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Welcome  back  to  the  lecture  series  on  pattern  recognition  in  the  last  class  we  have  been

discussing  about  decision  boundaries  decision  regions  discriminate  functions  following  the

discussion on normal distribution and for the task of pattern classification we took a very simple

example of a minimum distance classifier or needle nearest neighbor classifier.

In which you had simply taking the distance of the sample X from the mean without worrying

about the class priors and the class distribution functions and we also discussed that this is not a

correct method to estimate or to perform the task of classification. Because you will get good

amount of errors.

In this process and there are lots of examples to also show that which you will worry about it

later okay so to incorporate those we will bring in the classic Bayes theorem okay so let us look

at the slide for the classic Bayes theorem.

(Refer Slide Time: 01:14)



So Bayes theorem the best decision rule has been discussed in an earlier class where the Bayes

theorem is given by the expression as you see on the top so we are trying to classify a sample X

this is what the capital X indicates a feature vector with an arrow and the WI belongs to indicates

the class I okay WI indicates the class I so what Bayes rule or the Bayes theorem say that it

requests three inputs the three terms which you see on the right hand side one two and three are

all given here and this is the output what are the individual terms which are here now.

There are different books which will actually use these terms in different ways and I am going to

use as much of the common terms which are used to describe these corresponding terms within

the Bayes theorem okay which is used for later on used for class assignment okay so what are

them this is what you get.
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 P of X the denominator term is basically called the unconditional density function or evidence

some  books  will  casually  call  it  evidence  but  I  think  we  will  stick  to  the  word  called

unconditional density function or unconditional probability it is the prior distribution of a feature

X  in  the   entire  population  that  is  what  it  means  if  you  are  taking  color  as  a  feature  to

discriminate between flowers and fruit I want to find out how much of red flowers are there it is

not a question of trying to identify.

Whether a flower is a tulip or a separate category of a flower okay or the classical logic on

whatever you want to whatever color it has or the rose okay how many flowers have a colored so

if color red or if color is a feature color is a feature the redness of the color for that particular

sample week that can be calculated from a used set of samples okay if you want to take some

other example let us say the height of a particular person you take a group of individuals you

may try to categorize individuals based on different patterns such as say language dress color.

Whatever the case may be food habits but let us say I want to take height as a feature and we use

it for a classification whatever the case name but height is a feature so if you take a group of 100

individuals you would like to find out how there are how many people with the height let us say

exactly 5 feet or 5 feet 6 inches that will indicate the unconditional density function because you

are sampling the data without worrying about the class under which category the rate of all that

is P of X P of Ω I or WI as a symbol indicates.



You can use it as a WI as the prior probability that a random sample is a member of the class

here index is the same the prior probability that a random sample is a member of the class CI this

is sitting in the numerator of the expression here of the base what is called as the casually the

class prior okay let us take an example of a two class problem discriminating between apples and

oranges I give you a bag of fruits.

And there are ten fruits six of them are apples and four of them are oranges I repeat there are ten

samples six of them are apples four of them are oranges so I can compute P of W one for Apple's

P of W tube for oranges very simple answer what should be P of W for apples the prior for apples

it will be six by ten or whatever it is 0.6 and the other will be of course one minus that will be

point four very simple.

 So though that is an example of class prior you need to find out because actually what happens

is in the case of fruit classification the fruits are sometimes seasonal so it is good to find out for a

particular  season  what  is  there  a  certain  type  of  seasonal  food  which  is  available  in  large

quantities say mango in summer or could be jackfruit or some other food which could be apples

could be typically more or cheaper lettuce at least in the in winter oranges also are seasonal fruit

but  of  course these days  we are  having almost  fruits  all  through this  is  an accept  mangoes

probably not available all that ok let us go back the other term.

