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Gaussian mixture model using EM method where do you use and why do you need a mixture

Gaussians  we have seen in  may our  analysis  specifically  if  you recollect  back some of  the

discussions which we had on modern business criteria  the covariance matrix  under the base

bayes  paradane  when  we  convert  a  distance  short  of  multivariate  Gaussian  function  into  a

distance criteria we made an assumption in most of those analysis that the distribution of scatter

of the data in whatever dimension it may be 1, 2, 3 or even higher is a Gaussian distribution

okay.



This short of assumption may not happen in particular but of course most scientists engineers

still  use  a  Gaussian  disruption  for  modeling  may  analysis  in  may  difference  applications

including single process commutation theory violations whatever may be the advantage is that

the Gaussian seems to be the one which is more closer to the natural distribution okay number

the  other  main  reason is  it  is  easy to  do  mathematical  manipulations  if  you have  Gaussian

functions.

Specifically is differentiation exists up to as much of an order as you need infinite order it is

suppose  it  as  various  other  types  of  advantages  which  this  function  provides  over  other

distribution  functions  but  there  may  be  situations  where  a  distribution  may  not  be  sticky

Gaussian in nature or nature is sickly not Gaussian in such cases there are methods which deal

with multiple Gaussian it is like as if I want to cluster the data into several components or several

parts.

And I assume or we assume that each of those clusters forms a Gaussian distribution so this

leaves leads us to analysis which is based on GMM which is casually called or the Gaussian

mixture model let us look at the expression of the Gaussian mixture.
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This is the univariate Gaussian distribution in 1D where the μ is indicated by the mean okay and

of course  σ is a standard deviation  σ 2 is the variance which is here okay this is actually the

variance remember the  σ is called the standard deviation variance is  σ2 which is here as well

okay so this is the normalizing part of the function and this is the exponential function we had

seen this and we had to also extend this to a multivariate Gaussian distribution case.

Where this μ becomes a vector of the dimension of the data sample or instance x okay I have

changed this G to N here indicating this is a univariate Gaussian distribution in 1D in higher

dimension it is an N okay where this σ2 represent replaced by the covariance term root over this

and this is modern distance function within the exponential term which you have inverse of the

covariance matrix this is nothing new.

We had this discussion earlier under multi variant Gaussian distribution we put this under the

bayes paradane and we formulate distance functions and we know under what properties of the

covariance matrix we are going to have between class linear decision boundaries or DP is or non

linear  boundaries  actually  the  covariance  matrix  and  it  is  inverse  of  the  covariance  matrix

dictates the corresponding property of the decision boundary okay.

But now we what we will do is we will extend this to a case where we will have not only a

multivariate  Gaussian  distribution  one  of  them in  higher  dimensions  but  multiples  of  these

speared over the data.
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And to  do  this  we  basically  need  to  estimate  the  covariance  matrix  and  μ  for  a  particular

distribution and one such method is actually called the maximum likelihood estimation when we

need to estimate this for a particular data.
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Data samples so do this we will look at this ML method which is a simpler one to visualize if yi

take the log of this probability function for the pervious expression let us go back.
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To the expression here this what we are talking the log about an we did this when we actually

form the discriminate function for a particular class when we derived a distance criteria. 
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So if you do that these terms so this is all expression is also not nothing new to you have a

nonlinear term here and you have a certain constant terms in this expressions okay we need to

tell the derivative of this because you need to actually maximize this so take the derivative with

respect to the mean and the covariance term because this is are the 2 parameters which you need

to estimate for that function.

This will give you an expression based on to estimate the mean so the mean estimated by the

maximum likelihood or ML method where N is the number of sample points is given by this

which a trivial expression which you can get it from here and the covariance matrix is actually

given by the overall scatter matrix is given here.

So the ML method for estimation of the parameters mean and the  σ is giving you the same

expressions which we have seen earlier this the covariance matrix this is the way you estimate

the  covariance  matrix  and  the  corresponding  mean  for  the  data  what  happens  if  you  have

multiple Gaussians or what is called as a mixture of Gaussians.
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Or Gaussian mixture and this is sometimes called as a linear super position of a set of k number

of Gaussians K is the total number of Gaussians typically K is more than 1 but of course in a

very  special  case  K  can  be  equal  to  1  where  are  just  have  one  Gaussian  and  the  overall

probability is now a summation of all K number of Gaussians where this πk is called the mixing

coefficient hence we will call this as the mixing coefficient for the K th Gaussian the subscript k

indicate the corresponding Gaussian.

