
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 12

Lecture 60

Lecture 60 : Inapproximability of Edge Disjoint Path

 So, in the last class we have proved that there is no polynomial time alpha factor
approximation algorithm for the for scheduling jobs multiple jobs on parallel, but non
identical machines. to minimize the makespan of the schedule for any alpha less than 4
by 3. And then we claim that this proof can be slightly modified to prove a stronger

guarantee of inapproximability for every alpha less than
3
2

. And towards that we

modified that construction and we removed the jobs corresponding to X and of one type
of dummy job we introduced one type of dummy job for every x and then we define the
processing times cleverly and we claim at the end that we can prove using this reduction
that there is no alpha factor polynomial time approximation algorithm for scheduling task

for any alpha less than
3
2

. So, let us finish that proof. scheduling jobs on multiple non

identical machines.

 So, here is the theorem that we that if the 3 dimensional matching instance is a yes
instance, then there is a schedule with makespan 2. Otherwise the makespan of every
schedule is at least 3 proof. So, in one direction suppose the 3 dimensional matching
instance is a yes instance. suppose the 3 dimensional matching instance is a yes instance,

then there exists a subset S’ of S with cardinality n, where every element of X, Y and Z
appears exactly once ok.

 Now, in this case we want to show that there is a schedule of makespan exactly 2. So, for

all tuple (x , y , z)∈S’ schedule the jobs corresponding to y and z to the machine

corresponding to X. So, this way exactly one machine of the n|x| machines got scheduled
and their load is 2. then for all x∈X schedule the n|x|−1 dummy jobs of type X
 on the machine corresponding to X. The makespan of this schedule is 2. You see all the

machines corresponding to S’ their load is 2 and all the machines which are scheduling
those damage of their load is also 2. So, the makespan is 2. So, this proves the one
direction the first part if part now the otherwise part.

 So, we want to show that the makespan of if the 3 dimensional matching instance is a no
instance. then the makespan of every schedule is at least 3. What we will show is
contrapositive of this statement that is if there is a schedule of makespan 2, then the 3
dimensional matching instance is a yes instance. So, for the for otherwise we will show
that if there is a schedule of makespan 2, then the 3 dimensional matching instance must
be a yes instance. So, suppose there is a schedule which makes span 2.

 Now, because each dummy job needs at least 2 units of time. So, let us name this
schedule, schedule say A. So, in A, the dummy job corresponding to each x∈X must be
scheduled the n|x|−1 dummy jobs must be scheduled to the n|x|−1 machines. among n
x machines of type x. So, this leaves exactly one machine of type x free and only in total
only n machines to schedule the 2 n jobs.

 this leaves only n machines free to schedule the jobs corresponding to Y and Z ok. So, it
is easy to show it is easy to see or take it as a homework to prove that homework prove it
that the n tuples corresponding to the n machines which execute the jobs corresponding
to Y and Z forms a three dimensional matching. So, this finishes the proof of the theorem
and the immediate corollary what we have there is no polynomial time. alpha factor
approximation algorithm for scheduling jobs on multiple parallel non-identical machines

to minimize makespan. for any alpha less than
3
2

 because any such algorithm will find

out is forced to output a schedule with makespan 2 whenever it exists and that is enough
to solve the 3 dimensional matching problem.

 Our next problem for which we will show in is edge disjoint path. So, because we will
prove inapproximability let us write down the optimization version. an undirected graph
G=(V , E) and key pairs of vertices {s1 , t1},{s2 , t2},…,{sk , t k} ok. The goal is to so, find

or S⊆[k] such that cardinality S is maximized and there are or there is a path Pi from si

to t i for every i∈S and this paths are edge disjoint ok. So, these paths are edge disjoint.

 So, among this k pairs of vertices find as many edge disjoint paths as possible. So, for
this problem we will show a strong inapproximability bound. So, there is a simple greedy
algorithm which gives O(√m) approximation algorithm gives O(√m) approximate

solution what we claim is that that is pretty much the best approximation guarantee we
can hope for in polynomial time. So, here is a theorem for any or for every alpha greater

than there is no Ω(m
−1
2

+ϵ
). So, this is

1

√m
 not √m this is m

−1
2 .

