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Lecture 59 : Inapproximability of Scheduling Jobs on Multiple Non-identical Machines

 Welcome.  So,  in  this  course  till  now  we  have  mostly  been  focusing  on  various 
algorithmic  aspects  for  a  designing  an  approximation  algorithm  for  NP  complete 
problems. So, in the remaining 2 lectures we will give a very high level overview of 
inapproximability, how to show that some problem is an inapproximable within some 
approximation factor of alpha by any polynomial time algorithm. We have already seen 
some of the proofs for example, for travelling salesman problem we have seen that there 
is no row factor approximation algorithm for any polynomial time computable function 
row. And so, we will see more of this in these two lectures. So, our first problem is  
scheduling  jobs  on  multiple,  but  non  identical  machines.

 So, scheduling  jobs on multiple parallel non identical. machines . Recall that we have 
seen the job scheduling problem on multiple parallel identical machines for minimizing 
the makespan of the schedule and we have seen that that problem admits a polynomial 
time approximation scheme also known as PTAS. But for this problem we will see that 

there is no  than  
3
2

 factor polynomial time approximation algorithm for this problem.

 So, before that let us formally define the problem. Input n jobs, m machines for or it 
takes pi , j amount of time for machine j to process job i, goal, schedule these n jobs. non 

preemptively  preemptively.  That  means,  a  job  once  started  cannot  be  paused  in  the 
middle  it  should  be  allowed to  finish  on  to  m machines  to  minimize  the  maximum 
completion  time  of  any  job  also  known  as  the  makespan.

 of the schedule ok. So, we will do a reduction from classical 3 dimensional matching 
problem to this problem which will give us the required inapproximability bound. So, let  
us recall 3 dimensional matching. 3 dimensional matching problem input 3 sets X, Y and 
Z  each  with  each  of  cardinality  n  and  a  collection  of  triples.

 is subset of Cartesian product of X, Y, and Z, cardinality S is m. Computational question 



does there exist S’⊆S of cardinality n such that all x, y, and z appear in S’. That means, 

let us define S’ of x to be the first coordinate of  x’. So, this is all  x∈X  such that there 

exist a triple (x , y , z)∈S’ that means, S’ projected on X that should be equal to X. And, 

similarly S’ projected to Y should be equal to Y and S’ projected to Z should be equal to 
Z.

 Because, cardinality of S’ is n each element of X, Y, and Z should appear exactly once in 

S’ they appear in exactly one triple in  S’. So, we reduce three-dimensional matching in 
polynomial time to  this scheduling job. So, reducing means we need to take an arbitrary 
instance of 3 dimensional matching and convert it to an or construct a scheduling instance 
which are equivalent  in the sense that  this  3 dimensional  matching instance is  a  yes 
instance if and only if the scheduling instance is an yes instance. X Y Z and S be an  
arbitrary instance of 3 dimensional matching 3 D M for short. If  cardinality of X which 
is n is more than m which is cardinality of S, then clearly the  is a no instance, in this case 
we  output  a  trivial  no  instance.

 So, for applying the framework of NP complete reduction or polynomial time many to 
one reductions, we need to study decision versions. So, we have formulated the three 
dimensional  matching  problem  as  a  decision  problem.  We  need  to  formulate  the 
scheduling  problem  as  well  as  a  decision  problem.  The  way  it  is  formulated  is  an 
optimization  problem.  So,  to  formulate  it  as  a  decision  problem.

 we have this inputs and another target makespan t and the question is does there exist 
with makespan being at most t. So, this is the decision version of this scheduling job and 
with this decision version we will   go ahead with this polynomial time many to one 
reduction  because  in  the  definition  of  many  to  one  reduction  we  need  to  output  an 
equivalent  instance.  And  the  equivalent  instance  means  that  the  three  dimensional 
instance  three  dimensional  matching  instance  is  a  yes  instance  if  and  only  if  the 
scheduling instance is a yes instance. So, if the number if the cardinality of X is greater  
than the number of triples. then there is no hope of having a 3 dimensional matching.