And this expression is the normal distribution normal multi variant Gaussian distribution normal

multi variant Gaussian distribution for the class K μ vector of the corresponding dimension as the

sample K and this is the covariance matrix for the K th Gaussian again repeat this is the mixing

coefficient for the Kth Gaussian this is the normal multi variant Gaussian distribution for the Kth

Gaussian okay the only constraint which we put with respect the mixing coefficients is that each

of them live in 0 to 1 and the ∑ of all this is equal to 1.

∑ all are mixing so these are basically considered as weights they are also called the weights for

the corresponding Gaussian function and if you take the log likelihood, if you take the log likely

would of this overall function which is a function of the mean the covariance and the weight

coefficients which is also given as a function overall the data samples N is the total number of

samples and the p(x) is given here this is the p up to the probability for the distribution for a

sample x as given as this.



So this what you will get you can take the σ so this is the same so replace this expression p(x)

sand by this here and this is what you will get okay remembered inside the logarithm you have

the ∑ over K Gaussians and then you have it for as many number of samples okay K is the index

indicating K is the index indicating the Kth  Gaussian and N is the indexes front to a particular

instance or the sample total number of samples is N total number of Gaussians is K this is the

expression you have for the lack likelihood for a mixture of Gaussians multi variate Gaussian

distribution.

(Refer Slide Time: 08:53)

Is what we are considering in this case the maximum likelihood may not work to yield a close

form solution and you need the method of optimization which is a attractive and that is what EM

or expectation maximizations will give you.
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So let us take this example to show what we are planning to intent if this is a short of a scatter of

the data set of data samples which is obtained by the mixture of 3 Gaussian you can see here that

this the overall trained of the does not follow a Gaussian distribution by itself, so we can cluster

the data into three different components and say each of this individual components is a cluster

following a Gaussian distribution in fact this particular data has been obtained or synthetically

generated by.

Three different  Gaussian distributions  as given by this  three different  Iso contours these are

asymmetric Gaussian distributions in 2D three different class means indicated by three different

colors  and they  are  Iso contour  lines  and actually  if  you look at  this  particular  plot  this  is

showing a surface plot in two dimensions where the height of the surface at each individual

points reflects the probability density of a corresponding cluster or a Gaussian I repeat again if

you look back into the slide.

This surface plot can be visualize to be an extension of this plot here where this plots indicated

Iso contour lines or curves of equal distance which respect to the class mean but at each point if

you compute the probability say you compute the probability at a point here and translate that to

a height this is the plot which you will get so you will get surface plot where the height here on

the right hand side is indicating the probability density of that function.

So what I mean is this is synthetic data obtained by 3 Gaussian functions and overall so this is

cluster density may look like this which respect to the clusters so it is difficult actually model this



under  single  Gaussian  distribution  even  in  2D  and  these  are  the  three  sample  points

corresponding to three clusters, if you remove the cluster level or the color of this data this is the

data which you will have.

So cannot model this perfectly using a single Gaussian and this data shows the example why do

you need multiple Gaussian’s or a mixture of Gaussian’s to model this data. Of course you could

ask me a question how do you know a priory how many Gaussian functions you need, okay. So

that id something which is not under the scope of the discussion today and it is a matter left for

individual researchers to find out for a given data set what is the optimal number k.

There are methods to find out the optimal number k, if you have a data set a priory given to you

often you can find out some methods by with the best k number of Gaussian’s you can fit on it.

In this case of course since I know the data before and I will say that the number of Gaussian’s is

three, but if you give you an arbitrary distribution which is non Gaussian in nature where k=2,3,4

or 10 or even more is very difficult to visualize.

In practice in general but there are methods in which people adopt to find out what is the ideal

value of k for the expression.
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So we can think of mixing coefficients as prior probabilities for these individual components and

so  for  given  value  of  k  we  can  evaluate  the  corresponding  posterior  probabilities  called

responsibilities which can be visualized as some latent variables in our expression which we saw

couple of slides back.
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Let us get back in the expression of the lock likelihood but before that we will look at this base

rule in which we define an expression of λk as a latent variable given by under the base paradigm

but this is nothing new few this is the posterior probability the class priors and so on and so forth

which we are discussed earlier.

