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 So,  in  the  last  class  we have  proved that  there  is  no  polynomial  time alpha  factor 
approximation algorithm for the for scheduling jobs multiple jobs on parallel, but non 
identical machines. to minimize the makespan of the schedule for any alpha less than 4 
by 3. And then we claim that this proof can be slightly modified to prove a stronger  

guarantee  of  inapproximability  for  every  alpha  less  than  
3
2

.  And  towards  that  we 

modified that construction and we removed the jobs corresponding to X and  of one type 
of dummy job we introduced one type of dummy job for every x and then we define the 
processing times cleverly and we claim at the end that we can prove using this reduction 
that there is no alpha factor polynomial time approximation algorithm for scheduling task 

for any alpha less than  
3
2

. So, let us finish that proof. scheduling jobs on multiple non 

identical  machines.

 So, here is the theorem that we  that if the 3 dimensional matching instance is a yes 
instance, then  there is a schedule with makespan 2. Otherwise the makespan  of every 
schedule is at least 3 proof. So, in one direction suppose the 3 dimensional matching 
instance is a yes instance. suppose the 3 dimensional matching instance is a yes instance,  

then there exists  a subset S’ of S with cardinality n, where every element of X, Y and Z 
appears  exactly  once  ok.

 Now, in this case we want to show that there is a schedule of makespan exactly 2. So, for 

all   tuple  (x , y , z)∈S’ schedule  the  jobs  corresponding  to  y  and  z  to  the  machine 

corresponding to X. So, this way exactly one machine of the n|x| machines got scheduled 
and  their  load  is  2.  then  for  all  x∈X  schedule  the  n|x|−1 dummy jobs  of  type  X
 on the machine corresponding to X. The makespan of this schedule  is 2. You see all the 

machines corresponding to S’ their load is 2 and all the machines which are scheduling 
those damage of their load is also 2. So, the makespan is 2.  So, this proves the one 
direction  the  first  part  if  part  now  the  otherwise  part.



 So, we want to show that the makespan of if the 3 dimensional matching instance is a no 
instance.  then  the  makespan  of  every  schedule  is  at  least  3.  What  we  will  show is 
contrapositive of this statement that is if there is a schedule of makespan 2, then the 3 
dimensional matching instance is a yes instance. So, for the for otherwise  we will show 
that if there is a schedule of makespan  2, then the 3 dimensional matching instance must 
be  a  yes  instance.  So,  suppose  there  is  a  schedule  which  makes  span  2.

 Now, because each dummy job needs at  least  2 units  of  time.  So,  let  us name this 
schedule, schedule say A. So, in A,  the dummy job corresponding to each x∈X  must be 
scheduled  the n|x|−1 dummy jobs must be scheduled to the n|x|−1 machines. among n 
x machines of type x. So, this leaves exactly one machine of type x free and only in total  
only  n  machines  to  schedule  the  2  n  jobs.

 this leaves only n machines free to schedule the jobs corresponding to Y and Z ok. So, it 
is easy to show it is easy to see or take it as a homework to prove that  homework prove it 
that the n tuples corresponding to the n machines  which execute the jobs corresponding 
to Y and Z forms a three dimensional matching. So, this finishes the proof of the theorem 
and the immediate corollary what  we have there is  no polynomial  time.  alpha factor 
approximation algorithm for scheduling  jobs on multiple parallel non-identical machines 

to minimize makespan. for any alpha less than 
3
2

 because any such algorithm will find 

out is forced to output a schedule with makespan 2 whenever it exists and that is enough 
to  solve  the  3  dimensional  matching  problem.

 Our next problem for which we will show in  is edge disjoint path. So, because we will  
prove inapproximability let us write down the optimization version. an undirected graph 
G=(V , E) and key pairs of vertices {s1 , t1},{s2 , t2},…,{sk , t k} ok. The goal is to so, find 

or S⊆[k ] such that cardinality S is maximized and there are  or there is a path Pi from si 

to t i for every i∈S and this paths are edge disjoint ok. So, these paths are edge disjoint.

 So, among this k pairs of vertices find as many edge disjoint paths as possible. So, for  
this problem we will show a strong inapproximability bound. So, there is a simple greedy 
algorithm  which  gives  O(√m) approximation  algorithm  gives  O(√m) approximate 

solution  what we claim is that that is pretty much the best approximation guarantee we 
can hope for in polynomial time. So, here is a theorem for any or for every alpha greater 

than   there  is  no  Ω(m
−1
2

+ϵ
).  So,  this  is  

1

√m
  not  √m this  is  m

−1
2 .



