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 Welcome. So, in the last class we have seen a randomized rounding based algorithm for 
multicut problem and at the end we stated the theorem that our algorithm is a 4 ln (k+1) 
factor approximation algorithm. So, today we will see the proof of that theorem along 
with the proof of the lemma that was used crucially in our algorithm. So, let us start. 
Multi cut problem.

 So, the theorem that we prove  the approximation ratio of our algorithm is at most 

4 ln (k+1) proof. Let Bi be the  set of vertices in the ball B (si , r ) chosen by the algorithm  

at iteration i ok. So, if it happens that in iteration i on si and t i are already disconnected 

then we define Bi to be 0. If si and t i are already disconnected in the beginning of 

iteration i  then we define Bi to be the empty set and let F i which is the boundary edges of 
Bi be the set of edges included in the solution F at iteration or  i ok.

 So, we have then so, if Bi is empty set F i is also empty. So, if Bi is empty set then F i is 

also the empty set. Then we have F=∪ i=1
k F i ok. So, let V i be the  total volume of the 

edges  when or removed sorry in iteration i. Recall in iteration i we are removing the 
boundary edges or we are removing all the vertices in the ball Bi along with the edges 

incident on it and let their total volume be V i.

 So, then we have then you see V i is then greater than equal to we have V (si , r ) what was 

the V (si , r ) you recall we look at the ball of radius r around si  all the edges whose both 

end points are in this ball they are volumes plus all these edges whose exactly one end 
point are there that part whatever is there within the ball of radius r that volume was also 

added in V (si , r ) plus 
V ∗

k
. So, if I remove 

V ∗

k
 then this is the volume of all edges that are 

in the ball of radius r Bi which are contained both end points are contained in Bi plus the 

partial edges the part of the edges whose which is contained in the ball. On other hand, V i 



takes the volume  entire edge of this partial edge. For example, then this part belongs to 

V i, but does not belong to V (si , r ). So, then V i is greater than equal to V (si , r ) - V
∗

k
.

 So, this is fine and by the choice of r you recall by the choice of r from the lemma. cost 
of f i which are the cost of boundary edges of this ball is less than equal to  2 ln (k+1) 

V (si , r ) that is by the choice of r. Now, V (si , r ) is less than equal to V i  + 
V ∗

k
 ok. Now, 

what is then cost of F? This is ∑ ce which is ∑∑ ce, you see because in every iteration 

we are removing the vertices in the ball of radius r around si along with it incident edges, 

all these edges e in f can appear in at most 1 F i ce. So, this is the cost of F i.

 So, this is less than equal to 2 ln (k+1) ∑(V i+V ∗

k ). The first term is the sum of the 

volumes of all edges which is V ∗ as we have argued before this is less than equal to or 

equal to 2 ln (k+1). The first term V ∗ and the second term is also V ∗ which is then 

4 ln (k+1) which concludes the proof ln (k+1) times opt because v star is LP-opt. So, let 

us write this is LP-opt  which is less than equal to opt as usual 4 ln (k+1) times opt.

 So, this is a 4 ln (k+1) factor approximation algorithm. So, the only thing that we need to 

prove is the lemma. So, let us recall the lemma. for any si, i∈ [k ] one can find in 
polynomial time. a radius r less than half such that cost of boundary edges of the ball of 

radius r around  is less than equal to 2 ln (k+1) V (si , r ) which has an extra 
V ∗

k
 term also.

 So, this is the lemma that we need to prove. So, for simplicity let us write because this is 
a bit cumbersome notation to work with C (r ) is C of  cost of boundary edges of the ball 

of radius r around si and V (r ) is V (si , r ). So, our proof uses a method called probabilistic 

method. What we will show that if we pick r uniformly randomly from the interval 0 to 

half, then the expected value of this cost 
C (r )
V (r )

 is at most 2 ln (k+1). So, if this expected 

value is  ah expected value of 
C (r )
V (r )

 is at most 2 ln (k+1) that means, that there exists an r 

for which 
C (r )
V (r )

 is less than equal to 2 ln (k+1). And then we will see how to compute 

such an r in polynomial time.

