A12 I will come to it later then what I do is that I consider mean of Y I as I mean

of A1i as Yi, so y1 is mean of A11 y2 is mean of A12 and YK is mean of A1k okay, so I calculate all

the K means then what I do is that I take points from J is equal to 1 to N the points in s every

point I put it into I take the first point x1 calculate the distance of x1with this K means whichever

means the distance is minimum I will put it into that particular A2i up goes with x1 the minimum

distance is occurring for the mean y2.

Then I will put it into A22okay put xj in A2i if distance between xj + y I is less than here D is

missing I should have written here D, so whichever mean the distance is minimum will put into

corresponding A2 cluster so like that we have now a new partition A21 A22 A2K, now check

whether A1i = A2i for all I if it is if those two are same you stop it otherwise you rename a twice

as A1i and go to step 2 that means now you have a nice a twice are again null sets, now you have

to find the mean of A1 a that means you are going to repeat this process I suppose the algorithm

is clear to you probably you have seen this algorithm at a few places.



So given this algorithm there will be many questions the first question is does it converge the

first question is does it converge the criterion is A1i = A2i for all I then you stop it otherwise you

should go on and on doing it does it converge well I would like to give a slightly we concern the

answer is that it were just converges I would like to put it within quotes in the sense that people

have not found a data set where it is not converging but the proof for convergence they are not

exactly satisfactory.

So and there is also another problem the problem is that suppose it is converging after say 10 to

the power of 10 iterations and you will surely not go to up to those many iterations, so usually

what  people  do  is  that  they  fix  the  number  of  iterations  beforehand  maximum  number  of

iterations they fix the maximum number of iterations beforehand and if it converges before that

that is fine otherwise they will go up to the maximum number of iterations and then they stop it

okay.

So now this is one issue and there is another issue note that I have taken a partition here now I

have taken one partition maybe someone else can take some other partition and let us say the

algorithm is converging in both the cases with my partition and with his partition do you think

the final results  will  be seen the answer is they need not be same, I am repeating with two

different initial partitions it is not necessarily true that the final results would be same they can be

different that is one.

And it also basically provides you convex shaped clusters and so naturally if you have non-

convex clusters you may not be able to get those clusters using this method and this was given in

1965 in 1967 Mclean came out with another algorithm that is known as Mcqueen's k-means

algorithm the paper was published in fact  was presented in Berkley symposium on statistics

mathematics and probability, okay it was presented in the symposium1967 but class symposiums

they are supposed to be the best symposiums in the world in mathematics and statistics but play

symposium, so this was a McQueen's paper was given in 1967 he made a small modification is

that suppose take point x1 say x1is there in the original cluster say A11 okay suppose x1 is there

in the original cluster say A11.

Now when we have considered all  the distances with the means and then we found that x1

should be should go to the second cluster then what McQueen had done is that immediately he

removed x1 from here and he had put x1 here and since one point is removed this mean is



changed immediately and one point is added here that mean is also changed immediately is it

clear to you when ever a point changes its membership from one cluster to another cluster then

he immediately changed the means of the corresponding clusters.

Then his termination criterion is then slightly different his termination criterion is he starts with

x1 x2 up to xn and again x1 x2 up to x and then again x1 x2 up to xn and, so on cycle like this

for n consecutive runs if the clusters are not changing then you stop it okay if um consecutively

unconcern consecutive runs are not changing the clusters then you stop it this n consecutive runs

the starting may happen with 3 X 3 X 3 X 4 X5 X 6 up to xn then x1 and x2 that is fine then you

have n consecutive runs okay, so this is what he had done.

McLean's k-means and there is some other method that is called as john seesk-means and in fact

there are several versions say.
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The mean of the first cluster is say here at this place then using this algorithm say this cluster

mean has changed it to this place using this one then what this one this method is doing is it is

taking this as the new cluster mean and what this Jhansi has said is that this mean is changing

from here to here then maybe I will take the new mean somewhere in the middle and I take this

as  the  mean  of  the  that  particular  question  many  modifications  there  are  many  many

modifications of k-means algorithm.