 So, there is no Ω(m
−1
2

+ϵ
) approximation algorithm for edge disjoint path unless P=NP, 

this condition also should be there in our previous proof this is unless P=NP ok. So, for 
that what we will show we will give a reduction the from edge disjoint path to itself. This 
edge disjoint path problem is NP complete even for  k=2. So, edge disjoint path paths 
problem  is   NP  complete  even  for  k=2.

 That means, given 2 pair of vertices {s1 , t1},{s2 , t2} it is NP complete to decide whether 

there exist 2 edge disjoint paths. one from s1 to  t1 another from s2 to  t2. What we will 

show is that if there is a Ω(m
−1
2

+ϵ
) factor approximation algorithm for edge disjoint path, 

then we will be able to have a polynomial time algorithm for 2 disjoint path ok. So, let 
G=(V , A ) and  {s1 , t1},{s2 , t2} be an instance of two disjoint paths. from this we will 

construct  an  instance  of  k  disjoint  path.

 So, for that we set k to be equal to cardinality a and ceiling of  
1
ϵ

. So, I am given an 

epsilon greater than 0 arbitrary. So, we take k to be this and we will construct an instance 
of  k  disjoint  path problem. from this.  What  we do is  this  to  distinguish from this  2 
disjoint path we will name the pairs of k disjoint path as a 1 b 1 a 2 b 2 and so on.

 So, we will have this construction  So, suppose this 2 disjoint path we denote it by this  
notation. So, here is s1, here is t1 and here is s2, here is t2. What we do is we have a vertex 

a 1 connected with a copy of  G we will have multiple copies of G and connect it to s2 

here ok. So, here not undirected graph we will have directed graph let us have directed 
graph  because  that  is  important  ok.  So,  this  is  a1 and  then  a2 is  connected  to  this.

a3 is connected here and ak is connected here, here means that means, ai is connected a2 

is connected to s1, a3 is connected to s1 of the below graph and so on. And from the top 

graph from the t2 I connect I put an edge from t2 to s2 and so on this  And here also we 

have another copy, we have an edge from here t1 to s1, we have edge from t1 to s2 and so 

on. Let us draw the a4 also then the pattern will be very much visible. we have another 

copy and here is b1, here is b2, here is bk−1 here is bk. Now, if there is there are two edge 

disjoint paths one is from s1 to t1 another is from s2 to t2 then you see we have an edge 

disjoint  path  from  every  ai to  bi.

 So, for ai you can from a1 you can take this edge, then this edge disjoint path, this edge, 

this edge disjoint path, this edge, this edge disjoint path and so on till  b1. So, you get a 

path from a1 to b1. Similarly, you can get a path from a2 to b2 like this a2 to this edge, 



then take this edge disjoint path, take this edge, this edge disjoint path,  and so on. So,  
what we have seen is that we have basically proved this lemma that if there is there are 2  

edge  disjoint  paths.  in  G  then  there  are  k  edge  disjoint  paths  in  G’.

 So, let us call this graph G’. On the other hand, if you see if you see that there are no two 

edge disjoint path, then in G’ there can be at most one edge disjoint path. So, whenever 
you can have a path from ai to bi that is it because that will not that blocks all the paths. 

Otherwise that means, if there are no two edge disjoint paths in G. otherwise there is only 
one disjoint path. So, again here you see that if the number of edge region paths is k 
which  is  high  which  is  some  you  see  k  is  some  high  number.

 And this that is set in such a way that if the number of edge region paths is k then an  
polynomial  team  algorithm  even  with  this  approximation  guarantee  this  weak 
approximation guarantee needs to output at least 2 edge disjoint paths. So, I will fit this 

G’ as an input and ask that approximation algorithm to out give me edge disjoint paths. 
Now, if there are k edge disjoint paths the approximation ratio is set in such a way then  
that the algorithm will is forced to output  more than one edge disjoint path and then from 
that information I know that that the two edge disjoint path problem is a yes instance. 

Otherwise if G has exactly one edge disjoint path then G’ will also have one edge disjoint 
path  and  in  that  case  the  algorithm  will  output  one  edge  disjoint  path.  And  hence 
existence  of  such  an  algorithm  gives  me  a  polynomial  time  algorithm   for  the  NP 
complete  problem  to  edge join  path  thereby  proving  P=NP ok.

 So, you finish this proof formally as a homework ok. So, let us stop here. Thank you.


