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Lecture  51  :  3/2-Approximation  Algorithm  for  Multiway  Cut

 Welcome. So, in the last class we have seen a two factor approximation algorithm for 
edge  multiway  cut,  it  was  a  combinatorial  algorithm.  In  this  class  we  will  see  a 

randomized rounding based 
3
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 factor approximation algorithm for multiway cut. So, let us 

begin. multi way cut. So, first we will write an integer linear programming formulation 
for this problem which will be the exact formulation in the sense that ILP-opt will be 
equal  to  opt.

 So, for that we will have variables for  every edge e and every connected component and 
for every i∈[k ] we have a variable ze , i which is 1 if the edge e belongs to the isolating cut 

for Si. Now, we will see a little we will observe that each vertex or we can equivalently  

formulate this problem as each edge that we are removing must belong to an isolating cut. 
So, we can assume without loss of generality that every solution edge belongs to some 
isolating cut. or slitting cuts equivalently they are always exist and optimal solution F 
subset of E such that  G (V , E∖F ) has a connected component or  G (V , E∖F ) can be 

partitioned  this  vertex  set  can  be  partitioned.

 can be partitioned into C1 ,…,C k such that si belongs to C i for all i∈[k ] and F is nothing, 

but ∪i∈[k ] δ (C i) the boundary edges and this C1 ,…,Ck are isolating cuts ok. proof why 

we can assume without loss of generality it is not very difficult I give it as a homework.  
If you find difficulty proving this you ask me in the online interaction section session  So, 
with this assumption now we have variables  ze , i. So, we can assume that each solution 

edge  belongs  to  some  isolating  cut  and  here  hence  the  optimization  goal  becomes 
minimizing  sum  of  weights  of  this  edges.

 So,  if  I  look at  what  is  the  contribution of  this  edge and edge e  to  the  cut  this  is 



∑e∈E ,i∈[k ]
ze , iwe. Now, if I do this sum each edge belongs to 2 isolating cuts. So, this 

contribution is twice this sum is twice the contribution of the edge to the optimization 
function.  So,  this  is  you  should  multiply  with  half.

e∈E and this we want to minimize and what we will have constraints to encode that this 
is satisfied for that what we do we have for every vertex also we have a variable which  
takes value 1 if the variable belongs to some isolating cut. So, for every vertex u and 
i∈[k ] we have a variable  xu ,i which takes value 1 if u  belongs to the part because we 

have assumed without loss of generality that in the optimal there is an optimal solution 
where every vertex belongs to one of those parts C1 ,…,Ck you belongs to the part C i ok. 

This takes value 1 otherwise  xu ,i takes value 0 ok. So, now, let us see the constraint 

because  it  is  a  partition  each  vertex  must  belong  to  some part.  So,  let  us  write  the 
constraints  So, the fact that each vertex must belong to one part can be encoded by the 

constraint  that  ∑i=1

k
xu ,i=1 for  all  vertex  u∈V  ok.

 And then we need a constraint that an edge E  this edge which is suppose is u v the 
variable z and suppose this is part C i variable ze , i will be allowed to take the value 1 if 

and only if exactly one of the vertices u and v belongs to C i that means, exactly one of 

xu ,i and xv , i is 1. So, that is can be encoded as ze , i≥xu ,i – xv , i and ze , i≥xv , i – xu ,i. You see 

if exactly one of xu ,i and xv , i is 1 and the other is 0, then these two constraints say that ze , i 

is greater than equal to minus 1 and greater than equal to 1. And hence this says that ze , i 

is greater than equal to 1, ze , i must be set to 1 if exactly 1 of u and v belongs to C i that 

means,  exactly  1  of  xu ,i and  xv , i is  1  and  the  other  is  0.

 And of course, we know that in  C i si belongs. So, we have  si for all  i∈[k ] and this 

constraints we have for all edge e={u , v }∈E ok. And what else we have these variables 
take value in 0 and 1. So, for all u∈V  i∈[k ] xu ,i belongs to the set {0 ,1} and for all edge 

e∈E and  i∈[k ] ze , i belongs  takes value either 0 or 1. So, this is the ILP formulation 

exact  formulation.

 So, we will relax it for LP relaxation we relax these two, these constraints that xu ,i is in 

between  0  and 1 and  ze , i is  in  between 0 and 1 ok.  Again you can get  rid  of  this 

constraint this  because z if you retain xu ,i is greater than equal to 0 because ∑ xu ,i is 1 

no xu ,i take value more than 1. So, you can safely drop this constraint. Similarly, here you 

can drop this constraint because we are minimizing an increasing function of ze , i and the 

constraints for  ze , i these are the constraints which depending on values of  xu ,i and  xv , i 

will say that ze , i is greater than equal to 0, greater than equal to 1, greater than equal to 



minus  1.  So,  in  any  optimal  solution  ze , i will  never  set  to  a  value  greater  than  1.