But this algorithm assumes that number of clusters K is known please any question yeah yes it is

computationally expensive it is agreed, but then if you want to get see intuitively speaking why

do you need to go to the whole range of n points to change the means that is the basic point that

is bothered about I do agree that if you have really large number of points then at each time you

will change the mean one may not like it, I say I mean there is no doubt about that that prowl I

mean people may not like it so that is fine.

But then his basic intuition is that when a point has already changed why do not you change the

mean immediately why do you wait till the completion of all the endpoints and then just look at

it  that  is  basic  concern  but your  point  is  quite  appropriate,  it  is  quite  appropriate  any other

question okay, so this is assuming that the number of clusters K is known and it has a problem

regarding non-convex clusters and it also has some more problems not only non-convex clusters

it also has some more problems.

Any method which is based upon mean it is very much susceptible to outliers I will repeat any

method which is based on mean is very much susceptible to outliers well what is the meaning of

this suppose you have some points here and then just say these two points are here and all these

points suppose they should belong to the same cluster, then what will happen to the mean the

mean will probably be somewhere here what probably one would have wanted to do is to remove

these two points and get this mean in the middle somewhere here.

If you have extreme values in your data since these extreme values have to be put in one of the

clusters that cluster mean and in effect then the whole clustering process of the data would be

suffering because of these extreme values because of these extreme values the clustering process

may suffer these are basically outliers, so then how does one tackle this problem before I go

before I start talking about tackling this problem what many persons do is somehow try to decide

what outliers are remove them and do the clustering after the removal of outliers.



This is a process but there is a very basic question do you actually remove all the time all the

outliers is it  good for the experiment is it  good for the science is it  good for science, if you

remove outliers always any other reply I am reminded of the code from a Nobel laureate I think

he got Nobel Prize in medicine I think two three years ago so that scientist  commented that

probably most of the research should be done on outliers okay that was his comment something

which is completely against the phenomenon.

If it is coming to you probably that contains lot of information it is not the case that you just

removed and then  since  all  other  things  are  following your  own ideologies  or  principles  or

whatever  you  try  to  do  them  as  a  result  that  probably  is  not  good  okay  this  is  a  basic

philosophical point you may take it or you may not take it that is up to you okay you may take it

or you may not take it, but what many people would like to do is that they would like to remove

the outliers they would like to attach a definition to the word outliers.
Remove them and do the clustering after that so whether you like it or not that is up to you, so

how people go about doing it they might go about doing it in very many ways one way is do the

clustering do apply k-means algorithm okay K is the number of clusters then what you do is that

after you get all the clusters for each cluster and for each variable you measure variance for each

cluster and for each variable you measure the variance find out where you have the maximal

variance find out the place.

Where you have the maximal variance if you have a progression if the variance value is I am just

giving you the inclusion variance value is slowly and slowly you have many values of variance,

if they are slowly and slowly increasing like this and this is your maximum variance that is fine

this is your maximum variance value then that is fine, but if it is increasing like this and then the

next one is say here you have the variances are slowly unfold including at some place there is a

very big gap then you take the cluster and consider that variable for which you have got this

variances.

Take the cluster consider the variable forward you have got this variance okay and that cluster

you may break it into two parts that cluster you may break it into two parts according to the

mean of that specific variable, that specific variable you take that specific variable whatever you

that variable consider every point in the cluster, and further specific variable look at the value if



that value is less than the mean that falls into one cluster it is greater than the mean it goes into

another cluster this.

You can sort of take it to be a way of getting outliers you can also have another way instead of

looking at variances for each cluster you can calculate its diameter the diameter of a cluster is the

maximum distance between you for every pair of points you calculate the distance and find the

maximum of all these distances.

That you call it as the diameter that you call it as the diameter okay if the diameter is diameters

of all the other clusters are of say one type and diameter of one particular cluster it is very large

and you take that cluster again whatever process, that I mentioned you can just do it and you can

remove the outliers, so this basically is saying that if the cluster is found by some looseness is

there in the cluster here in this whole cluster there is some sort of a looseness the points are not

very close.

They are not compact, compact I am using it in an ordinary sense since they are not compact

they are loosely attached they are loosely attached then you would like to remove that cluster

which has smaller number of points and keep that cluster would has larger number of points, so

this meaning of loosely attached this there are a few ways in the literature you will find where

these things are discussed I gave you one or two methods just now arm there is also another one

where people have talked about split and merge algorithms for clustering.

