
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 12

Lecture 57

Lecture 57 : SDP Based Approximation Algorithm for Max Cut

 Welcome. So, in the last class we have started semi definite programming, we have done
a basic overview of semi definite program. In this class we will see how semi definite
programs can be used for designing an approximation algorithm for max cut ok. So, let us
start. So, today's problem is max cut problem. So, what is the problem? Let us recall
input is an undirected weighted graph G=(V , E) and weights of the edges and output or

goal compute a cut is a strict subset of V is not equal to empty set which maximizes
weight of the boundary edges of δ (S) ok.

 So, let us see first SDP relaxation of the problem. First let us see as usual the ILP
formulation of the problem which is exact but then we will relax it to SDP not LP. So,
because we will relax it to SDP and in SDP formulation there are variables indexed by ij
and xij should be equal to x ji. So, the variable matrix should be a symmetric matrix and

positive semi definite matrix that is the requirement.

 So, let us think of variables as xijs where ij are vertices. So, the variables are or we can

have variables for each vertex i and they will be eventually converted to vectors because
in the last class as we have seen these SDPs are equivalent to vector programs. So, we
will have a variable y i for every i∈V . Let us assume V to be {1 ,2 ,…,n}, y i takes value 1

if i belongs to And in standard ILP formulation we typically have variables
corresponding to indicator random variables. So, in a standard ILP formulation we will
allow y i to take value 0 if y does not belong to S, but remember that we have to write our

objective function in terms of inner products of y i and y j which are simple products y i⋅y j
.

 So, that is why it is convenient to make y i take value −1 if i does not belong to S. So, y

takes value 1 if i belongs to S and −1 otherwise ok. Now, with this let us see how I can
denote the cut size I which I want to maximize. So, I want if you look at this for an edge
e={i , j}∈E, I want a function which will take value 1.

 which will take value 1 if the edge {i , j} belongs to the cut and value 0 if the edge {i , j}
does not belong to the cut. So, if edge {i , j} belongs to the cut if and only if exactly one
of i and j belongs to S. In that case you see the value of the product y i and y j, y i⋅y j=−1.

On the other hand if both i and j belongs to S or both i and j does not belong to S, then the
value of y i times y j will be 1 and in that case the edge {i , j} does not contribute to the
cut. So, w ij(1 – y i⋅y j).

 So, this function is 1 if {i , j} this edge belongs to the cut and 0 otherwise ok and that is
it. So, the only condition that we need is y j or y i should take value either 1 or−1. So,

subject to y i∈{1 ,−1} for all i∈[n] ok. So, this is the integer linear programming

formulation exact formulation. Now, we will relax it.

 So, vector programming relaxation because in a vector program these kind of
constraints that y i belongs to some discrete set is not allowed. So, let us see how we can

replace it with some condition which are allowed in vector programs. So, vector
programming relaxation So, we replace the idea is we replace each y i by an n

dimensional vector v i n dimensional vector v i of length i or unit vectors in particular.

length 1 ok. So, what is the relaxed vector program maximize ∑e={i , j}∈E
w ij(1−v i⋅v j)

subject to v i are n dimensional vector and their length is 1.

 So, that means, their inner product with itself is 1 for all i∈[n] and v i is an n dimensional

real vector ok. So, why this is a relaxation because each v i you can replace it with a

vector where So, each v i you replace it with an n dimensional vector where the first

coordinate is v i and rest are 0. So, if I replace so, this is the v i. y i with this v i's, then all

the constraints getting satisfied the objective function remains same. Hence, this is a
relaxed LP, this is a relaxed vector program, this is a relaxation.

 vector program opt because it is a relaxation and because we are maximizing this is
greater than equal to ILP opt which is same as opt ok. So, we have a vector program now
as usual we will solve it and we will do a randomized rounding. So, we solve the vector

program in polynomial time and obtain an optimal solution v i
∗ i∈[n]. Now, they are n

dimensional unit vectors. So, these vectors lie in an n dimensional sphere around origin.

