
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 12

Lecture 58

Lecture 58 : SDP Based Approximation Algorithm for Max Cut Cont

 welcome. So, in the last class we have started seeing the SDP based algorithm for max
cut problem. We have seen that a we have written a vector program mean relaxation for it
and then did a randomized rounding of the optimal solution of the vector program using
a random hyperplane passing through origin and then we started doing the analysis. So,
let us continue the analysis and prove the approximation guarantee of that algorithm in
this lecture. So, in the last class we were proving this lemma that the probability that an

edge {i , j}∈E belongs to the cut output by the algorithm is
1
π
arc cos(v i⋅v j) proof. So, let

us briefly recall we were looking at the unit circle around origin in the plane spanned by

v i and v j they are unit vectors and r ’ is the projection of r.

 on the plane spanned by v i and v j and then we were arguing where does if where for

what r i
’ v i and v j fall belong to different cut different parts of the vertices in the cut. So,

for that we did two lines one is perpendicular to v i and another is perpendicular to v j. and

suppose the angle between v i and v j is θ and then we observe that only if r ’ which is

uniformly distributed on the circle on the circle falls in this black region then only i and j
will be in different components and that is equivalent to the condition that {i , j} this edge
is a cut edge. So, this is θ then this 2 green angles each of them are 90−θ because they
are perpendicular and hence these angles are also θ.

 So, the probability that {i , j} is cut is
2θ
2π

 which is
θ
π

. Now, what is θ? If I do the inner

product of v i and v j that is length of v i times length of v j times cos(θ). Now, v i and v j are

unit vectors. So, this is equal to cos(θ) So, θ is arc cos(v i⋅v j) ok.

 So, this completes the proof of this lemma. So, now, we prove the approximation
guarantee theorem. The approximation factor of the SDP based max cut algorithm is at
least 0.878. So, let us prove it.

 So, for each edge {i , j}∈E let xij be the indicator random variable for the event that {i , j}
is cut. So, alg which is the random variable a taking the value the cut size of the

algorithm which is nothing, but ∑{i , j}∈E
xij. So, expectation of ALG is expectation of sum

of the edges sum over the edges {i , j} xij. Now, apply linearity of expectation this is

expectation of xij. So, this is summation sorry there is a w ij term here because of the

weights.

 So, this is ∑{i , j}∈E
w ijP [{i , j}is cut] which is ∑{i , j}∈E

w ij
1
π
arc cos(v i⋅v j). Now, we need

to connect this with the objective function of the vector program which is a linear
function of v i⋅v j. So, for that we need a lemma which can be proved using elementary

calculus that for x in you see inner product of v i and v j they are unit vectors and the inner

product can vary from −1 to +1. So, we need to we need an expression which can bound
arc cos(x) for x in between −1 to 1.

 So, for every x in −1 to 1,
1
π
arc cos(x)≥0.878 1

2
(1−x) you see

1
2
(1−x) this is like a

objective function. In the objective function we have this
1
2

 because each edge gets

counted twice. So, recall in vector program it was like maximize ∑{i , j}∈E
w ij and then we

have an expression 1−v i⋅v j.

 Now, this if you sum over all {i , j}'s that is fine, but if you sum over all {i , j}'s then it
boils down whenever there is an edge between i and j a that the weight of that edge is w
ij as usual, but if there is no edge between i and j we define an edge between i and j with
weight 0. This way we have w ij for every pair of i and j. So, this can be equivalently

written as ∑1≤i , j≤n
w ij(1−v i⋅v j), but here you see each edge contributes twice one as i j

and another as j i. So, we need a factor of half. So, with this let us continue the analysis
from here.

 we get this is less greater than equal to 0.878 times sorry we need a half. Because, if v i if

i and j are in the same component then v i⋅v j is 1 which is 0 which 1−v i⋅v j=0, but on the

other hand if v i⋅v j are in different component v i⋅v j is -1 and this becomes 2 for that we

need we need half sorry we do not need this things. Now, we can continue from here. So,
we missed this half in the earlier lectures on in the last lecture on max cut based on semi
definite program, there in the optimization function we will be there will be an half factor
because this is 0 if i j is in cut and 2 if I if this if this is 0 if i j is not in cut and 2 if i j is in

cut, but we want a contribution of 1 that is why we need to multiply with half ok.

 So, with this ∑1≤i , j≤n
w ij(1−v i⋅v j). Now, this is VP-opt. So, this is equal to 0.878 VP-

opt which is greater than equal to opt.

 0.878 optimal. So, this shows that the approximation guarantee of our algorithm is 0.878
which turns out to be the best possible under a standard complexity theoretic assumption
which is called unique games conjecture. Of course, it is the this is the best known
approximation algorithm for the max cut problem. So, here is the theorem. Assuming
unique games conjecture which is a complexity theoretic conjecture regarding a
computational task in the context of a game.

 this assumption is weaker than P≠NP assumption. In particular, if P is equal to NP then
unique games conjecture is false, but if unique games conjecture is false that does not
imply P equal to NP. So, in that way this is a weaker assumption, but this assumption
often allows us to prove stronger inapproximability bound for various combinatorial
optimization problems. So, under this conjecture, if we assume it to be true, we cannot
have a better than 0.878-factor approximation algorithm for Max Cut.

 Assuming the unique games conjecture, there is no alpha-factor polynomial-time
approximation for the max-cut problem for any alpha that is greater than the minimum of
x. Essentially, in this lemma, the best number you can place here is the maximum
approximation guarantee you can achieve for the max-cut problem, assuming the unique
games conjecture. Now, if you do not want to assume such a strong conjecture—about
which, you know, even the research community is divided; some groups believe that this
unicorn's conjecture is true, whereas there are some theoretical computer scientists who
believe that it is not true.

 So, if we only want to assume that P is not equal to NP, then we have the following
inapproximability theorem: assuming P is not equal to NP, there is no polynomial-time α-

approximation algorithm for the max cut problem. For any α> 16
17

, which is roughly

0.941, okay? So, we obtain a weaker inapproximability guarantee assuming P≠NP. In
the remaining time of our course, we will examine some inapproximability bounds and
how to prove certain inapproximability results. So, let us provide a brief overview.

The next topic is inapproximability, or polynomial-time inapproximability. These are
typically assumptions; I assume that often P≠NP. That is the weakest assumption on
which we can base our theorem, and under this assumption, we want to show various
inapproximability guarantees or proofs like this. For example, we have already seen a

couple of such theorems in the lectures.

 For example, we have seen the theorem that for any computable function, if there is a
polynomial-time computable function α, then there is no polynomial-time α-
approximation algorithm for the traveling salesman problem. So, what we have already
seen is that if we have such an algorithm, we can solve the Hamiltonian circuit problem
in polynomial time. So, another theorem that we will prove in the next class is scheduling
jobs on multiple parallel, non-identical machines.

 What is the problem statement? We have n jobs and m machines; it takes pij time units

for machine j to process job i. Compute a non-preemptive scheduling. That means a job
assigned to a machine should be allowed to run until it finishes. That means if job i is
assigned to machine j, it should be allowed to run for e will prove in the next class is sch
amount of time. Our goal is to compute a preemptive schedule that minimizes the
maximum completion time of any job, which is also known as the makespan of the
schedule.

 We will see this inapproximability result in the next lecture: assuming P≠NP, there is
no polynomial-time α-approximation algorithm for scheduling jobs on multiple non-

identical machines for any α . Less than
3
2

, because it is a minimization problem; the

approximation factors are greater than 1, okay. So, we will see the proof of this theorem
in the next class, okay