Which is the most significant term in the numerator so we are discussed what is the class prior

and unconditional probability the term here which is the most significant one is called the class

conditional  probability  or  likelihood  given  a  particular  class  WI how many times  does  this

feature X occurs okay it is the likelihood of obtaining feature value x given that the sample is

from a class WI it is equal to the number of times or occurrences of X if it belongs to class WI

that means if you pick apples as a class how many fruits will you have which have the color red

well that probability could be higher.
You would like to compute how many red fruits will you have if you are given only oranges now

you know how many times an orange can become red or some other color that is a which is not

orange which is a black or green well orange is if it can be green but let us take some other color

red or black so you can compute the likelihood or class conditional probability as it is called for a

particular feature given a particular car.



So given all these three terms on the right hand side a very simple probabilistic estimate will give

you the left-hand side quantity which is called the measure condition or the posterior probability

and this is the probability for any feature vector X being to be a sign for a class WI. So you

assign X to a WI if this measured condition probability is higher for a particular class the rule is

the same the rule for assignment is the same whichever the corresponding probability posterior

probability under Bayes satisfies.

The maximum likelihood you will assign it but how to compute the likelihood that is done using

this formula so in the numerator you have just remember class conditional probability you have a

class prior and you have an unconditional can you repeat this with me on the numerator you have

class  conditional  likelihood then second this  one is  class  prior  denominator  is  unconditional

profit using this three you compute.

The Bayes theorem so assuming you know this formula let  us go back to our discussion on

decision boundaries and decision regions to be obtained under the Bayes paradigm so now look

back you remember base this is the expression.
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Which you just discuss now okay now consider a disturbance function GI which we have been

talking about in the last class a log of the numerator of the expression numerator of the Bayes

expression you see these two terms if I take the log this is what I will get and I am ignoring the

eliminator what was the denominator here which we are ignoring we discussed that just a few

minutes back.

It is the unconditional probability which we are ignoring and we are taking the two numerator

terms and taking a log of that expression and within that what we are bringing in now is this term

class conditional probability or casually also called the likelihood correct class culture prodigy or

likelihood.

This  is  the  class  prior  okay  this  is  called  the  class  prior  okay  and  this  is  called  the  class

conditional probability or likelihood is given by this famous expression we have seen this couple

of classes back also in the last class beginning this is the what is this expression multivariate

Gaussian density function so that pins in a two dimensional space this is the distribution look in

the expression you have remember there is a vector sign which I have kept consistent here but

after some time I may not keep this vector notation I have tried to be consistent as much as

possible throughout my slides actually ideally this should also have a vector sign.

But this is a vector mean vector the sample vector covariance matrix here normalizing term here

so using this expression using this expression if we incorporate inside the log can we write the

expression of G I will work this out in the board so what did we have we had the Bayes rule.
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 I am just writing the two numerator terms can you just tell them what they are the first is the

class conditional probability or likelihood what is that multiplied by class prior correct so that is

that is my base so what I am ignoring here is the denominator term and what I am writing now is

G of I of X my first discriminate function.

In my class okay so what I am writing I am taking a log of this basically okay simple log off so it

will be log of this plus log of the classifier very simply and this particular term I am writing here

this I am saying will be a let us say this is a multivariate Gaussian density function so this will be

root over determinant of ∑ I for the corresponding eyuth class correct so there is a symbol here

the subscript I then 2 π to the power D correct the square it will be part of this correct TB overall

this is the normalizing term.

We see that is the idea then this is the main thing exponential minus will be there here correct

divided by 2 X okay, I should be careful here that X is a vector mind you I had this vector sign

inside my slides for the sake of convenience I am ignoring that but if you are copy you can put

the vector  sign here because both of  these are  vectors  then you have the covariance  matrix

inverse of the covariance matrix and then X- UI correct will be  I here okay so what is this is the

this is the O so if you substitute that take the log so this there will be this factor which will come

out plus the log prior at the end the interesting part will this factor here.



So if you check it out I think it will be -D by 2 log 2 π here into this you know tell me what I will

get here- 1 by 2 log determinant oh yeah and the log and exponential will be cancelling out so

there will be a minus sign here so  it will be a minus 1/2 by this one not so X -μ I transpose

covariance inverse they keep getting used to this term plus look so this is what you get this is

your GI this is your GI okay to be very precise you just correct it here this is X this check out if

they are running miss mistakes of notations here okay.