So  what  we  are  doing  here  is  taking  the  class  conditional  probability  to  be  our  normal

distribution a mixture of Gaussians so we have replace this term here by the numerator has given

by the  mixture  coefficient  and the  corresponding unconditional  prior  to  be  the  Σ of  all  the

Gaussian’s in the bottom.

What is the mixing coefficient μ here, the number of samples for a particular class divided by the

total number of samples here, okay. So interpret that the number of samples for a particular class

as the number of points assign for a particular curve which is not assigned beforehand we do not

know how many samples belong to a particular cluster k, so that has to be obtain and found out

which in turn will actually give you the mixing coefficient πk.
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So what does EM algorithm do, so the Em algorithm is an iterative optimization technique which

is operated locally to find out the set of values of the parameters what are the parameters now we

need to estimate here in a Gaussian mixture of Gauss, a mixing coefficients the set of class

means for individual clusters so if there are k class, let us say somebody decides that I want to fit

k mixture of Gaussian’s or KGMM or k Gaussian mixtures to be very precise on the data.

So k is known, so if there are k Gaussian clusters which you want to fit so you have k different

means, each of this mean has a dimension which is a same as the dimensional of the data. But

there are k means, k covariance matrices and k mixture coefficients,  so 3xk seems to be the

number of what not in terms of the number. But k sets parameters which you need to estimate

okay, well of course the mixing coefficients each of them is a scalar quantity that is alright.

For μk there are k means each of dimension D, k covariance matrices how many elements D2

elements within each covariance matrix, so these are the set of parameters one needs to estimate.

Let us see how the EM does it, so there are two steps in EM one is call the expectation another is

called the maximization and this is an iteratively one after the another.

You have an expectation step or an estimation step as it is called followed by a maximization

step, so an iteratively you follow this pair of steps one after another in a sequence unless you

have a condition of conversions which is satisfied at the end. So estimation is for the given

parameter values we can compute the expected values of the latent variable and hence it is called

an expectation step as well.



And then you have a maximization step which updates the parameters of the given model based

on the latent variable calculated using the ML method, okay.

(Refer Slide Time: 15:55)

So let us look at EM algorithm now, so given a Gaussian mixture model our goal is to maximize

the likelihood function which we have seen a few slides back with respect to the parameters well

π, σ and μ comprising the means which is the μ. The co variance matrix σ of the components and

the mixing πk okay, so the 1st step is initialize the means just an index from 1 to k the co variance

terms and mixing coefficients and evaluate the initial value of the log likelihood.

You can start with the arbitrary set of random values here as well but instead of being absolutely

random what we could also do is take since you do not have something like a class information

you can take the overall of the entire data set and take the individual mean of the clusters or the

Gaussian to be the data mean okay.

The co variance matrix could also start in fact there is lot of some degree of research which is

happened to find out what should be the good starting point for any method the more closer you

are to the final solution the faster you will convert the better solution is what you will have, so

instead of starting with the absolute random values in this case it is possible to that you can have

better estimates but I am not touching those aspects in this particular talk.



So initialize let us say with some initialize value which could be earn random values we go to the

E step of the EM which is the expectation step and that you compute with the little variable as

given  as  the  expression  here.  So  this  is  for  the  kth  Gaussian  which  and  the  corresponding

expression is given here kth. So the denominator you sum up all the Gaussian distributions for

that value for the corresponding x which you have estimated using the random number so sum up

all Gaussian in the denominator and the corresponding Gaussian after you have estimated this.

(Refer Slide Time: 18:13)

Let’s go to the 3rd step which is the EM step and the 2nd step mind you have estimated this γj or

the γk the index as changed but it is the same variable and that goes inside the expression here to

compute the corresponding mean and the co variance from and this is the same as the EM step

done earlier except that the written variable is sort of a weight here with comes here and more

accurate value of the mean and co variance matrix.

