
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 02

Lecture 09

Lecture 09 : Scheduling Jobs with Deadlines and Release Dates on a Single Machine

 Welcome. So, today we will start with a new algorithm design techniques in general it is 
an algorithm design technique which is also useful for approximation algorithm design 
which are called greedy algorithms and local search. So, just write greedy algorithm  and 
local search ok. The idea of greedy algorithm is as we have seen many times including 
the  greedy  set  cover  that  we   make  greedy  choice  in  every  iteration  while  building 
solution incrementally ok. So, this is the greedy for example, in the set cover problem we 
were picking iteratively a set in each iteration which looks best in that iteration and we 
keep doing it until we have a solution. On other hand in the local search, we begin with a 
solution  with  a  solution   and  make  local  changes  in  every  iteration  to  improve  the 
solution.

 Both these techniques have been used extensively both for designing algorithms with 
probable guarantee especially with for designing heuristics they are very popular often 
for many problems these techniques is useful for designing heuristics which work well on 
practice and we here we will see the use of these techniques for designing approximation 
algorithms. Again as usual we will pick various problems use these techniques to design 
approximation  algorithms  thereby  learning  the  use  of  these  techniques.  So,  our  first 
problem  is  scheduling  jobs  with  deadlines.  on  a  single  machine  ok.

 So,  what  is  the what  is  the setup? We have  n jobs with release times each job is  
available from one particular time with release time  processing times each job needs 
certain amount of time for processing it on that single machine, processing times p j.  p j 

units of time j=1 ,…,n and deadlines d j , j=1 ,…,n. ok and we assume that the schedule 
starts at time 0, we assume that the schedule starts  time 0 and every release times are non 
negative is greater than equal to 0. And, if we complete the processing of a job j at  C j 

time, if we complete the processing  job j at time C j then its lateness how late it is l j is its 

lateness let us keep it capital  is C j−d j ok. And our goal is to design a schedule which 
minimizes  the  maximum  lateness.



 a schedule which minimizes maximum lateness l j. Unfortunately, this is one can show 
that this problem is NP hard which is often the case. So, theorem you can prove it as a  
homework. it will it turns out that most of the problems that we deal in this course are 
NP-hard problems. So, you can show that set cover is a NP-hard problem, vertex cover is  
a  NP-hard  problem,  this  is  an  NP-hard  problem.

 This the decision version when you say this is an NP-hard problem, this term is loose 
because NP framework, NP hardness those are designed for decision problems. So, when 
I say that this problem is NP-hard that means, the decision version is NP-hard. What is 
the decision version? Everything is given instead of minimizing the maximum lateness 
there is a target lateness given and the question is does there exist a schedule we where 
the maximum lateness is less than equal to the target lateness. So, that is the decision 
version of the of this optimization version. problem is NP complete ok, without much 
without  losing  too  much  bigger  let  us  write  this.

 not only this given it is even NP hard to design to see if there exist a schedule which  
finishes all jobs before its deadline. That means, where the maximum lateness is 0 is or 
less than equal to 0. So, there is another theorem  it is NP hard to check to compute if  
max j equal to 1 to n let us call it Lmax. if Lmax is less than equal to 0. So, here is a problem 
this  approximability  framework ratios  those things break if  the optimum is  negative.

 So, this is one problem that is optimum is negative and it is difficult to check whether 
optimum is negative or not less than equal to 0 or not. And if it is 0 then that is also  
difficult to check and this implies that as a corollary we can write  that there is no rho 
factor approximation algorithm for this problem. is easy to show basically assume that 
there exist a row factor approximation algorithm it is approved by contradiction. Now, if 
there is a row factor approximation algorithm using this you can decide whether L max is 
less than equal to 0 or not. So, when we have such a scenario we assume something on 
the  input.

 So, that you know this checking whether Lmax is less than equal to 0 is becomes trivial in 

particular if  we assume some structure on the input.  So, that  Lmax is always positive. 
greater than 0, then this impossibility results is hardness results, interactability results is 
not directly applicable only of course, the NP hardness result is still applicable. So, for 
towards that what we assume is we assume this is a easy and common work around to 
assume  that all due dates all due times d j's are negative. this is not practically motivated 
it is like we are assuming something just to have an algorithm with probable guarantee 
which  will  of  course,  work  in  practice  work  in  practice  also  very  well.



 So, this guarantees that Lmax. maximum lateness is strictly positive. Now, we will show 
we will give a two factor approximation algorithm for this problem. We will give a two 
factor approximation  algorithm in this setting assuming all due dates or due times are  
negative and we will use greedy algorithms. So, for that we will use a lemma which 
lower  bounds  the  opt  in  some  sense.