Now if we look at this is what we get in this slide as well let us look back in the expression to see

that whatever we have derived as you see here it is the same alright look at the expression at the

bottom as given here and the one which is now in this slide at the bottom  here the only thing in

the slide is that I have brought in this covariance term at the beginning.

The rest of it is basically the same Organa in this slightly different manner that is all if you look

into this expression here these can be visualized to be constant terms which are outside they are

not function of X this is the one which only varies. If we change X of course if you tell you I get

means go from one particular class to the other there'll  be another term which could be also

changing as well as the class prior unless the class prior themselves are constants or uniform

across different classes.

That means you have same number of arranges as the number of apples when you go for go to

the market or the stores grocery if you want to purchase two types of flowers you have as new

number of rows as number of tulips or something like that so in that case class priors also could

be same or different covariance matrices also could be same or different across different classes

but given a particular class ie., when you change the sample of the instant.

Which is being tested the only term which is varying is this one and this is the one actually

which gives you the distance D the distance D which we have been talking about since about one

or  two  classes  back  the  distance  D  distance  of  a  sample  from  the  class  mean  nearest

neighborhood classifier is actually a special  case of this expression with the covariance term

suppressed you only have these two you get that D which we talked about and we will see that

again as a special case so this is the distance plus these are some constant terms which do not

vary with X but if you go from one particular class.



To the other yes there will be some changes which will taking place and we will discuss that but

what may happen also is that the covariance term and the class price also could be same as a

special  case  across  classes  so  in  fact  the  concentration  henceforth  will  be  mainly  on  this

particular term let us go back to the slide so to recapitulate what we are just done now that within

the purview or using the Bayes theorem incorporating the multivariate Gaussian function as the

class conditional probability for a particular class we have got a discriminate function expression

for GI which contains.

The class priors the class PDFs the class PDFs in turn contain the covariance matrix which is

very important which you are just discussed about now in terms of distance about a couple of

classes back and of course a few constant terms which is again based on the dimensionality of

the problem and the covariance matrix the determinant of the covariance matrix and if you look

back into the expression in this slide as given here it is the term which in the left hand side of this

expression for G of I of X is the one which dictates your distance from or which easily dictates

your classification.

The job of classification and also it is giving a distance measures because all of these the rest of

it are not functions of X so when you vary X within this expression it is this term which is

changing and it actually it gives a value of distance many cases may arise due to the varying

nature of the covariance matrix ∑  it could with equal or unequal elements there may be off

diagonal terms positive or negative we have already seen some of these variations when we are

looking at the ISO contour plots in 2d for a particular Gaussian example he remembered two

classes back we had talked about isometric Gaussians in fact.

In the last class we have talked about asymmetric Gaussians oriented Gaussians what we depend

on it was the fact that if we had off diagonal term zero or not what the diagonal terms one was

equal to the other or not these are all the factors which dictated or whether the Gaussian was a

symmetric or not whether it was oriented or not the same thing is going to happen with the

diagonal  of  diagonal  terms  of  the  covariance  matrix  is  going to  dictate  how this  particular

expression in fact it is an expression of a distance already.

Which we have got using a discriminated functions and this will give rise to DRS which in turn

will give rise to D B's let us look at some special cases of this particular function remember this

expression of G I which you have just derived it in the class today.
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 Let the discriminated function for the eyuth class be the same G of X so assuming class spires

are  same for two different classes I or J in fact if it is a two class problem but if it is arbitrary see

different classes all the class plans are same that is what we are assuming then the only term

which remains actually is this probability function and then based on this we can write a simple

expression like this which you have done this is the term and we can write that this constant term

here which you have actually broken in two parts are broken into two parts in the last slide is

given by some constant Q.

Why it is constant because not a function of X anymore and this is a constant multiplied by a

distance vector well distance usually a scalar okay distance usually a scalar okay so this is a

scalar quantity mind you DI squares it is a norm of a distance what is basically taken and this



case simple one by two it is a simple constant 1 by 2this factor and this DI  is basically given by

this expression here which is going to be the most important part of the discussion for the rest of

this part of the core on distance measures with multivariate Gaussian functions for classification

for decision boundaries estimation.

