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 So,  till  now we have seen  many algorithms  for  approximating  the  weighted  vertex
weighted set cover and all of them has an approximation factor of f. The techniques are
linear programming rounding deterministic and then we have seen dual rounding and in
the last class we have seen a combinatorial algorithm which is based on the primal dual
method. So, today we will see another algorithm with incomparable approximation ratio
for set cover and that is greedy a greedy algorithm. So, let us see this algorithm is quite
popular algorithm for set cover greedy algorithm. So, what is greedy as you know greedy
algorithm is a typical in iterative algorithm where in every step we pick something in the
solution which looks the best at the current situation and that is how we iteratively build
towards  the  solution.  So,  we  will  do  the  same  thing  here.

 So,  let  me  write  the  pseudocode  first  as  typical  greedy  algorithm  this  here  in  this
algorithm also we start with an empty solution and iteratively pick or build the solution in
a greedy way we pick something in the solution which looks best in the current situation.
So,  we  have  the  sets   recall  what  is  we  have  input  is  and  universe  U  which  is
{e1 ,…,en}  and collection of sets S1 ,…, Sm  with weights w1 ,…,wm . So, what is

the  greedy  choice  here?  So,  which  set  sounds  best?  So,  in  the  first  iteration  say.

 So, we have m sets each with particular weights. So, it makes sense to pick  pick the set
which covers the maximum number of elements and also it has lowest cost. It has two
things know we need to minimize cost or minimize total weight of the solution, but at the
same time we also want to maximize the we want to cover everything in the solution
everything in the universe. So, it one natural greedy choice is to pick the set which covers
the elements with least average cost. So, for that while I is not a set cover  what do we
do? For we pick the set which covers thus elements with minimum average weight or
average  cost.

 So,  l  is  suppose  that  set  which  is  argmin,  is  the  argument  which  minimizes  the
expression. In this  case I will  write an expression in terms of j  and argument  is  that



particular index j which minimizes that expression. What is that expression? I want for
each set the jth set can cover the elements in S j   at a cost total cost of w j . So, the

set  S j can cover  |S j| elements at a average cost of  
w j

|S j|
 and I will pick the set

which  covers  the  elements  with  least  average  cost.

 Now, you see after first iteration some element got covered in the next iteration which
set  I  should  pick  the  again  a  greedy  choice  is  that  set  which  covers  the  uncovered
elements, some elements are already covered in by the first set that I have picked. So, in
the next iteration it makes sense to pick that set which covers the uncovered elements
with least average cost. So, we need to we need to sort of in some sense get rid of the
elements  which  are  which  have  got  covered  and  focus  only  on  uncovered  elements,
because we want to cover the currently uncovered elements with least average cost. So,
for that we maintain a set  Ŝ j   which is initialized to  S j  for all j∈[m ] . And in
Ŝ j we are storing we are removing the elements that are got covered. So, this is Ŝ j

minus in this iteration the elements that got covered is Ŝ l . So, Ŝ l these elements I am
removing for all j∈[m ] . ok and here also I will only focus on elements that are newly
uncovered  elements  that  are  getting  covered.  So,  this  is  the  thing.

 So, in Ŝ j in every iteration it stores only the uncovered elements and in every iteration
I  am  picking  that  set  which  covers  the  maximum  number  of  uncovered  elements
maximum number of uncovered elements with least average cost. And, then we return the
set cover what is the set cover I is the indices. So, this is S i such that i∈ I . So, this is
the  set  cover  this  I  output.  What  we  will  show  is  that  this  is  a  log n  factor
approximation  algorithm.

 So, theorem  above algorithm which clearly runs in polynomial time because in every
iteration at least one element is getting covered or at least one set is getting picked and so,
it can iterate over at most minimum of m or n iteration minimum of m and n iterations.
The  above  algorithm has  an  approximation  factor  of  H n  where  Hn is  the  n-th

harmonic number. H n=1+
1
2
+ 1
3
+...+ 1

n
ok. To prove this we need a fact which is easy

to prove you can take it as a homework to prove it. Given positive  numbers real numbers
a1 , a2 ,…,an  and  b1 , b2 ,…,bn .

 we have  
a1+a2+...+an
b1+b+2+...+bn

 this is less than equal to maxi∈[n]

a i
bi

 and this is greater

than equal to mini∈[n]

ai
bi

ok. So, before proving this let me tell you the high level idea



let  me give a high level  idea. The high level  idea is as follows, if  we know that the
optimal solution can cover all elements  at an average cost of total cost is of. and the
number  of  elements  is  n.  So,  the  average  cost  is  opt  by  n.