 So, we choose r  uniformly randomly from [0 , 12 ] it should be strictly less than 
1
2

. We 



will show  that the expected value of 
C (r )
V (r )

 is at most 2 ln (k+1), this will show that there 

exists an r in [0 , 12 ] such that 
C (r )
V (r )

 is less than equal to 2 ln (k+1) ok. So, it  So, 
C (r )
V (r )

 are 

continuous random variable. So, we need to integrate over this range r in [0 , 12 ].
 So, let us see whether these functions are differentiable or continuous or what. So, for 

any value of r in [0 , 12 ]. such that V (r ) is differentiable, we have 
d (V (r ))
d (C (r ))

 . This follows 

from the simple fact that volume of a pipe the differential of the volume of pipe with 
respect to the length r is the cross sectional area ok. So, you see that this derivatives will 
change only where this C (r ) will change.

 So, we observe that V (r ) is not differentiable  exactly for the values of r such that the 
ball of radius r  changes this is a set and that set changes that means, some vertex gets 
added if r increases that is there exists  a vertex v∈ V  such that distance of v and si is 

exactly r. So, at those r they are not differentiable this V (r ) are not differentiable 

otherwise it is differentiable. not only that V (r ) may not be even continuous or it is it 
continuous at every year need not be again check that at those are exactly at those are 
where this ball changes at those are V (r ) may not even be continuous V (r ) may not be 
may not even be continuous at r such that. there exists a vertex v∈ V  such that distance 
from si to v is r.

 and where is continuous and differentiable at every other r is both continuous and 
differentiable  at other r ok. So, now, we so, this V (r ) function is piecewise continuous 
and differentiable and these functions we know how to integrate. So, we sort  the vertices 

in B(si , 12) based on their distances  from si that is suppose the vertices are v0 , v1 ,…, v l−1 

with distances from  being r0 which is 0.

 let us define r l to be half. So, the expected value of  
C (r )
V (r )

 is  The probability density 

function is 1 by the length of the interval which is  
1
2
∑∫❑ 

C (r )
V (r )

  dr ok. Now, what is 

the relationship between C (r ) and V (r ) that is what we have here that C (r )=
d (V (r ))
dr

. 

So, that we put there C (r )=
d (V (r ))
dr

.



 So, we get 
d (V (r ))
dr

. Now, notice that V (r ) is a non-decreasing function since V (r ) is 

non-decreasing is expectation of 
C (r )
V (r )

 .

Now, this can be bounded by less than equal to 2 ln (k+1).

So, you take this as a homework  you just compute what is V (0 ) and then use elementary 

calculus to bound this quantity as 2 ln (k+1). So, this is 2 ln (k+1). So, this shows that 

there exist and this shows that expectation of 
C (r )
V (r )

 is less than equal to 2 ln (k+1), which 

in particular shows that there exists an r in [0 , 12 ]  C (r )
V (r )

 is less than equal to 2 ln (k+1). 

Now, you observe this equality 
C (r )
V (r )

 as r increases.

 So, observe that for r∈ [r j , r j+1 ] minus C (r ) which is the cross sectional area of the pipes 

remain constant. while V (r ) is non decreasing. So, if there exists an r in the interval 

[r j , r j+1 ] such that 
C (r )
V (r )

 is less than equal to 2 ln (k+1), then  this holds for r j+1 also. 

Therefore, there exists an j∈ [0 , l−1 ] such that this is less than equal to 2 ln (k+1), which 

in turn implies that 
C (r j+1)
V (r j+1)

  is less than equal to 2 ln (k+1).

 So, our algorithm it is enough to check for this l values and l is at most n the number of 
vertices. So, we can so, this theorem show proves that there exist at least one such values 

among this l values which such that 
C (r )
V (r )

 is less than equal to 2 ln (k+1). Hence, we can 

check in polynomial time check and find a value of r in polynomial time such that 
C (r )
V (r )

 

is at most 2 ln (k+1) which proves the lemma ok. So, let us stop here. Thank you.