So the classification is now going to be astir because why this term is going to be only there for

Gi this is a constant the classifiers classification is now influenced by the square of distance in

hyper dimension space of X from me why weighted by the inverse of the covariance matrix and

we're going to examine this a little bit more detail in the rest of the class today and henceforth

and  this  term has  already  been  introduced  earlier  may not  be  explicitly  this  is  actually  the

Mahalanobis distance the distance from x to  μ I in feature space weighted by the covariance

matrix.

So it is a weighted distance if you are just take an X -μ which was the nearest neighbor classifier

or the nearest neighbor classifier or minimum distance classifier then you did not pay attention to

the class priors as well as the class PDFs of the class conditional probability density functions in

such a case the Muhammad’s distance take the simple role of a squared equilibrium distance but

if it is weighted by the covariance matrix specifically. It is inverse to be precise then you are

talking it as a Mahalanobis distance criteria for a quadratic term okay.

(Refer Slide Time: 22:22)



So look into the slide this is the one which are going to discuss now and so forth so it is all ball

boiled down to the covariance matrix and the distance to the mean the rest of the class price they

are relevant in certain examples but we will  bring them back when we discuss a few things

together a little bit later on.

So for a given X some for some arbitrary I is equal to M the value of G well it is the same small

G I have written in capital here is largest when the square of this distance is the smallest for a

class I = M remember if you go back to the previous expression we are talking about a  constant

minus this K remember.

There is a minus 1/2 on the K so if the D value goes down the GI value will be maximum

remember the class assignment rule assign it to the class for which the determinant function

becomes  the  maximum  so  maximum  value  of  GI  if  you  look  back  to  the  expression  the

maximum value will be assuming it to be constant if this to be maximum this has to go down the

distance is to go down the distance must be minimum for this to be maximized so that is what is

written here so GM must be largest where this is the smallest the distance is the smallest for a

particular class I = M.

And for that particular class M assign X to that particular class based on the nearest neighbor

role okay the simplest case of course is that the  covariance matrix is equal to an identity matrix I

this criteria of course yield we have just been talking in the last few minutes that this yields our

Euclidean distance norm the nearest neighbor classifier or the minimum distance classifier this is

equivalent  to just taking the mean of a particular class for which X is the nearest for all μ and the

resistance function is very simply this there is just substitute an identity matrix.

Here you will have these  two terms which actually will you this square norm of the distance

from the in D dimension space of course easier going to be your d square but remember here all

those  d indicator  has  a  vector  but  you are  taking the square norm says  basically  the  scalar

quantity here.

(Refer Slide Time: 24:31)



 Okay so in all vector notations this is how it can be expanded this is how it can be expanded you

can write you can write expression in this particular form and then this G of X remember this is

D square  by  2  why this  because  there  is  a  constant  here  which  I  am bringing  in  here  for

normalized sake of normalization and this is this is very simply substituting this overall by2 you

will get this expression and what how can I write this in terms of this where look at this what

term WI 0 which is taking care of this term the W transpose is this multiplied by X it seems I

have been owning this strong.

If I ignore this term I can write this expression as something like this I can do this only when

well I won't say X is negligible that is not the basic idea I  am ignoring this term which is called

a class invariant term it is a class invariant term why because if I keep changing the value of I

this term does not change why am I trying to do this remember I am interested in classification

discriminated function I have formed now.

I  am  trying  to  find  outreach  discriminated  function  produces  a   decision  region  two

discriminated,  functions  for  two different  values  of   subscript  I  and J  they  will  create  two

different the dry sub decision region then there is a decision boundary between this pair I and J

we will have a  decision boundary between this pair I  and J so if you move from class I to J to

compute this G of I and look back into the expression what will change this expression here for

the same sample X if you change I to J this is the term.



