
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 01

Lecture 08

Lecture 08 : Randomized Rounding Algorithm for Weighted Set Cover

 Welcome. So, in this lecture we will see yet another powerful approximation algorithm
design technique called randomized rounding of linear programs and again we will
understand this through the example of set cover. So, this is called randomized rounding
of LPs. Recall what was the linear programming relaxation for the set cover problem?

For each set we had a variable called x j and we have minimize∑ j=1

m
w j x j subject to. that

every element is covered which is equivalent to saying for every i∈[n] ∑ j∈[m]: e i∈S j
x j≥1

and for all j∈[m] ,0≤x j≤1.

 And again we can remove this constraint because the optimal solution will never pick
never set any x j value greater than 1 because it is a minimization problem, but we can

retain it no harm. So, in randomized rounding we solve the linear program to get an
optimal solution and whenever this variables take value in between 0 1 we can treat them

as probabilities. So, we solve LP let (x j
∗)j∈[m] be an optimal solution. Then the idea is we

pick the j-th set with probability x j
∗ independent of everything else.

 So, we pick the set S j with probability x j
∗ independent of everything else ok. So, let I be

the indices of the sets picked. we will show that the total the expected value of the
weight total weight of the sets picked is actually LP-opt. So, for that define an indicator
random variable X j for j∈[m] for the event that S j is picked. by the algorithm that is X j

takes value 1 if j∈ I and 0 otherwise.

 So, expected value of the solution is ∑ j=1

m
w j X j is the weight of the solution and

solution picked by the algorithm and we are taking expectation there is something called
linearity of expectation with which we can push the this expectation inside. So, this is

same as ∑ j=1

m
w jE [X j]. And, what is expectation of X j? It is the probability that S j is

picked. x j
∗ this is probability that S j is picked which is same as saying j belongs to I.

 So, this is the probability expectation of an indicator random variable is the probability
of the event for which the indicator random variable is defined. You can prove also
expectation of X j is 1 times to probability that X j takes value 1. So, this is this term plus

0 times probability that X j takes value 0, but because it is 0 times that k that term is not

there. So, this is we are picking j-th set with probability x j
∗. So, this is ∑ j=1

m
w j x j

∗ which

is nothing, but LP-opt.

 So, we are picking a solution of some sets whose total weight in expectation is LP-opt.
But, what is but is it a valid solution, what is the probability that the set speed by the
algorithm is indeed a set cover. So, for that probability that an element e i is covered. by

the sets index by I, I is the set of indices indices of the sets picked by the algorithm. So,
what is the probability? This is nothing, but product over j∈[m] such that e i∈S j and this

is the probability that e i is the say e i is not covered that is easy to compute and then we

will subtract this number from 1 and get the probability that e i is covered.

 So, e i is not covered if none of the sets e i is contained is picked. So, this is

∏ j∈[m]: e i∈S j
(1−x j

∗) . Now 1−x≤e−x. So, we are using that

∏ j∈[m]: e i∈S j
(1−x j

∗)≤∏ j∈[m]: e i∈S j
e− x j

∗

=e
−∑j∈[m]:e i∈ Sj

x j
∗

≤1
e

 So, the probability that the element e i is not covered is at most e to the power minus 1

that means, with probability at least (1−1
e
) it is covered, but this is not high probability.

We want to cover all elements in the universe with probability 1− 1
poly(n)

, I want the

probability which is little o of 1 minus little o of 1. So, for that the trick is simple this is
quite prevalent in randomized algorithm this is called boosting your probability by
repetition. You repeat this many times and then you see the probability then we will see
the error probability goes down probability goes up. So, the idea is we the remedy is we
repeat the algorithm c ln n times we will find the value c, c ln n times let the indices of
the sets be I 1 , I 2 ,…, Ic ln n in the algorithm that they are I 1∪I 2∪…∪I c lnn ok.

 So, now, we can see that expected is at most in one times it is at most in one iteration
the expected weight of the sets picked by the algorithm is at most LP-opt and we are we
are repeating it for c log n time and returning all the sets picked. So, this is at most
c ln n×LP−opt . Now find out what is the probability that some element is not covered
probability that e i is not covered. the probability that e i is not covered in one iteration is

(1−1
e
). And so, it does it is not covered in c log n iterations is (1−1

e
)
c ln n

.