 So, again we can drop this and make the LP simpler simpler. So, this is the relaxed LP as 
usual we have LP opt is less than equal to ILP opt which is same as opt ok. Now, we keep 
another perspective of viewing this problem in terms of matrix. Recall in the last lecture 
we have discussed how there is an intimate connection between cuts and matrix and that  
we  will  see  here.  For  that  we  define  the  notion  of  l1 distance  or  l1 metric.

 So, L 1 metric  given two points x y in n dimensional Euclidean space, the l1 metric is a 

metric  such that the distance between x and y the l1 distance between x and y denoted by 

x  with suffix 1 denoting l1 metric is sum of the coordinates i=1 ,…,n absolute value of 

xi− y i. Take it as a homework to check that this is a metric that means, it satisfies the 3 

conditions of a metric. So, why metric is needed? You see look at the variable. So, let us 
define the vector for a vertex u∈V  define xu to be the vector xu ,i, i∈[k ] this is the vector 

in R to the  but even more this is a vector in this also belongs to {0 ,1}k because each xu ,i 

takes value in between 0 1, but even more we have more structure that each xu ,i the sum 

of  the  coordinates  must  be  1.  So,  that  we  denote  by  Δk.

 or k dimensional simplex. This is exactly the set of k dimensional points such that ai is 

greater than equal to 0 for all i∈[k ] and their sum is 1 ok. So, what we can see because in 
the relaxed LP all xu ,i's are positive and they sum to 1 here. So, equivalently we have a 

constraint the constraint can be written as xu ,i belongs to Δk So, for e also let us denote 

this as vector edge e∈E or ze , i takes value greater than equal to 0 and ze , i is from here 

what we can write ze , i is greater than equal to is greater than equal to mod of xu ,i – xv , i ok.

 And in the optimal solution ze , i will be set to equal to mod of xu ,i – xv , i. So, the objective 

function so, not this. So, the relaxed LP  can be equivalently written. in the objective 
function here we can replace ze , i with ze , i is mod of xu ,i – xv , i. So, let us replace it and let 

us  see  what  we  get  half.

 ∑e∈E
we∑i=1

k
|xu ,i – xv , i|. Now, this  what is this? This is nothing, but the l1 norm of xu 

and  xv this  is  l1 norm  of  xu−xv ok.  So,  the  objective  function  becomes 

1
2∑e∈E

we∑i=1

k
|xu ,i – xv , i|.  So,  let  us  write  that  here  minimize  half  times 

1
2∑e∈E

we∑i=1

k
|xu ,i – xv , i| subject  to  xu belongs to the k dimensional  simplex for  all 

vertex u∈V  and si must belong to C i that means, si that unit vector should correspond to 

ei where  the  i-th  coordinate  is  1.



 So, x si should be equal to ei, what is ei? ei is all 0 except the i-th coordinate is 1. ok. This 

we have for all i∈[k ] and that is it such a crisp linear program. So, next what we will see 
we will do a randomized rounding based algorithm. So, let us write the pseudo code and 
in  the  next  lecture  we  will  see  the  analysis.

 So, what we do first as usual we first solve the LP in rounding based algorithm we need 
an optimal solution of LP. So, let x be an optimal solution of the LP and then we initialize 
all those  C i's to be empty set. Next we pick a r uniformly randomly from this interval 

[0 ,1] uniformly randomly ok. And then we pick up permutation. of 1 to k uniformly 
randomly and π  is a permutation of 1 to k picked  uniformly randomly again from the set 
of  all  permutations.

 And then what we do  we in every iteration we look at all the unassigned points initially 
all  the  vertices  are  vertices  or  points  we  will  use  interchangeably  all  the  points  are 
unassigned to the part. And in the first iteration we  assign the points which are at most r  
distance away from si or sπ (i) and assign it to C π (i). So, for i=1 ,…,k−1. So, C π (i) is  So, I 

maintain a set x which is the set of all points which are assigned which are which are not  
assigned sorry which are assigned. So, x is empty set initially all points are no points are 
assigned.

 So, x is empty set (π (i) , r ). This is the ball of radius r centered at sπ (i) and that means, 

this is the set of all points which are at most r distance away from sπ (i), sπ (i) what is the 

coordinate of sπ (i) recall. it is all 0 except and 1 at π (i) th position. So, all this elements 

are assigned to  π (i) except of course, all those elements or all those points which are 

already  been  assigned.

 So, X is X∪C π (i). this way I assign I build k−1 parts and the remaining things belong to 

part k. So, C π (k ). So, here for loop ends C π (k ) is V ∖ X  and then what is the corresponding 

set corresponding set of edges they are the boundary edges. So, return  ∪i=1
k δ (C i) ok.

 So, this is the algorithm. So, in the next class we will show that there is a  
3
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 factor 

approximation algorithm ok. So, let us stop here.