And you would see the meaning in the literature split and merge initially when you do k-means

and then afterwards you find this diameter and then find that cluster that has a maximal diameter

and then split it okay, then first you have done the merging now then you are doing the splitting

and then remove those few points and then you may want to do clustering again of this whole

thing  sometimes  you  do  it  sometimes  you do not  and  basically  many  of  the  splitten  much

algorithms.

They are based on one or two basic principles you will merge them you will merge two clusters

if they are somehow very close and you will split a cluster if the points in the cluster are sort of

loosely attached you will split a cluster if the points are loosely attached, you will merge two

clusters if somehow they are very close this is the basic principle using this principle you will



find very many algorithms in the literature where people have done both splitting and merging

initially they may split and then again.

Match then split and then merge can split and then much you go on doing it till you want some

conditions to be satisfied and one such method is one such algorithm is a very famous algorithm

ball and Hall isolate algorithm, which they talk about it is basically a split and merge technique,

so outliers is a problem the other one is whether they are loosely attached or not that is one

problem ball and Hall they also try to somehow get the idea of the number of clusters, but if you

implement that algorithm it is extremely complicated number one it takes simply too many too

many calculations okay, it takes simply too many too many calculations first you do some sort of

k-means then you remove outliers.

Then you do split  and merge and again you do k-means it  just  goes on and on and on you

increase the number of clusters, if you split then you are increasing the number of clusters if you

are merging then you are decreasing the number of clusters, so when you have decreased or

increase then sometimes you may need to again do the clustering and it just goes on and down

and till there is a termination criterion, so and that has you need to do too many calculations you

need to do too many calculations now let me talk about the non convex clusters.
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This hierarchical clustering the k-means sort of algorithms they are all nonhierarchical here are

key I suppose you know the meaning of the word here are K do you know the meaning of the

word here are k there is.
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It is basically a tree structure and you might be having something like this you might be having

like this there is basically some sort of a tree structure you might be having something like this

there is some sort of a tree structure maybe you can have this, I will  give you examples of

hierarchical  clustering techniques,  but let  me discuss this  there are two types of hierarchical

clustering techniques one type is known as agglomerative another one is known as division in

agglomerative.

What you are going to do is that if you have n number of points you are going to assume that you

have n number of clusters and you will go on merging them in the first one you will have n -  1

clusters in the next one you will have n – 2 clusters in the next one you will have n - 3 clusters

you will go on and on doing it and in divisible you assume that you have a single cluster then

you break, it into two parts then in the next iteration you choose one of the existing clusters and

that you break it into two parts.

So basically again it is a tree structure so both of them are tree structures agglomerative and

division.
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So agglomerative techniques so this is small and this is small and this is not capital n this is not

capital n is small n, so if you have smaller number of points you will assume that you have

smaller number of clusters C1 C2 Cn, so in the level 1 you have n clusters so in the level I you

are going to have n – I + 1 clusters then you will merge two clusters at level I if capital D from

the distance between the cluster Ci and cluster Cj is less than the distance between clusters Ci 1

and Cj 1for all I 1 is even.

So in that way you will reduce 1 cluster then you again you will rename and you are going to do

this step till either you have, if you have the number of clusters to be obtained you will do that

otherwise you will go up to the number of clusters 1 and look at all these things and somehow

you decide on the number of clusters looking at all this and I mean all the clusters that you have

obtained at each place, but let us assume that you are given the number of clusters and you have

got these clusters.

So you will  go on repeating  this  one till  you get  the  required  number of  clusters,  now the

question is how to define that capital D.
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How to define capital D.
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This is a definition that one can follow that is take a point from here and take a point and find the

distance between them and that you do it for every point and every point from here and find that

pair for which the distance is minimum actually that pair for which the distance is minimum that

you call  it  as  capital  D note  that  till,  now we have calculated  distance  between points  this

distance between two sets this is distance between two sets this is not a metric this is not a metric

if you use this definition the clustering that you will get is what is known as single linkage.