 Hence, we hence clearly the 3 dimensional matching instance is a no instance and we 
need to output an equivalent instance because the in 3 dimensional matching instance is a 
no instance, we simply output a trivial no instance for this problem for the scheduling 
job.  So,  otherwise   let  us  assume that  n  is  less  equal  to  m.  We now construct  the 
scheduling instance. So, we have a job we have n jobs. one job per element one job for 
every  element  of  X.

 ok and we have n machines. We have m machines, one machine for every triple  in S.  
Now, let (x , y , z) be a triple in S, then we define  that the jobs corresponding to. So, we 



have 3 n jobs not n jobs 3 n jobs for every element in x, y and z. So, for every triple 

(x , y , z)

 we define that the jobs corresponding to these elements x, y and z take 1 unit of 

time  on  the  machine.

 corresponding to the triple  (x , y , z). Now, you see that if the 3 dimensional matching 

instance is a yes instance, then there are n triples which covers all elements. Equivalently 
in the scheduling term, there are n machines which can execute all these 3 n jobs. and  
each machine runs for exactly 3 units of time this leaves  m−n machines free. So, to 
occupy those machines we have  m−n which is greater than equal to 0 jobs these are 
dummy  jobs.

 that need 3 units of processing time on every machine. So, what we have observed what 
we have just discussed is that if the 3 dimensional matching instance is a yes instance, 
then  there is a schedule with makespan 3. Otherwise the makespan  of every schedule is 
at  least  4.  So,  you see that  given a  scheduling instance it  is  NP complete  to  decide 
whether the  mixpan of the optimal schedule is 3 or 4. This shows that we cannot have a 

better  than  
4
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 factor  approximation  algorithm.

 This  implies  that  for  the  or  there  is  no  α  there  is  no  polynomial  time   alpha 

approximation algorithm for scheduling for every α  less than 
4
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 Why? Because if there is 

a α  approximation algorithm which runs in polynomial time, then if the reduced instance 
of the scheduling problem has a makespan of 3, it is forced to output that schedule. the 
makespan should be at most 3 times α  or less than 3 times α  which is strictly less than 4, 
but  all  the  processing  times  are  integral  here.  So,  for  this  instance  if  whenever  the 
schedule has a makespan 3, the algorithm is forced to output the schedule of makespan 3. 
On  other  hand,  if  the  makespan  of  every  schedule  is  at  least  4,  then  the  alpha 
approximation algorithm will output a schedule of makespan greater than 3. So, using 
that algorithm we can decide whether a scheduling task has a makespan 3 or more which 
is  enough  to  have  a  polynomial  time  algorithm  for  3  dimensional  matching.

 Next what we do we slightly refine this reduction to improve this bound. What we do is 
that we have 2 n jobs one each for every element  of Y and Z. Now, we have we play 
with dummy jobs. So, for so, we have n dummy jobs. one each for every element of X 
and  let  n  X.

 for  x∈X  be the number of number of machine number of tuples which  contain x. 
Actually we have not n dummy jobs, n types of dummy job, one type  So, what I want is  
that among this n X machines all but 1 machine are required for processing the dummy 
jobs of type X. So, we have n|X|−1 dummy jobs of type X ok. So, this now we need to 



decide the processing times. So, for every (x , y , z) the jobs corresponding to y and z take 

1  unit  of  time.

 on the machine corresponding to (x , y , z) ok and for if  for every x∈X  the dummy job 

of  type  X takes  2  units  of  time.  on  the  on  every  machine  corresponding to  a  tuple  
(x , y , z). for any y∈Y , z∈Z ok. So, for all the tuples where the first component in x in 

those machines the dummy job of type x takes only 2 units of time. In other machines 
the  dummy  job  of  type  X  takes  infinite  amount  of  time.

 we can replace this infinity with some large positive number which is say in this case 3 is 
enough or let us keep it 3 that is more concrete. 3 amount of time. So, in the next lecture  

we  will  see  how  this  reduction  gives  a  
3
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 better  than  
3
2

 factor  polynomial  time 

inapproximability for the scheduling task ok. So, let us stop here. Thank you.


