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Lecture  58  :  SDP  Based  Approximation  Algorithm  for  Max  Cut  Cont

 welcome. So, in the last class we have started seeing the SDP based algorithm for max  
cut problem. We have seen that a we have written a vector program mean relaxation for it  
and then did a randomized rounding of the optimal solution of the vector program  using 
a random hyperplane passing through origin and then we started doing the analysis. So, 
let us continue the analysis and prove the approximation guarantee of that algorithm in 
this lecture. So, in the last class we were proving this lemma that the probability that an 

edge {i , j}∈E belongs to the cut output by the algorithm is 
1
π
arc cos(v i⋅v j) proof. So, let 

us briefly recall we were looking at the unit circle around origin in the plane spanned by 

v i and  v j they  are  unit  vectors  and  r ’ is  the  projection  of  r.

 on the plane spanned by  v i and  v j and then we were arguing where does if where for 

what r i
’ v i and v j fall belong to different cut different parts of the vertices in the cut. So, 

for that we did two lines one is perpendicular to v i and another is perpendicular to v j. and 

suppose the angle between  v i and  v j is  θ and then we observe that only if  r ’ which is 

uniformly distributed on the circle on the circle falls in this black region then only i and j 
will be in different components and that is equivalent to the condition that {i , j} this edge 
is a cut edge. So, this is θ then this 2 green angles each of them are 90−θ because they 
are  perpendicular  and  hence  these  angles  are  also  θ.

 So, the probability that {i , j} is cut  is 
2θ
2π

 which is 
θ
π

. Now, what is θ? If I do the inner 

product of v i and v j that is length of v i times length of v j times cos(θ). Now, v i and v j are 

unit  vectors.  So,  this  is  equal  to  cos(θ) So,  θ is  arc cos(v i⋅v j) ok.

 So,  this  completes  the  proof  of  this  lemma.  So,  now,  we  prove  the  approximation 
guarantee theorem. The approximation factor of  the SDP based max cut algorithm is at  
least   0.878.  So,  let  us  prove  it.



 So, for each edge {i , j}∈E let xij be the indicator random variable for the event that {i , j} 
is  cut.  So,  alg  which  is  the  random variable  a  taking  the  value  the  cut  size  of  the  

algorithm which is nothing, but ∑{i , j}∈E
xij. So, expectation of ALG is expectation of sum 

of the edges sum over the edges  {i , j} xij.  Now, apply linearity of expectation this is 

expectation of  xij. So, this is summation sorry there is a  w ij term here because of the 

weights.

 So, this is ∑{i , j}∈E
w ijP [{i , j}is cut ] which is ∑{i , j}∈E

w ij
1
π
arc cos(v i⋅v j). Now, we need 

to  connect  this  with  the  objective  function  of  the  vector  program which  is  a  linear 
function of  v i⋅v j. So, for that we need a lemma which can be proved using elementary 

calculus that for x in you see inner product of v i and v j they are unit vectors and the inner 

product can vary from −1 to +1. So,  we need to we need an expression which can bound 
arc cos(x) for  x  in  between  −1 to  1.

 So, for every x in −1 to 1, 
1
π
arc cos(x)≥0.878 1

2
(1−x) you see 

1
2
(1−x) this is like a 

objective  function.  In  the  objective  function we have this  
1
2

 because  each edge gets 

counted twice. So, recall in vector program it was like maximize ∑{i , j}∈E
w ij and then we 

have  an  expression  1−v i⋅v j.

 Now, this if you sum over all {i , j}'s that is fine, but if you sum over all {i , j}'s then it 
boils down  whenever there is an edge between i and j a that the weight of that edge is w 
ij as usual, but if there is no edge between i and j we define an edge between i and j with 
weight 0. This way we have  w ij for every pair of i and j. So, this can be equivalently 

written as ∑1≤i , j≤n
w ij(1−v i⋅v j), but here you see each edge contributes twice one as i j 

and another as j i. So, we need a factor of half. So, with this let us continue the analysis  
from  here.

 we get this is less greater than equal to 0.878 times sorry we need a half. Because, if v i if 

i and j are in the same component then v i⋅v j is 1 which is 0 which 1−v i⋅v j=0, but on the 

other hand if v i⋅v j are in different component v i⋅v j is -1 and this becomes 2 for that we 

need we need half sorry we do not need this things. Now, we can continue from here. So,  
we missed this half in the earlier lectures on in the last lecture on max cut based on semi 
definite program, there in the optimization function we will be there will be an half factor  
because this is 0 if i j is in cut and 2  if I if this if this is 0 if i j is not in cut and 2 if i j is in 



cut,  but  we want  a  contribution of  1  that  is  why we need to  multiply with half  ok.