And if you use this  definition the clustering that you get that is what is known as complete

linkage and unfortunately this is also not a metric none of these two DS that I mentioned they are

matrix I will tell you why they are not matrix assume that there is a point common to A and B

then this distance will be 0, so distance is 0 means the sets the points have to be same you look at

the definition of metric so only one point is common the sets are not same, so sets are different

but the distance between them is 0.

So that is not a metric now this one where you are taking the maximum of x belonging P and Y

belonging to B that is also not a metric because take B as A then distance between a with itself

that must be equal to 0, but here you are going to get a positive quantity here you are going to get

a positive quantity, so this is not a metric and that is not a metric then the next question is can we

actually define a metric the answer is yes you can define a metric there is a metric that is known

as how stops metric.



There is a metric that is known as house torque metric that is defined between sets which are

compact non empty compact subsets this word here compact is again topology it is coming from

topology how staff metric that, if you use that definition then that is going to be a metric you

want me to give the definition of how store metric.

(Refer Slide Time: 31:41)

Okay let me just give you suppose we are in say M dimensional space now small D this is the

usual Euclidean distance small D is the usual Euclidean distance and when you define this must

come from this to zero to ∞ okay, we will define it like this distance between a point x and they

set A is Inf of Y belonging to a D X Y first, let us define this distance between x and they set a

now then the distance between A and B this you can have it as maximum sup means supremum

and if  we are  dealing  with  finite  sets  supremum is  same as  maximum infimum is  same as

minimum.

Infimum is same as minimum supremum is same as maximum this is this basically gives you the

following suppose this is one set and then say this is another set let me call it A and let me call it

B what you do is that, let us look at this take a point Y in a and first you need to find dy B that

means  further  from this  point  you consider  all  the  distances  and find  where  it  is  minimum

infimum that that distance is this and that you have to do it for every y may be for this one again

the distance is this may be for this one again the distance is this.



And the maximum is actually this something like this okay now take this here also for a point

here  you  find  all  the  distance  of  this  point  to  all  the  distances  here  and  the  minimum the

minimum is probably occurring here maybe for this point the minimum is occurring here and

then the maximum that  probably may occur  somewhere here so you have this  quantity  this

quantity then you need to find the maximum of these two that maximum is in this case this to

this one that you are going to get.

So this is how store metric by changing the definitions of D you are going to get many different

clustering’s by changing the definitions of D you can simply get many different clustering’s that

is single linkage complete linkage you might have something called average linkage the word

average linkage you can define it in many ways the word average, now probably you might be

having  a  question  the  question  is  minimum  X  belonging  to  ay  belonging  to  B  this  is  a

dissimilarity  between  a  and  B  maximum  X  belonging  to  ay  belonging  to  B  this  is  also  a

dissimilarity.

If you consider this dissimilarity as correct do you think this dissimilarity will be correct if you

take maximum as dissimilarity then can you take minimum also that is similarity in another one

or if you consider this do you think you should consider this, are you understanding my question

probably only one of them is  one should I  mean probably at  the same time one should not

consider both do you agree to this, but each of them has its own meaning that let me tell you

have one cluster here.

(Refer Slide Time: 37:03)



You have one cluster here and you also have some clusters.
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But the algorithm says is that you find let us let us look at the first definition single linkage you

find that the similarities between every pair of clusters the one for which the dissimilarity is

minimum you will merge those two clusters, now between two clusters here the dissimilarity is

measured as minimum of these things that is fine minimum dissimilarity our maximum similarity

that  maximum similarity  wherever  it  is  maximum you are joining  those two clusters  this  is

minimum dissimilarity our maximum.

Similarity that wherever for whichever pair that is maximum you are joining those two clusters

you are merging those two clusters that is single linkage, now what is complete linkage complete

linkage  says  between  two  clusters  what  can  be  the  maximum  amount  of  dissimilarity  the

maximum amount of dissimilarity between these two clusters is this and that you are minimizing

it  one  is  minimizing  the  maximum  disability  the  other  one  Is  maximizing  the  maximum

similarity both of them are valid only thing is that when you are maximizing.