 So, here is that important lemma which we will use crucially in algorithm design and 
analysis more in analysis. So, it says for each set S of jobs for each  subset S of jobs, we 

have  else  max  let  us  write  it  Lmax
∗  which  is  the  optimal  value  which  is  opt. 

Lmax
∗ ≥r (S )+ p (S )−d (S ). What are these terms? r (S ) is the minimum release time among 

the jobs in S what is the time when what is the time what is the earliest time when any job 

in S was available. So, this is r (S )=min j∈S r jp (S )=∑ p j d (S )=max j∈Sd j and proof is 

very easy.  So, consider the optimal schedule consider any optimal schedule.  Optimal 
schedule restricted to set S it means focus only on the jobs on set S. So, let j be the job in  
S processed last.  Now, see that because none of the jobs in S can be processed before 
r (S ) and total time required for processing all jobs is  p (S ) it follows that ok. So, since 

none of the jobs in S  is available before r (S ) and total time total processing time required 

for  jobs  in  S  is  p (S ),  the  job  j  finishes  on  or  after   r (S )+ p (S ) ok.

 So,  that  means,  and  the  due  date  of  job  j  was  d (S ) or  earlier  because  d (S ) is  the 

maximum due date. The due date of  job j was on or before d (S ). So, what we have is C j 

is greater than equal to r (S )+ p (S ) ok. And lateness L j≥r (S )+ p (S )−d (S ) . That means, 

this implies that  Lmax
∗  can only be greater than equal to  L j which is in turn greater than 

equal  to  Lmax
∗ ≥r (S )+ p (S )−d (S ).

 So,  this  gives  a  lower  bound on the  optimal.  So,  now,  what  is  the  algorithm? The  
algorithm is a greedy and quite obvious algorithm and that algorithm is called earliest due 
date first. earliest due date EDD algorithm rule. It says that among or  at each moment  
that the machine is idle. we do not allow preemption that means, a job once started must 
be  finished  or  must  be  allowed  to  run  for  its  processing  time.

 At each moment that the machine is idle start processing. Next, an available job  whose  
due  date  is  earliest  ok.  So,  we  will  show  that  these  are  two  factor  approximation 
algorithm theorem. is 2 approximation algorithm assuming this is very important  d j<0 

for  all  j∈ [n ].

 proof ok. So, let let us consider the execution of an EDD algorithm and let j be the job  
who is maximum late. Let j be the job  with maximum lateness that is then ALG which is  
say Lmax=C j−d j. So, now let us focus on the time in the schedule C j where the job j got 



finished and find the earliest time t less than C j when the machine was  was processing 

without idle time. So, from t to C j no idle time, let t be minimum such  the machine is 

never idle in this interval t to C j. ok. Several jobs may have may have been processed in 

this  in  this  in  this  time  interval  t  to  C j.

 So, let that set S be the set of jobs processed in [ t ,C j ]. in this interval with the choice of t 

we know that the time unit just before t no job was available. So, by choice of t no job 
was available  in ( t −1 )-th time unit ok. So, now what we have is that is r (S ) the earliest 

release time of the jobs in S is t.  that means,  r (S )=t  and what is  p (S )?  p (S )=C j−t  

because  these  are  the  jobs  that  are  continuously  processed.

 So,  p (S )=C j−t  and  so,  this  is  because  r (S )=t  this  C j−r (S ).  thus  we  have 

C j=r (S )+ p (S ) ok. Now, let us write Lmax
∗ . which is equal to L j=r (S ) L j=C j−d j. So, this 

is  equal  to  C j=r (S )+ p (S ).

this is greater than equal to r (S )+ p (S )−d j is negative here we are using d j is negative. 

So, I can drop this. So, because d j is negative this is very important  So, this is one and 

the other is that on the other hand also applying the lemma on the singleton job S={ j } we 

have  Lmax
∗ . is greater than equal to  r j+ p j−d j ok. And this is because  d j is negative or 

anyway because  r j and  p j are positive non negative can write right this is greater than 

equal  to  −d j ok.

 And here from here I can write l j  sorry this let us first compute Lmax
∗  is not L j, L j is the 

algorithms  algorithms  lateness.  So,  Lmax
∗  is  greater  than  equal  to  this  using  lemma 

r (S )+ p (S )−d (S ).  Now, because  dS is negative this is we can write  r (S )+ p (S ) this is 

because  d (S ) is negative that means, minus  d (S ) is positive, but this is nothing, but  C j 

this is greater than equal  C j. So, what we have is  Lmax which is ALG this is equal to 

C j−d j .  Now,  C j is  less than equal to  Lmax
∗  and  −d j is  also less than equal to  Lmax

∗ .

 this is twice L star max which concludes the proof. Thank you.