Now, we apply union bound probability that there exists an i∈[n] such that e i is not

covered is less than equal to
1

nc−1
 ok. So, this is called good probability. So, if we if we

choose choose c to be say 2, then the algorithm outputs collection of sets of total weight

at most twice log n times of and it is a set cover with probability at least 1−1
n

 ok. So,

this is the statement using this we can also show that let me write that this theorem which
is easy to prove that the algorithm is a randomized O(lnn) factor randomized 2 ln n

approximation algorithm which outputs a set cover with high probability ok. In the
randomized algorithm in randomized algorithms typically high probability means

probability at least 1− 1
poly(n)

 and very high probability means probability at least

1− 1
exp(n)

 say cn for some c greater than 1. this shows the thing and now we have seen

various algorithms for set cover some of them their approximation factor is f and some
others have approximation factor O(logn). It turns out that there is substantial evidence
to believe that there is no polynomial time algorithm for set cover problem which
achieves approximation ratio better than log n. So, let me state the results without proof.

 These are some important results well known which you can use in your research
theorem. If there exists a c ln n approximation algorithm for even the unweighted set
cover problem for the unweighted set cover problem for some constant c less than 1,

then there is a O(nO (log logn)) time deterministic algorithm for each NP complete problem

ok, which is which we believe to be quite unlikely. O(nO (log logn)) this sort of running time

is very close to polynomial time running time in for all practical purposes. log log n is a
very slow growing function even if n is the number of atoms in the you know in the earth
then also log log n is a very small number and n to the power log log n is definitely
tractable, but so that is why we believe that if there is a we believe that for NP complete
problems there is no such algorithm. And, this result shows that even if there is a 0.9 log
n approximation algorithm even for unweighted set cover problem, then for all NP

complete problems there are there will be O(nO (log logn)) time algorithm this one. this is

slightly stronger assumption that NP completeness. If you just want to assume NP
completeness then we have slightly weaker result known this is this theorem. There exists
some constant c greater than 0 such that if there exists a c lon n. approximation algorithm
for the unweighted set cover problem then p equal to n p ok. So, there exists some
constant c beyond which or some constant c greater than 0 such that if there is a c log n
factor approximation algorithm for even unweighted set cover problem then P=NP. That

means, you can have the approximation ratio is theta log n. So, you can have a O(logn)
factor approximation algorithm and there is a lower bound of big omega of log n factor
approximation assuming P≠NP ok. Now, using the f factor approximation algorithm we
can show a two factor approximation algorithm for vertex cover.

 the standard vertex cover to set cover reduction with the f factor approximation
algorithm for the set cover problem. gives a two factor approximation algorithm for
weighted vertex cover. where vertices have weights. It turns out that these also based
known definitely and tights assuming something called UGC conjecture. So, theorem
assuming UGC conjecture unique games conjecture assuming UGC if there exists an
alpha approximation for the vertex cover problem even unweighted for some constant
this is very important constant.

 alpha greater less than 2. There exist algorithms better than 2, but that is 2−o(1) is 1 by
some function some growing function of n. This sort of algorithm exists for vertex cover,
but for if you have an alpha factor approximation algorithm for some alpha less than 2
which is constant then P=NP. ok. This is very important this is assuming UGC which is
stronger assumption that that P≠NP. So, if you if you want to assume only P≠NP then
we know weaker result that if there exists an alpha factor approximation algorithm for
vertex cover even unweighted for some again constant α<10√5−21 which is
approximately 1.36, then we have P equal to So, these sort of results show that you know
the approximability of set cover problem is quite understood assuming UGC there is no
better than 2 factor approximation algorithm for vertex cover there is no 2−ϵ factor
approximation algorithm. for any epsilon constant greater than 0. This in turn implies that
you cannot have an approximation algorithm alpha factor approximation algorithm for set
cover unweighted set cover for any α constant alpha strictly less than f ok. So, let us stop
here. So, we will continue from here next class. Thank you.

