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Lecture  57  :  SDP  Based  Approximation  Algorithm  for  Max  Cut

 Welcome. So, in the last class we have started semi definite programming, we have done  
a basic overview of semi definite program. In this class we will see how semi definite  
programs can be used for designing an approximation algorithm for max cut ok. So, let us 
start. So, today's problem is max cut problem. So, what is the problem? Let us recall  
input is an undirected weighted graph G=(V , E) and weights of the edges and output or 

goal compute a cut is a strict subset of V is not equal to empty set which maximizes 
weight  of  the  boundary  edges  of  δ (S) ok.

 So, let  us see first  SDP relaxation of the problem. First  let  us see as usual the ILP 
formulation of the problem which is exact  but then we will relax it to SDP not LP. So, 
because we will relax it to SDP and in SDP formulation there are variables indexed by ij 
and xij should be equal to x ji. So, the variable matrix should be a symmetric matrix and 

positive  semi  definite  matrix  that  is  the  requirement.

 So, let us think of variables as xijs where ij are vertices. So, the variables  are or we can 

have variables for each vertex i and they will be eventually converted to vectors because 
in the last class as we have seen these SDPs are equivalent to vector programs. So, we 
will have a variable y i for every i∈V . Let us assume V to be {1 ,2 ,…,n}, y i takes value 1 

if  i  belongs  to   And  in  standard  ILP  formulation  we  typically  have  variables 
corresponding to indicator random variables. So, in a standard ILP formulation we will 
allow y i to take value 0 if y does not belong to S, but remember that we have to write our 

objective function in terms of inner products of y i and y j which are simple products y i⋅y j
.

 So, that is why it is convenient to make y i take value −1 if i does not belong to S. So, y 

takes value 1 if i belongs to S and −1 otherwise ok. Now, with this let us see how I can 
denote the cut size I which I want to maximize. So, I want if you look at this for an edge 
e={i , j}∈E,  I  want  a  function  which  will  take  value  1.



 which will take value 1 if the edge {i , j} belongs to the cut and value 0 if the edge {i , j} 
does not belong to the cut. So, if edge {i , j} belongs to the cut if and only if exactly one 
of i and j belongs to S. In that case you see the value of the product y i and y j, y i⋅y j=−1. 

On the other hand if both i and j belongs to S or both i and j does not belong to S, then the 
value of y i times y j will be 1 and in that case the edge {i , j} does not contribute to the 
cut.  So,  w ij(1 – y i⋅y j).

 So, this function  is 1 if {i , j} this edge belongs to the cut and 0 otherwise ok and that is 
it. So, the only condition that we need is  y j or  y i should take value either 1 or−1. So, 

subject  to  y i∈{1 ,−1} for  all  i∈[n] ok.  So,  this  is  the  integer  linear  programming 

formulation  exact  formulation.  Now,  we  will  relax  it.

 So,  vector  programming  relaxation  because  in  a  vector  program   these  kind  of 
constraints that y i belongs to some discrete set is not allowed. So, let us see how we can 

replace  it  with  some  condition  which  are  allowed  in  vector  programs.  So,  vector 
programming  relaxation   So,  we  replace  the  idea  is  we  replace  each  y i by  an  n 

dimensional  vector  v i n dimensional vector  v i of length i or unit vectors in particular. 

length 1 ok. So, what is the relaxed vector program maximize  ∑e={i , j}∈E
w ij(1−v i⋅v j) 

subject  to  v i are  n  dimensional  vector  and  their  length  is  1.

 So, that means, their inner product with itself is 1 for all i∈[n] and v i is an n dimensional 

real vector ok. So, why this is a relaxation because each  v i you can replace it with a 

vector where  So, each  v i you replace it with an n dimensional vector where the first 

coordinate is v i and rest are 0. So, if I replace so, this is the v i. y i with this v i's, then all 

the constraints getting satisfied the objective function remains same. Hence,  this is  a 
relaxed  LP,  this  is  a  relaxed  vector  program,  this  is  a  relaxation.

 vector program opt because it is a relaxation and because we are maximizing this is 
greater than equal to ILP opt which is same as opt ok. So, we have a vector program now 
as usual we will solve it and we will do a randomized rounding. So, we solve  the vector 

program in polynomial time and obtain  an optimal solution v i
∗ i∈[n]. Now, they are n 

dimensional unit vectors. So, these vectors lie in an n dimensional sphere around origin.