 So, since v i
∗⋅v i

∗=1 for all i∈[n] these vectors lie on the unit sphere around origin in the n

dimensional Euclidean space Rn. And the idea is we will take a random hyperplane we
will take a random hyperplane passing through the origin and this random hyperplane
partitions this points which corresponds to vertices and this gives us the cut. So, idea pick

random hyperplane passing through the origin such a hyperplane partitions the vertices
into (S ,V ∖S) output that partition So, that is the idea that we will take a random

hyperplane passing through origin and use it to divide the vertices into 2 groups. Let us
see how we can implement it implementing the idea. for that we pick a random vector
r=(r1 ,…,rn) by sampling each r i , i∈[n] from a standard normal distribution N (0 ,1)
mean at 0 and standard deviation is 1. The normal distribution can be simulated how we
draw samples this normal distribution using samples from uniform distribution we can
sample points from normal distribution. So, let me just highlight it as a fact the normal
distribution can be simulated by an algorithm that draws uniform samples from [0 ,1]
only. So, it is a technicality it just says that if we are able to draw uniformly random
samples from [0 ,1], then we can draw a uniform or we can draw a sample from normal
standard normal distribution with mean 0 and standard deviation 1.

 that is it. So, now, how we partition the vertices? We put a vertexi∈S if v i
∗⋅r i≥0 and

i∈V ∖S otherwise. So, this gives the partition and we simply output that partition. So, let
us see why this is a good thing to do and what is the approximation guarantee. So, to
analyze this algorithm we need some fact about normal distributions. So, let us write
them down without proof.

 The proof can be found from any standard book on probability theory. The normalization
so, r is the vector chosen from here. So, if I normalize r because you see the a length of r
need not be 1. So, let us normalize r the normalization of r which is r by the norm of it
which is r⋅r or let us say norm is uniformly distributed over the n dimensional unit
sphere that is one. Another fact is that we need is the projection of r onto any two
dimensional plane this gives again like a normal distribution with two parameters.

 So, let us see the projection of r onto 2 unit vectors e1 and e2 which are independent and

orthogonal. orthogonal that means, e1⋅e2=0. So, if I project e onto e1 and e2 then both of

them are independent and normally distributed. The projection are independent and
follows the standard normal distribution which is a normal distribution with mean 0 and
standard deviation 1 ok. So, this is the fact with these two fact let us prove a important
lemma from which the an approximation guarantee is immediate.

 So, lemma is the probability that an edge {i , j} belongs to the cut is
1
π
arc cos(v i⋅v j). So,

let us prove the lemma So, let us draw the 2 dimensional circle with e1 and e2 and v i and

v j. So, let r ’ be the projection of r onto the plane spanned by v i and v j. Now, let us draw

So, suppose this is the circle unit circle and here is v i and suppose here is v j, draw two

lines one is perpendicular to v j and another is perpendicular to v i. So, give some name

say A B and this is C D.

 Now, let us see when does this an edges {i , j} contributes to the cut. So, r ’ is distributed

which is it which follows from this fact that r ’ is distributed uniformly randomly on the
circle. of radius 1 containing v i and v j. That means, you look at the plane which contains

v i and v j plane span by v i and v j. these 2 vectors and in that plane you look at the circle

around origin of radius 1, then r ’ is uniformly distributed on the perimeter of the circle.

 So, then you see when does So, for what angle means where does r i sits? So, that v i and

v j their inner product have different sign. r ’⋅v i and r ’⋅v j will have different sign only in

let us say in which region. So, if r i falls in say in this region, then its angle with v i is a

suppose this is theta this angle between v i and v j is θ and if r i
’ falls both on the right hand

side of A B and the and the top of C D, then v i and v j have the same sign v i and v j the

inner product of v i and v j with R prime have the same sign. If the r ’ falls in this region

which is top of which is top of C D and right of A D this and same with this regions. So,

only if r i
’ falls in this region.

 is black region then its inner product with v i and v j have different sign and they fall in

different part same with here only in say black region ok. So, if this is θ then from high
school geometry it can be proved that this is θ and this is also θ. So, the probability that

{i , j} is cut is at is exactly
2θ
2π

 because r ’ is uniformly distributed on the perimeter which

is
θ
π

. So, let us stop here and in the next lecture we will see how θ is connected with v i v j

and from that how we can get an approximation guarantee of this algorithm ok. So, let us
stop here. Thank you.