 Hence, there must exist at the first iteration there must exist at least one set which can
cover the elements in it with average cost less than equal to n. Hence, in the  beginning of
the algorithm there exists a set which covers its elements with average cost at most opt by
n.  ok  and this  argument  we repeat.  So,  suppose  k  elements  get  covered  in  the  next
iteration  in  the  first  iteration.  So,  in  the  next  iteration.

 So, suppose k elements gets covered  in the first iteration ok. Then again we observe that
the optimal solution covers this remaining n minus k elements at an average cost of opt

by at most opt
n−k

. Then  the optimal solution covers the remaining  n - k elements at an

average cost of at most opt
n−k

. And, hence the set that our algorithm is picking in the

second iteration that also has an average cost of at most n - k and so on. So, and hence the
set that the algorithm  peaks in the second iteration has an average cost considering only
elements which are not covered in the first iteration. Considering only those elements that

are not covered in the first iteration.  cost at most  opt
n−k

and so on. So, what is the

ALG? So, in the first iteration it has covered k elements. So, this alg is less than equal to

k if the first iteration if it say covers  say k1 element then this k1
opt
n

 this is the total

cost of the elements covered in the first iteration then k2
opt
n−k1

 and so on and this can

be shown to be less than equal to  H n×opt  this is the high level idea. So, with this
high  level  idea  let  us  now  formalize  the  proof.

 Now, formal proof of the theorem. So, let nk be the number of uncovered elements in
the beginning of  kth iteration ok. And suppose the algorithm terminates  after l iterations.
Then what we have is n1 which is the number of uncovered elements in the beginning
of the first iteration this is equal to n and nl plus  which is the number of uncovered
elements  the  beginning  of  l+1  is  iteration,  but  the  algorithm  terminates  after  l
iteration.  So,  this  must  be  0  and  so,  now,  let  k  be  any arbitrary  iterations  ok  and .

 So, suppose the algorithm picks the set Sk  in the kth iteration. let us rename the sets.
So, that we can assume that S1 be the set picked in the first iteration, S2 be the set
picked in the second iteration and so on. So, what do we know? We know that opt then
we have  Now, focus at the beginning of kth iteration the beginning of kth iteration nk



is the number of uncovered elements and opt can cover them the that those collection of

sets  can  cover  them  as  an  average  cost  of opt
nk

 ok,  but  we  have  picked S j .

 So, S j that set can cover them  at an average cost of w k by the number of uncovered
elements that the set Sk is covering in the beginning of kth iteration. What is that? That
number is nothing, but this is nk−nk+1 . This is exactly the number of elements that the
set Sk was covering in the beginning of kth iteration. So, this because of the greedy
choice  this  must  be  less  than  equal  to  this.

 So, what do you have that W k is less than equal to
nk−nk+1
nk

opt  ok. Now, what is

ALG? we have renamed the sets. So, that we have assumed without loss of generality that
the algorithm picks set S1 in the first iteration set S2 in the second iteration and so on.
And we have l iterations this is w1+w2+…+wl . So, this is the weight of the sum of the
weights  of  the  sets  that  the  algorithm  outputs.

 this is ∑k=1

l nk−nk+1
nk

opt , opt goes out. This is less than equal to opt ∑k=1

l
 first

term  let  it  keep  it  nk  second  term  instead  of  nk  I  write  1
nk−1

.

 So, I am reducing the denominator. So, the number increases 1
nk−1

second term I am

making it 1
nk−2

. and so on and the last term is 1
nk+1+1

. So, this you can rewrite as

opt∑i=1

n 1
i

 which  is  nothing,  but  the  nth  harmonic  number.

H n×opt  ok. So, this proves the claim ok. So, let us stop here. Thank you.