The mixing coefficient must also be calculate using the variable computed in the e step in the

step 2 earlier as given here, correspondingly so one the μj are available here you can see the 3

expression here the mixing coefficient, co variance and the mean they all are computed using the

data sample points and the variable this is the normal distribution expression as given here, so

then what you do obtain the Gaussian mixtures using the parameters estimated in step number 3.

Now what you need to do here is find out if the corresponding likelihood estimated here truly

represents the data samples if this is not which will not typically happened you back go back to



step number 2, so you keep repeating step number 2 , 3 and 4 what essentially which is the E and

the M part that will help you to actually converge in better solution we will have an illustration

of this very soon in next few slides.

And you put an converge and say that I will keep on repeating this process till my log likelihood

of the distribution satisfies some criteria of converge. So the convergence criteria could be such

that in successive iterations or over set few iterations the parameters do not change, what are the

parameters the mixing co efficient π the mean μ and the co variance scatter σ they do not change

over successive iteration over a last few iteration.

The other some similar in which you can use is given in step number 4 is when you estimate this

likelihood if this itself does not change over a set of iteration, so you compute and restore the log

likelihood value which we have computed in the previous iteration compare that with the current

one and the change is negligible  below a threshold you say that you have met a criteria for

conversions  and  you  say  that  you  have  an  estimated  the  corresponding  Gaussians  over  the

distribution which we have 

(Refer Slide Time: 21:12)

So to wind up let us take an example now in 2d and this images have been obtained also from the

book by bishop so we have taken it from the book fashion recognition and machine learning the

reference of the book has been given at the beginning of this particular lecture so what does it



show here this is a scatter you can almost see it is visible that there are two different clusters of

data so it is possible to fit them with two different Gaussians distributions.

So almost blindly I am selecting the k to be 2 but you can select k to be 3 or 4 also there will be

some amount of convergences whether good or bad another into be seen but in this case let us

take the example of and let say the Gaussians have been initialized at these two places with the

corresponding mean and scatter this two ellipse is show that this is the Gaussians here k=1, k=2

Gaussians  is  here   that  these  are  the  corresponding means  at  centre  of  the  ellipses  and the

distributions this scatter is in 2 d.

So as you keep proceeding remember what did we do in the EMI algorithm there were two

typical steps one was the E step in which you are estimating after the initial set of ransom values

have been has been used to start this cycle for the corresponding set of variable or the parameter

of the Gaussians mixture model you use a E step to estimate the written variables then using the

third step you go to the M step where you actually estimate the parameters again using the lateral

variable and continue these process off course you keep in watch in the clock as you proceed.

(Refer Slide Time: 22:56)

That these are initial set of points which are marked in blue will be assigned to this particular

Gaussians and what will happen to this set of points because they are the once which are going to

be closed closer to the corresponding Gaussian remember this was the initial stage okay and you

start assigning the distribution because this will the points lying close to the blue cluster.



Here or the blue the Gaussians market with these blue ellipse will be closer to this set of points

and hence they will be assign to this corresponding Gaussians and the points which are labeled in

red now we will assign to this so what you do now after this assignment you recomputed the

parameters the mixing coefficient the mean and the scatter let’s see how the recomputed means

after the first literature look like so once you recomputed they will appear like this.

(Refer Slide Time: 23:52)

 From the data this is distribution for the points which have been assigned to the Gaussian this is

step number one and the corresponding which is in two will be marked here this is after the

second tip so this is how this start converting you reassign the points one second and this is how

the literature at number step 5 we can see that the one of the Gaussians convert to this close

cluster of points marked in blue.

The points here are red flowing another Gaussians distribution after 20 you have almost convert

to this point and this is the final stage of interaction where if you still you will not have a change

in either the parameter values or a log like layout criteria after you compute with this set of

parameters okay let us have look at this animation once second.



So this is the starting point you not know where is the clusters where should put the you can start

almost  anywhere  and  then  this  is  how  the  conversion  takes  place  second  interaction  5 th

interaction and the 20th interaction okay so this  is the method by which you can fit  a set of

Gaussians to certain scatter of data points which do not point a invariant single Gaussians.

And this is the method which is actually used not only to form clusters but usually model data

points after because after this you can actually apply all your methods of classification or the you

want to transform clusters group them under certain criteria and so on so this is one method

which is used to model as well as form clustering thank you very much.
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