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 Welcome. So, in the last class we have seen the greedy algorithm for weighted set cover
problem and we have seen that the approximation ratio is big O of log of n. There we
have used one fact that if there is an optimal solution which covers every elements with
total weight opt or total cost opt. then there exist that means, that the optimal solution can
cover all elements with average cost opt by n, then there exist a set which also covers its
elements with average cost at most opt by n. So, let us prove that formally although this
may be intuitively clear, but that was only the missing part which we assumed in the last
classes analysis. So, for that let us prove it for arbitrary iteration. So, we prove the claim

that we  that in the k-th iteration min j∈[m ] : Ŝ j≠∅

w j

|Ŝ j|
 this is less than equal to 

opt
nk

, where nk

is the number of uncovered elements in the beginning of the k-th iteration. So, for that so,
we need to prove that and then this will finish the proof that the approximation ratio of
greedy set cover is log n in particular H n where H n is the n-th harmonic number. So, let O

be  the  indices   of  the  sets  in  an  optimal  set  cover  ok.  Then  what  is  
∑ w j

∑ Ŝ j
?

 The numerator is opt because we have assumed that O is the indices of an of the sets in

an optimal set cover and this remains same. And, this is less than equal to 
opt
nk

. So, we are

considering  a  particular  iteration  k.  So,  here  we are  doing this  analysis  for  the  k-th
iteration.  ok and this  is  the last  inequality  this  one follows since  Ŝ j covers  ∪ j∈O Ŝ j
covers  all  the  nk uncovered  elements  ok.

 And this is  and this is like this is greater than equal to min j∈O

w j

|Ŝ j|
 which is greater than

equal to minimum over all sets such that  Ŝ j is not an empty set.  
w j

|Ŝ j|
 ok. So, recall this



follows  from  this  fact  that  this  follows  from  the  fact  that  
∑ ai
∑ bi

≥mini=1
k a i
b i

.

 And now let  j the index of a set which minimizes this ratio. So, 
w j

|Ŝ j|
≤ opt
nk

 . If we add S j

to our solution, if we add S j to our solution then there will be  |Ŝ j| few are uncovered

elements.  nk+1=nk−|Ŝ j|.

w j≤|Ŝ j|optnk  but  |Ŝ j|=nk−nk +1  Hence,  w j≤ (nk−nk +1 ) optnk
. So, this concludes the proof

the final piece that we have assumed. So, this concludes the proof that the approximation
ratio of the greedy set cover is h n, where n where h n is the nth harmonic number. Next
we make this make this claim stronger. So, let g  be the maximum cardinality of any
input  set.  that  is  g=max j=1

m |S j|.

 So, then we claim that the approximation factor of the greedy set cover is actually H g.
So, this is less than equal to n. So, we claim theorem  approximation the approximation
factor of greedy set cover is  at most h g proof and we will prove this using a technique
called dual fitting. So, we will  the technique called dual fitting. So, what is it? We will
assign values to dual variables in such a way that the sum of the weights of the sets
picked  by  the  algorithm  which  is  ALG  is  same  as  dual  objective.

 So, the idea is we will construct  an infeasible dual solution, why such that  which is sum
of the weights of the sets in i which are picked by the algorithm w j is same as ∑ yi. And

then we will show  that y i
’= 1
H g
y i ,i∈ [n ] is a dual feasible  solution and then the result

will  follow  by  weak  duality.  Then  by  weak  duality  we  know  that,
∑ w j=∑ y i=H g∑ y i

’ and this is the these are dual feasible solution y i
’. So, this is less

than  equal  to  H gLP−opt  which  is  less  than  equal  to  H gopt  ok.

 So,  with duality  we are using  here.  and this  technique  is  called  dual  fitting.  So,  to
construct an the infeasible dual solution  dual solution suppose we choose the set S j in the
kth iteration  Then for each element that are covered in the k-th iteration which were

previously uncovered. That means, for each e i∈ Ŝ j we set  y i=
w j

|Ŝ j|
 ok. So, since each e i

was  uncovered  before  k  th  iteration  and  from  k+1 th  iteration  it  will  be  covered.

 So, we observe that  each dual variable is set exactly once ok. and clearly if I am picking



the jth set in the kth iteration S j in kth iteration and it is cost is w j that cost or weight is
distributed among the dual variables that are set in that iteration. So, clearly alg equal to
∑ w j which is ∑ yi ok. Next we scale this by H g we divide each dual variable with by

H g and  we  will  show  that  is  a  dual  feasible  solution.  So,  define  y i
’= 1
H g
y i ,i∈ [n ]

 We claim that y i
’  is dual feasible solution that is all dual constraints are satisfied. So, that

is for each set S j we must show that for all i∈ [n ] such that ∑ yi≤w j ok. So, let j be any
arbitrary set.  S j be any arbitrary set ok. Let ak be the number of elements of S j that are
uncovered in the beginning of the  k-th iteration. So, in particular we have  a1=|S j|
and al+1=0 . Recall we assume that the greedy algorithm iterates over l many times the
while loop iterates over l many iterations ok. So, let Ak  be the uncovered  be the set of
uncovered  elements  of  S j that  are  covered  in  the  kth  iteration  that   k-th  iteration.

 That means, |Ak|=ak−ak+1 . So, let the greedy algorithm  picks the set S p  in the k-
th iteration ok. Then e i∈A k  all the variables in the jth set is in S j  which are set in
the kth iteration

 y i
’=

wp
H g|Ŝ p|

≤
w j

H g|Ŝ j|
=
wp
H gak

 . 

So, 

∑i∈[n]: e i∈S j
y i
’=∑k=1

l
∑e i∈A k

y i
'≤∑k=1

l ak−ak +1
H gak

⋅w j

=
w j

Hg
∑k=1

l ak−ak+1
ak

≤
w j
H g

∑k=1

l
( 1
ak

+ 1
ak−1

+...+ 1
ak +1+1

)=
w j
Hg

∑i=1

|S j| 1
i
=
w j

H g
H|S j|≤w j  

So, this finishes the proof. So, the approximation guarantee is far superior than H n  if
all  the  sets  are  of  small  cardinality  in  the  input.

 So, let us stop here. Thank you.


