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 Welcome. So, in this lecture we will see yet another powerful approximation algorithm
design  technique  called  randomized  rounding  of  linear  programs  and  again  we  will
understand this through the example of set cover. So, this is called randomized rounding
of LPs. Recall what was the linear programming relaxation for the set cover problem?

For each set we had a variable called x j and we have minimize∑ j=1

m
w j x j subject to. that

every element is covered which is equivalent to saying for every i∈[n] ∑ j∈[m ]: e i∈S j
x j≥1

and  for  all  j∈[m ] ,0≤x j≤1.

 And again we can remove this constraint because the optimal solution will never pick
never set any x j value greater than 1 because it is a minimization problem, but we can

retain it no harm. So, in randomized rounding we solve the linear program to get an
optimal solution and whenever this variables take value in between 0 1 we can treat them

as probabilities. So, we solve LP let (x j
∗)j∈[m] be an optimal solution. Then the idea is we

pick  the  j-th  set  with  probability  x j
∗ independent  of  everything  else.

 So, we pick the set S j with probability x j
∗ independent of  everything else ok. So, let I be

the  indices of the sets picked. we will show that the total the expected value of the
weight total weight of the sets picked is actually LP-opt. So, for that define an indicator
random variable  X j for j∈[m ] for the event that S j is picked. by the algorithm that is X j

takes  value  1  if  j∈ I  and  0  otherwise.

 So,  expected  value  of  the  solution  is  ∑ j=1

m
w j X j is  the  weight  of  the  solution  and

solution picked by the algorithm and we are taking expectation there is something called
linearity of expectation with which we can push the this expectation inside. So, this is

same as  ∑ j=1

m
w jE [X j]. And, what is expectation of  X j? It is the probability that  S j is

picked.  x j
∗ this is probability that  S j is picked which is same as saying j belongs to I.



 So, this is the probability expectation of an indicator random variable is the probability
of the event  for  which the indicator random variable  is  defined.  You can prove also
expectation of X j is 1 times  to probability that X j takes value 1. So, this is this term plus

0 times probability that X j takes value 0, but because it is 0 times that k that term is not

there. So, this is we are picking j-th set with probability x j
∗. So, this is ∑ j=1

m
w j x j

∗ which

is  nothing,  but  LP-opt.

 So, we are picking a solution of some sets whose total weight in expectation is LP-opt.
But, what is but is it a valid solution, what is the probability that the set speed by the
algorithm is indeed a set cover. So, for that probability that an element e i is covered. by

the sets index  by I, I is the set of indices indices of the sets picked by the algorithm. So,
what is the probability? This is nothing, but product over j∈[m ] such that e i∈S j  and this

is the probability that e i is the say e i is not covered that is easy to compute and then we

will  subtract  this  number  from  1  and  get  the  probability  that  e i is  covered.

 So,  e i is  not  covered  if  none  of  the  sets  e i is  contained  is  picked.  So,  this  is

∏ j∈[m ]: e i∈S j
(1−x j

∗)  . Now 1−x≤e−x. So, we are using that 

∏ j∈[m ]: e i∈S j
(1−x j

∗)≤∏ j∈[m ]: e i∈S j
e− x j

∗

=e
−∑j∈[m ]:e i∈ Sj

x j
∗

≤1
e

 So, the probability that the element e i is not covered is at most e to the power minus 1

that means, with probability at least  (1−1
e
) it is covered, but this is not high probability.

We want to cover all elements in the universe with probability  1− 1
poly(n)

, I want the

probability which is little o of 1 minus little o of 1. So, for that the trick is simple this is
quite  prevalent  in  randomized  algorithm  this  is  called  boosting  your  probability  by
repetition. You repeat this many times and then you see the probability then we will see
the error probability goes down probability goes up. So, the idea is we the remedy is we
repeat  the algorithm c ln n times we will find the value c, c ln n times let the indices  of
the  sets  be  I 1 , I 2 ,…, Ic ln n in  the  algorithm   that  they  are  I 1∪I 2∪…∪I c lnn ok.

 So, now, we can see that expected  is at most in one times it is at most in one iteration
the expected weight of the sets picked by the algorithm is at most LP-opt and we are we
are repeating it for c log n time and returning all the sets picked. So, this is at most
c ln n×LP−opt . Now find out what is the probability that some element is not covered
probability that e i is not covered. the probability that e i is not covered in one iteration is



(1−1
e
).  And  so,  it  does  it  is  not  covered  in  c  log  n  iterations  is   (1−1

e
)
c ln n

.

