
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 01

Lecture 06

Lecture 06 : Greedy algorithm for Weighted Set Cover

 So, till now we have seen many algorithms for approximating the weighted vertex
weighted set cover and all of them has an approximation factor of f. The techniques are
linear programming rounding deterministic and then we have seen dual rounding and in
the last class we have seen a combinatorial algorithm which is based on the primal dual
method. So, today we will see another algorithm with incomparable approximation ratio
for set cover and that is greedy a greedy algorithm. So, let us see this algorithm is quite
popular algorithm for set cover greedy algorithm. So, what is greedy as you know greedy
algorithm is a typical in iterative algorithm where in every step we pick something in the
solution which looks the best at the current situation and that is how we iteratively build
towards the solution. So, we will do the same thing here.

 So, let me write the pseudocode first as typical greedy algorithm this here in this
algorithm also we start with an empty solution and iteratively pick or build the solution in
a greedy way we pick something in the solution which looks best in the current situation.
So, we have the sets recall what is we have input is and universe U which is
{e1 ,…,en} and collection of sets S1 ,…, Sm with weights w1 ,…,wm . So, what is

the greedy choice here? So, which set sounds best? So, in the first iteration say.

 So, we have m sets each with particular weights. So, it makes sense to pick pick the set
which covers the maximum number of elements and also it has lowest cost. It has two
things know we need to minimize cost or minimize total weight of the solution, but at the
same time we also want to maximize the we want to cover everything in the solution
everything in the universe. So, it one natural greedy choice is to pick the set which covers
the elements with least average cost. So, for that while I is not a set cover what do we
do? For we pick the set which covers thus elements with minimum average weight or
average cost.

 So, l is suppose that set which is argmin, is the argument which minimizes the
expression. In this case I will write an expression in terms of j and argument is that

particular index j which minimizes that expression. What is that expression? I want for
each set the jth set can cover the elements in S j at a cost total cost of w j . So, the

set S j can cover |S j| elements at a average cost of
w j

|S j|
 and I will pick the set

which covers the elements with least average cost.

 Now, you see after first iteration some element got covered in the next iteration which
set I should pick the again a greedy choice is that set which covers the uncovered
elements, some elements are already covered in by the first set that I have picked. So, in
the next iteration it makes sense to pick that set which covers the uncovered elements
with least average cost. So, we need to we need to sort of in some sense get rid of the
elements which are which have got covered and focus only on uncovered elements,
because we want to cover the currently uncovered elements with least average cost. So,
for that we maintain a set Ŝ j which is initialized to S j for all j∈[m] . And in
Ŝ j we are storing we are removing the elements that are got covered. So, this is Ŝ j

minus in this iteration the elements that got covered is Ŝ l . So, Ŝ l these elements I am
removing for all j∈[m] . ok and here also I will only focus on elements that are newly
uncovered elements that are getting covered. So, this is the thing.

 So, in Ŝ j in every iteration it stores only the uncovered elements and in every iteration
I am picking that set which covers the maximum number of uncovered elements
maximum number of uncovered elements with least average cost. And, then we return the
set cover what is the set cover I is the indices. So, this is S i such that i∈ I . So, this is
the set cover this I output. What we will show is that this is a log n factor
approximation algorithm.

 So, theorem above algorithm which clearly runs in polynomial time because in every
iteration at least one element is getting covered or at least one set is getting picked and so,
it can iterate over at most minimum of m or n iteration minimum of m and n iterations.
The above algorithm has an approximation factor of H n where Hn is the n-th

harmonic number. H n=1+
1
2
+ 1
3
+...+ 1

n
ok. To prove this we need a fact which is easy

to prove you can take it as a homework to prove it. Given positive numbers real numbers
a1 , a2 ,…,an and b1 , b2 ,…,bn .

 we have
a1+a2+...+an
b1+b+2+...+bn

 this is less than equal to maxi∈[n]

a i
bi

 and this is greater

than equal to mini∈[n]

ai
bi

ok. So, before proving this let me tell you the high level idea

let me give a high level idea. The high level idea is as follows, if we know that the
optimal solution can cover all elements at an average cost of total cost is of. and the
number of elements is n. So, the average cost is opt by n.

 Hence, there must exist at the first iteration there must exist at least one set which can
cover the elements in it with average cost less than equal to n. Hence, in the beginning of
the algorithm there exists a set which covers its elements with average cost at most opt by
n. ok and this argument we repeat. So, suppose k elements get covered in the next
iteration in the first iteration. So, in the next iteration.

 So, suppose k elements gets covered in the first iteration ok. Then again we observe that
the optimal solution covers this remaining n minus k elements at an average cost of opt

by at most opt
n−k

. Then the optimal solution covers the remaining n - k elements at an

average cost of at most opt
n−k

. And, hence the set that our algorithm is picking in the

second iteration that also has an average cost of at most n - k and so on. So, and hence the
set that the algorithm peaks in the second iteration has an average cost considering only
elements which are not covered in the first iteration. Considering only those elements that

are not covered in the first iteration. cost at most opt
n−k

and so on. So, what is the

ALG? So, in the first iteration it has covered k elements. So, this alg is less than equal to

k if the first iteration if it say covers say k1 element then this k1
opt
n

 this is the total

cost of the elements covered in the first iteration then k2
opt
n−k1

 and so on and this can

be shown to be less than equal to H n×opt this is the high level idea. So, with this
high level idea let us now formalize the proof.

 Now, formal proof of the theorem. So, let nk be the number of uncovered elements in
the beginning of kth iteration ok. And suppose the algorithm terminates after l iterations.
Then what we have is n1 which is the number of uncovered elements in the beginning
of the first iteration this is equal to n and nl plus which is the number of uncovered
elements the beginning of l+1 is iteration, but the algorithm terminates after l
iteration. So, this must be 0 and so, now, let k be any arbitrary iterations ok and .

 So, suppose the algorithm picks the set Sk in the kth iteration. let us rename the sets.
So, that we can assume that S1 be the set picked in the first iteration, S2 be the set
picked in the second iteration and so on. So, what do we know? We know that opt then
we have Now, focus at the beginning of kth iteration the beginning of kth iteration nk

is the number of uncovered elements and opt can cover them the that those collection of

sets can cover them as an average cost of opt
nk

 ok, but we have picked S j .

 So, S j that set can cover them at an average cost of w k by the number of uncovered
elements that the set Sk is covering in the beginning of kth iteration. What is that? That
number is nothing, but this is nk−nk+1 . This is exactly the number of elements that the
set Sk was covering in the beginning of kth iteration. So, this because of the greedy
choice this must be less than equal to this.

 So, what do you have that W k is less than equal to
nk−nk+1
nk

opt ok. Now, what is

ALG? we have renamed the sets. So, that we have assumed without loss of generality that
the algorithm picks set S1 in the first iteration set S2 in the second iteration and so on.
And we have l iterations this is w1+w2+…+wl . So, this is the weight of the sum of the
weights of the sets that the algorithm outputs.

 this is ∑k=1

l nk−nk+1
nk

opt , opt goes out. This is less than equal to opt ∑k=1

l
 first

term let it keep it nk second term instead of nk I write 1
nk−1

.

 So, I am reducing the denominator. So, the number increases 1
nk−1

second term I am

making it 1
nk−2

. and so on and the last term is 1
nk+1+1

. So, this you can rewrite as

opt∑i=1

n 1
i

 which is nothing, but the nth harmonic number.

H n×opt ok. So, this proves the claim ok. So, let us stop here. Thank you.