 So, with this ∑1≤i , j≤n
w ij(1−v i⋅v j). Now, this is VP-opt. So, this is equal to 0.878 VP-

opt  which  is  greater  than  equal  to  opt.

 0.878 optimal. So, this shows that the approximation guarantee of our algorithm is 0.878 
which turns out to be the best possible under a standard complexity theoretic assumption 
which is  called unique games conjecture.  Of course,  it  is  the this  is  the best  known 
approximation algorithm for the max cut problem. So, here is the theorem. Assuming 
unique  games  conjecture   which  is  a  complexity  theoretic  conjecture  regarding  a 
computational  task  in  the  context  of  a  game.

 this assumption is weaker than P≠NP assumption. In particular, if P is equal to NP then 
unique games conjecture is false, but if unique games conjecture is false that does not 
imply P equal to NP. So, in that way this is a weaker assumption, but this assumption 
often  allows  us  to  prove  stronger  inapproximability  bound  for  various  combinatorial 
optimization problems. So, under this conjecture, if we assume it to be true, we cannot 
have  a  better  than  0.878-factor  approximation  algorithm  for  Max  Cut.

 Assuming  the  unique  games  conjecture,  there  is  no  alpha-factor  polynomial-time 
approximation for the max-cut problem for any alpha that is greater than the minimum of 
x.  Essentially,  in  this  lemma,  the  best  number  you  can  place  here  is  the  maximum 
approximation guarantee you can achieve for the max-cut problem, assuming the unique 
games conjecture. Now, if you do not want to assume such a strong conjecture—about 
which, you know, even the research community is divided; some groups believe that this 
unicorn's conjecture is true, whereas there are some theoretical computer scientists who 
believe  that  it  is  not  true.

 So, if we only want to assume that P is not equal to NP, then we have the following  
inapproximability theorem: assuming P is not equal to NP, there is no polynomial-time α-

approximation algorithm for  the  max cut  problem.  For  any  α> 16
17

,  which is  roughly 

0.941, okay? So, we obtain a weaker inapproximability guarantee assuming  P≠NP. In 
the remaining time of our course, we will examine some inapproximability bounds and 
how to  prove  certain  inapproximability  results.  So,  let  us  provide  a  brief  overview.

The next  topic  is  inapproximability,  or  polynomial-time inapproximability.  These  are 
typically assumptions; I assume that often  P≠NP. That is the weakest assumption on 
which we can base our theorem, and under this assumption, we want to show various 
inapproximability guarantees or proofs like this. For example, we have already seen a 



couple  of  such  theorems  in  the  lectures.

 For example, we have seen the theorem that for any computable function, if there is a 
polynomial-time  computable  function  α,  then  there  is  no  polynomial-time  α-
approximation algorithm for the traveling salesman problem. So, what we have already 
seen is that if we have such an algorithm, we can solve the Hamiltonian circuit problem 
in polynomial time. So, another theorem that we will prove in the next class is scheduling 
jobs  on  multiple  parallel,  non-identical  machines.

 What is the problem statement? We have n jobs and m machines; it takes pij time units 

for machine j to process job i. Compute a non-preemptive scheduling. That means a job 
assigned to a machine should be allowed to run until it finishes. That means if job i is 
assigned to machine j, it should be allowed to run for e will prove in the next class is sch 
amount  of  time.  Our  goal  is  to  compute  a  preemptive  schedule  that  minimizes  the 
maximum completion time of  any job,  which is  also known as  the makespan of  the 
schedule.

 We will see this inapproximability result in the next lecture: assuming P≠NP, there is 
no  polynomial-time  α-approximation  algorithm for  scheduling  jobs  on  multiple  non-

identical machines for any  α .  Less than  
3
2

,  because it is a minimization problem; the 

approximation factors are greater than 1, okay. So, we will see the proof of this theorem 
in the next class, okay