Now, we apply union bound  probability that there exists an  i∈[n] such that  e i is not

covered is less than equal to 
1

nc−1
 ok. So, this is called good probability. So, if we  if we

choose choose c to be say 2, then the algorithm outputs  collection of sets of total weight

at most twice log n times of  and it is a set cover with probability at least  1−1
n

 ok. So,

this is the statement using this we can also show that let me write that this theorem which
is easy to prove that the algorithm  is a randomized  O( lnn) factor randomized  2 ln n

approximation  algorithm which  outputs  a  set  cover  with  high  probability  ok.  In  the
randomized  algorithm  in  randomized  algorithms  typically  high  probability  means

probability  at  least  1− 1
poly(n)

 and  very  high  probability  means  probability  at  least

1− 1
exp(n)

 say cn for some c greater than 1. this shows the thing and now we have seen

various algorithms for set cover some of them their approximation factor is f and some
others have approximation factor O( logn). It turns out that there is substantial evidence
to  believe  that  there  is  no  polynomial  time  algorithm  for  set  cover  problem  which
achieves approximation ratio better than log n. So, let me state the results without proof.

 These  are  some important  results  well  known which  you can  use  in  your  research
theorem. If there exists  a  c ln n approximation algorithm for even the unweighted set
cover problem for the unweighted  set cover problem for some constant c less than 1,

then there is a O(nO ( log logn )) time deterministic algorithm for each NP complete problem

ok, which is which we believe to be quite unlikely. O(nO (log logn )) this sort of running time

is very close to polynomial time running time in for all practical purposes. log log n is a
very slow growing function  even if n is the number of atoms in the you know in the earth
then also  log log n is  a  very small  number and n to  the power  log log n is  definitely
tractable, but so that is why we believe that if there is a we believe that for NP complete
problems there is no such algorithm. And, this result shows that even if there is a 0.9 log
n  approximation  algorithm even  for  unweighted  set  cover  problem,  then  for  all  NP

complete problems there are there will be  O(nO (log logn )) time algorithm this one. this is

slightly  stronger  assumption  that  NP  completeness.  If  you  just  want  to  assume  NP
completeness then we have slightly weaker result known this is this theorem. There exists
some constant  c greater than 0 such that if there exists a c lon n. approximation algorithm
for the unweighted set  cover problem then p equal  to  n p ok.  So, there exists  some
constant c beyond which or some constant c greater than 0 such that if there is a c log n
factor approximation algorithm for even unweighted set cover problem then P=NP. That



means, you can have the approximation ratio is theta log n. So, you can have a O( logn)
factor approximation algorithm and there is a lower bound of big omega of log n factor
approximation assuming P≠NP ok. Now, using the f factor approximation algorithm we
can  show  a  two  factor  approximation  algorithm  for  vertex  cover.

 the  standard  vertex  cover  to  set  cover  reduction  with   the  f  factor  approximation
algorithm for  the set  cover  problem. gives  a  two factor  approximation algorithm for
weighted vertex cover. where vertices have weights. It turns out that these also based
known definitely and tights assuming something called UGC conjecture.  So,  theorem
assuming  UGC conjecture unique games conjecture assuming UGC if there exists an
alpha approximation  for the vertex cover problem even unweighted for some constant
this  is  very  important  constant.

 alpha greater less than 2. There exist algorithms better than 2, but that is 2−o(1) is 1 by
some function some growing function of n. This sort of algorithm exists for vertex cover,
but for if you have an alpha factor approximation algorithm for some alpha less than 2
which is constant then P=NP. ok. This is very important this is assuming UGC which is
stronger assumption that that P≠NP. So, if you if you want to assume only P≠NP then
we know weaker result that if there exists an alpha factor approximation algorithm for
vertex  cover  even  unweighted  for  some  again  constant  α<10√5−21 which  is
approximately 1.36, then we have P equal to  So, these sort of results show that you know
the approximability of set cover problem is quite understood assuming UGC there is no
better than 2 factor approximation algorithm for vertex cover there is  no  2−ϵ  factor
approximation algorithm. for any epsilon constant greater than 0. This in turn implies that
you cannot have an approximation algorithm alpha factor approximation algorithm for set
cover unweighted set cover for any α  constant alpha strictly less than f ok. So, let us stop
here. So, we will continue from here next class. Thank you.