 So, there is no Ω(m
−1
2

+ϵ
) approximation algorithm for edge disjoint path unless P=NP,

this condition also should be there in our previous proof this is unless P=NP ok. So, for
that what we will show we will give a reduction the from edge disjoint path to itself. This
edge disjoint path problem is NP complete even for k=2. So, edge disjoint path paths
problem is NP complete even for k=2.

 That means, given 2 pair of vertices {s1 , t1},{s2 , t2} it is NP complete to decide whether

there exist 2 edge disjoint paths. one from s1 to t1 another from s2 to t2. What we will

show is that if there is a Ω(m
−1
2

+ϵ
) factor approximation algorithm for edge disjoint path,

then we will be able to have a polynomial time algorithm for 2 disjoint path ok. So, let
G=(V , A) and {s1 , t1},{s2 , t2} be an instance of two disjoint paths. from this we will

construct an instance of k disjoint path.

 So, for that we set k to be equal to cardinality a and ceiling of
1
ϵ

. So, I am given an

epsilon greater than 0 arbitrary. So, we take k to be this and we will construct an instance
of k disjoint path problem. from this. What we do is this to distinguish from this 2
disjoint path we will name the pairs of k disjoint path as a 1 b 1 a 2 b 2 and so on.

 So, we will have this construction So, suppose this 2 disjoint path we denote it by this
notation. So, here is s1, here is t1 and here is s2, here is t2. What we do is we have a vertex

a 1 connected with a copy of G we will have multiple copies of G and connect it to s2

here ok. So, here not undirected graph we will have directed graph let us have directed
graph because that is important ok. So, this is a1 and then a2 is connected to this.

a3 is connected here and ak is connected here, here means that means, ai is connected a2

is connected to s1, a3 is connected to s1 of the below graph and so on. And from the top

graph from the t2 I connect I put an edge from t2 to s2 and so on this And here also we

have another copy, we have an edge from here t1 to s1, we have edge from t1 to s2 and so

on. Let us draw the a4 also then the pattern will be very much visible. we have another

copy and here is b1, here is b2, here is bk−1 here is bk. Now, if there is there are two edge

disjoint paths one is from s1 to t1 another is from s2 to t2 then you see we have an edge

disjoint path from every ai to bi.

 So, for ai you can from a1 you can take this edge, then this edge disjoint path, this edge,

this edge disjoint path, this edge, this edge disjoint path and so on till b1. So, you get a

path from a1 to b1. Similarly, you can get a path from a2 to b2 like this a2 to this edge,

then take this edge disjoint path, take this edge, this edge disjoint path, and so on. So,
what we have seen is that we have basically proved this lemma that if there is there are 2

edge disjoint paths. in G then there are k edge disjoint paths in G’.

 So, let us call this graph G’. On the other hand, if you see if you see that there are no two

edge disjoint path, then in G’ there can be at most one edge disjoint path. So, whenever
you can have a path from ai to bi that is it because that will not that blocks all the paths.

Otherwise that means, if there are no two edge disjoint paths in G. otherwise there is only
one disjoint path. So, again here you see that if the number of edge region paths is k
which is high which is some you see k is some high number.

 And this that is set in such a way that if the number of edge region paths is k then an
polynomial team algorithm even with this approximation guarantee this weak
approximation guarantee needs to output at least 2 edge disjoint paths. So, I will fit this

G’ as an input and ask that approximation algorithm to out give me edge disjoint paths.
Now, if there are k edge disjoint paths the approximation ratio is set in such a way then
that the algorithm will is forced to output more than one edge disjoint path and then from
that information I know that that the two edge disjoint path problem is a yes instance.

Otherwise if G has exactly one edge disjoint path then G’ will also have one edge disjoint
path and in that case the algorithm will output one edge disjoint path. And hence
existence of such an algorithm gives me a polynomial time algorithm for the NP
complete problem to edge join path thereby proving P=NP ok.

 So, you finish this proof formally as a homework ok. So, let us stop here. Thank you.