 So, since v i
∗⋅v i

∗=1 for all i∈[n] these vectors lie on the unit sphere around origin in the n 

dimensional Euclidean space Rn. And the idea is we will take a random hyperplane  we 
will take a random hyperplane passing through the origin and this random hyperplane 
partitions this points which corresponds to vertices and this gives us the cut. So, idea pick 



random hyperplane passing through the origin such a hyperplane  partitions the vertices 
into  (S ,V ∖S) output  that  partition  So,  that  is  the  idea  that  we will  take  a  random 

hyperplane passing through origin and use it to divide the vertices into 2 groups. Let us  
see how we can implement it implementing the idea. for that we pick a random vector 
r=(r1 ,…,rn) by sampling each  r i ,  i∈[n] from a standard normal distribution  N (0 ,1) 
mean at 0 and standard deviation is 1. The normal distribution can be simulated  how we 
draw samples this normal distribution using samples from uniform distribution we can 
sample points from normal distribution. So, let me just highlight it as a fact the normal  
distribution can be simulated  by an algorithm that draws uniform samples from [0 ,1] 
only. So, it is a technicality it just says that if we are able to draw uniformly random 
samples from [0 ,1], then we can draw a uniform or we can draw a sample from normal 
standard  normal  distribution  with  mean  0  and  standard  deviation  1.

 that is it. So, now, how we partition the vertices? We put a vertexi∈S if  v i
∗⋅r i≥0  and 

i∈V ∖S otherwise. So, this gives the partition and we simply output that partition. So, let 
us see why this is a good thing to do and what is the approximation guarantee. So, to 
analyze this algorithm we need some fact about normal distributions. So, let us write 
them  down  without  proof.

 The proof can be found from any standard book on probability theory. The normalization 
so, r is the vector chosen from here. So, if I normalize r because you see the a length of r 
need not be 1. So, let us normalize r the normalization of r which is r by the norm of it 
which is  r⋅r or  let  us say norm is uniformly distributed over the n dimensional unit 
sphere that is one. Another fact is that we need  is the projection of r  onto any two 
dimensional  plane  this  gives  again  like  a  normal  distribution  with  two  parameters.

 So, let us see the projection of r onto  2 unit vectors e1 and e2 which are independent and 

orthogonal. orthogonal that means, e1⋅e2=0. So, if I project e onto e1 and e2 then both of 

them  are  independent  and  normally  distributed.  The  projection  are  independent  and 
follows the standard normal distribution which is a normal distribution with mean 0 and 
standard deviation 1 ok. So, this is the fact with these two fact  let us prove a important  
lemma  from  which  the  an  approximation  guarantee  is  immediate.

 So, lemma is the probability that an edge {i , j} belongs to the cut is 
1
π
arc cos(v i⋅v j). So, 

let us prove the lemma  So, let us draw the 2 dimensional circle with e1 and e2 and v i and 

v j. So, let r ’ be the projection of r onto the plane spanned by v i and v j. Now, let us draw 

So, suppose this is the circle unit circle and here is v i and suppose here is v j, draw two 

lines one is perpendicular to  v j and another is perpendicular to  v i. So, give some name 



say  A  B  and  this  is  C  D.

 Now, let us see when does this an edges {i , j} contributes to the cut. So, r ’ is distributed 

which is it which follows from this fact that r ’ is distributed  uniformly randomly on the 
circle. of radius 1 containing v i and v j. That means, you look at the plane which contains 

v i and v j plane span by v i and v j. these 2 vectors and in that plane you look at the circle 

around origin of radius 1, then r ’ is uniformly distributed on the perimeter of the circle.

 So, then you see when does  So, for what angle means where does r i sits? So, that v i and 

v j their inner product have different sign. r ’⋅v i and r ’⋅v j will have different sign only in 

let us say in which region. So, if r i falls in say in this region, then its angle with v i is a 

suppose this is theta this angle between v i and v j is θ and if r i
’ falls both on the right hand 

side of A B and the and the top of C D, then v i and v j have the same sign v i and v j the 

inner product of v i and v j with R prime have the same sign. If the r ’ falls in this region 

which is top of  which is top of C D and right of A D this and same with this regions. So,  

only  if  r i
’ falls  in  this  region.

 is black region then its inner product with v i and v j have different sign and they fall in 

different part same with here only in say black region ok. So, if this is θ then from  high 
school geometry it can be proved that this is θ and this is also θ. So, the probability that 

{i , j} is cut  is at is exactly 
2θ
2π

 because r ’ is uniformly distributed on the perimeter which 

is 
θ
π

. So, let us stop here and in the next lecture we will see how θ is connected with v i v j 

and from that how we can get an approximation guarantee of this algorithm ok. So, let us 
stop here. Thank you.