Which is going to change not this so hence this is called a class invariant table because it does

not change between classes here the same value of x because there is a test sample which you are

trying to classify after you have learned the discriminated function you move from class 1 to

class 2 to class 3or Class A to Class B to Class C the first quadratic term which you see herein

this expression this does not change across classes this does not have a subscript I it is the other

two terms which are so I am ignoring this for the  sake of comparing fix across classes across

classes then.

 I am having this and I am writing this the only thing which you need to worry about is that I

have probably taken GI to be minus of this because the sign has been reversed  okay so we what

we are doing here is as if fix will be a constant - this part which is given here you can see that

there is a negative sign which is been introduced here this negative sign has vanished so do not

get this flip is not automatic it is the way you have taken this year because I want to maximize

some function by minimizing the distance  so this will help you in doing this  is actually called in

a very simple sentence.

 I  have  liberalized  the  discriminated  function  this  will  actually  give  you  linear  decision

boundaries this is also very casually called a correlation detector but that is not our main aim we

will say that this is the simplest form.
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Of a linear discriminantfunction the related discriminant function can also be written actually is

this is the expression which we had in the last night if we go back let us see here this is what we

had it is um it is sample x multiplied by a weight vector plus a bias term this is basically a bias

term which base which is big which depends on the class mean I repeat again that this is the

called the bias term which depends on the class mean and is the weight vector.

Which also depends on the class mean weight vector depends on the class mean and the bias

term rule everything is depending on the class beans because the covariance term is ignored

where did we ignore the covariance term we have taken the covariance matrix equal to identity

matrix that is why we could write this in the first place and only which whatever remains is as

the μ that is why we are able to get a linear expression of this so the linear discriminate function

for a separable class is given by this which  you have seen in the previous slide.

 And the W vector is it d dimensional vector depending upon the dimensionality of the problem it

is a vector of weights used for class I  and we have the expression of W which is simply the class

mean see this is itself a dimensional vector the same thing which holds good here this function

leads to decision boundaries that are hyper planes in higher dimension and I have talked about

this in the last class that it is a point in1d line in 2d planar surfaces in 3d and of course hyper

planes in higher dimensions we will examine this linear addition boundary in very great detail

okay and in the simplest case of a theory.



Which is a plane of course in 2d it will become a line it will become a pain passing through the

origin and the expression gets in the simple form what has been written here is now basically this

expression okay the W matrix is given by the three components here do not confuse these W eyes

with the class levels which you have used probably earlier and the three-dimensional space ax is

a three dimensional vector is a simple 0product here simple dot product here is what has been

written in this particular case this is a plane passing through the origin but of course that is a

special case you may have a line also passing.

Through the origin or somewhere in 2d space plane in three-dimensional space pearl place in an

n-dimensional space once these weights are learnt is just simple and it is always okay, that I

pickup these weights class means assign it to my W eyes assign the W bias term Wiser based on

the me.  A transpose and the classic  above the classifier  is  done well  in the case of linearly

separable problems where problems can be separable by a linear hyper plane align in 2d or Apple

in 3d this will work we will see that with an example.

Now we will  see that  with  an example  now we will  take examples  from geometry  in  two-

dimensional space and understand the significance of this linear decision boundary which will

lead us later on to an important concept of linear discriminate functions LD a linear discriminate

analysis are a fairly a little bit later on not an immediate extrapolation right now because what

we will do is we will learn the importance and significance of linear decision boundaries then

bring in the which one we have ignored to get this linear decision boundary.

We have ignored the in the GI expression of GI we have ignore done important factor what was

that  factor  the  covariance  matrix  we  will  bring  that  covariance  matrix  we  will  see  the

significance of that covariance matrix which will might which into bring non-linearity into the

picture of the decision boundary not only due to  the diagonal elements but off diagonal elements

and see some examples of those and then again come back to you in addition boundary using the

official indiscriminant analysis our FLD a criteria DA which will lead us to the popular method

of supervised classification called LDA a linear or fisher's linear discriminate criteria analysis

that is going to be over all the discussion ends forth in the next few lectures we will stop here.
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