The maximum similarity you have a very positive outlook and you are minimizing the maximum

dissimilarity  you have sort  of a negative outlook it  is  like saying that  people have invented

Aeroplanes,  but  there  is  another  scientist  who  invented  parachutes  also  both  of  them  are

necessary are you understanding what I am trying to say one is a pessimistic way of looking at it

another  one  is  optimistic  way  of  looking  at  it,  and  you  do  need  both  points  of  use  is  it

understandable.



So one is this and the other one is this it is basically Prince Wei where we have to find that the

similarities  and  then  do  the  joining  if  you  look  at  the  best  way  of  looking  at  if  you  are

constructing MST you would find Chris Cole's algorithm where it assumes that the edge weights

are given to you, but if you need to find the edge weights then Prims algorithm order n square

which is what you are asking me this is an order n square algorithm this is what generally people

use since you need to know the edge weights between every pair and you need to know edge

weights means it has to be an n square algorithm you cannot have anything less than that but you

need to consider every pair number of pairs is n into n -  1 /2.

So that is the N square okay and that is n square so you are asking me about for every pair we

need to look at the dissimilarity yes then you are going to get this that is also true, if you need if

you want to apply single linkage algorithm to satellite images where the number of pixels may be

let us just say 512 by 512 then and between every 2 pixels somehow you calculate some features

and then you try to get these things then your algorithm your method will collapse, because it is

extremely expensive 512 square pixels you have.

It  is  extremely expensive though MST has very many nice properties this  is a property that

computationally it is really expensive that is one of the reasons why people do not go in for MST

but, now let me tell you some of its good properties I claim that you will get I claim that you will

get non-convex clusters how do you get non-convex clusters.
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Okay right, so this is the data that is given to you and you have two clusters here one is this

another one is this now suppose you know that the number of clusters is 2, now you would like

to do single linkage on this that means first you will find 2 points where the distance is minimum

okay and like that you apply that whole algorithm, so and you will go on doing it till you get two

clusters till you get two clusters and then there you will stop it what will happen is that all the

points here they will be connected.

All the points here they will be connected and that will be the case when you will come to two

clusters from two to one you are going to have you take a point from here and probably that

means something like this and this is a huge value compared to all those small values so you are

going to get non-convex clusters and when I started clustering I started with this example.
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Look at the second one if you apply single linkage on this you will get those two clusters if you

apply single linkage on this you will get those two clusters, so you can get non-convex clusters

right but it is really expensive that is one problem there is another one came in sort of algorithms

they basically look at the it is centroid based algorithm so you are going to look at something like

a density that means you have got a certain mean and then there is some radius something like

that you are going to have.

Basically you would like get cause you will get convex clusters there single linkage you will get

non convex clusters can you is there any way of putting these two things together, so that to

develop to have an algorithm which has the plus points of both this single linkage and as well as

k-means, so that somehow you are able to get both the convex and non convex clusters that is

one secondly I was mentioning in one of the earlier classes that there is also something called a

came adults algorithm which is based on the median.

You would need something which is based on the median the reason is that medians are generally

not affected by outliers many of you have image processing background you would have done at

some point of time median filtering okay, if you do mean filtering and if the window contains

really  high  values  and low values  then  probably  you would  not  like  to  do I  mean filtering

probably you would like to do median filtering to remove the outliers, so similarly here you have

algorithms which are based on generalization of median which is known as made you have some

monoid based algorithms also k many voids algorithm for clustering you are you have that.
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Yeah look at the example - in the slide I have drawn the points in this way for this cluster if you

calculate the mean the mean will be somewhere here, it will be outside the cluster for this one if

you calculate the mean the mean will be somewhere here okay, so this is the actual mean of this

cluster this is the actual mean of this cluster, now if we had actually got these two clusters then

what the k-means algorithm would have done if it would have calculated this as the mean and

this as the mean then all the points which are falling on this side.

It would have made it into one cluster all the points which are falling on this side it would have

made into another question, so we are not getting the clusters okay whereas in the first example.
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k-means algorithm would generally provide the clusters that you would like to get in the first one

in the second one the MST based clustering that is a single linkage would have given you the

correct results if it had if we know if you feed the information that the number of clusters is 2

and if you measure the disability by Euclidian distance then you would get those two required

clusters.
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