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Lecture  49  :  Primal-dual  Algorithm  for  Steiner  Forest  Contd.

 Welcome. So, from the last two lectures we have been studying the primal dual method 
based approximation algorithm for the generalized Steiner tree or Steiner forest problem. 
In  the  last  class  we have  seen  the  pseudo code  of  our  algorithm where  we are   ah 
uniformly  increasing  multiple  dual  variables  and  at  the  end  we  claim  that  ah  our 
algorithm achieves an approximation factor of 2. So, let us prove that ah theorem now. 
So,  generalized   Steiner  tree  or  Steiner  forest  .

 So, we wrote down one lemma which let us first assume and using that lemma let us 
prove the approximation guarantee. So, the lemma  for any calci in any iteration of the  

algorithm. sum over connected components C in C, cardinality δ (C )∩F ’, F ’ is the final 

Steiner tree output by the algorithm this is less than equal to twice cardinality C. Let us 
assume this lemma and prove this theorem  that our algorithm has an approximation 
factor  of  at  most   2  proof.

 So, let us begin with standard primal dual analysis, ALG which is the sum of costs of the 

edges in F ’. ok these are only tight edges. So, for this edge the inequality dual inequality 
is tight. So, ce equal to S such that e∈δ (S) yS. ok and then we swap the double sum this 

is  ∑S
|δ (S)∩F ’|yS.

 ok. And what we will show is that this is as a sum not individually uniformly this is less 

than equal to twice cardinality twice sum of ∑S
yS. So, this will show  and big sum of yS 

is a dual feasible solution. So, this is less than equal to twice LP-opt by weak duality 
which is less than equal to twice opt. So, all  we need to show is this inequality that 

∑S
|δ (S)∩F ’|yS is  less  than  equal  to  2∑S

yS.

 So, let us write to show ∑S
|δ (S)∩F ’|yS is less than equal to 2∑S

yS. So, we will prove 

it by induction on the number of iterations. So, initially all yS is 0 and thus the inequality 



holds ok. So, as an inductive hypothesis let us assume that it holds in the at the beginning 
of  some  iteration.

 Suppose the inequality  holds at the beginning of some iteration, in that iteration some 
dual variables are increased. We will show that the inequality holds after the iteration at 
the end of that iteration  we will show that the inequality holds at the end of  that iteration  
also ok. So, let C be the set of connected components  C such that there exists i∈[k ] with 
|C∩{si , t i}|=1. So, let  C be such a set of these current components at the beginning of 

the iteration. So, in that iteration suppose we increase the dual variables  yC uniformly 

Suppose we increase ah dual variables yC C in C uniformly that means, by same amount 

ah  by  say  epsilon  greater  than  0  ok.

 So, let us see how this increase affects the left hand side and right hand side of the 
inequality. So, LHS  increases by how much? So, for every c conected component c only 
those variables are touched other variables are not touched. So, and  So, the LHS in its 
increases  by  only  those  connected  component  C  in  C yC increases  by  ϵ  and  this 

|δ (C )∩F ’| and  yC is  increased  by  epsilon.  So,  this  times  epsilon.

 So, LHS increases by this amount. On the other hand RHS increases  by what is RHS 

2∑S
yS. So, increases by  2∑C∈C

ϵ . So, LHS increases by this RHS increases by this. 

Now, from lemma  So, this is the lemma we know that in any iteration in particular in this 

iteration  ∑C∈C
|δ (C )∩F ’| is  less  than  equal  to  2|C|.

 So, this should be 2|C|. So, what is this? This is also twice cardinality calc times epsilon. 

So, from here we get if I multiply both side with  ∑C∈C
|δ (C )∩F ’|ϵ  is less than equal to 

2|C|ϵ . So, you see the increase in LHS is at most the increase or in RHS. the increase in  
LHS  is  at  most  the  increase  in  RHS.

 and in the beginning of the iteration the inequality hold ah ah inequality holds that  
means, LHS is less than equal to RHS in the beginning of the iteration. we had LHS less 
than equal to RHS and in this iteration the effect net effect is RHS increase at least as  
much as increase in LHS. Hence LHS remains less than equal to RHS  after the iteration  
which is exactly what we need to prove. So, what we have shown is this inequality that it 
is a two factor approximation algorithm, but we have to we have used this lemma. So, let  
us  prove  the  lemma  now.

 For  proving  the  lemma,  we  need  to  make  an  observation  that  at  any  point  of  the  
algorithm  (V , F ), F is the set of edges we are picking we have not considered yet the set  

of edges we will remove that will be the F ’. So, even with (V , F ) is a forest ok. This is a 



easy observation because  the proof follows from the fact that whenever we pick an edge 
it is a boundary edge of a connected component. So, we pick only boundary  edges we 
pick only some only ah one boundary edge of any connected component  or any one 
connected component in every iteration ok. Hence, in  (V , F ) we cannot have a cycle 

because  only  we  are  only  picking  boundary  edges  good.

 Now, let us prove the lemma  proof of lemma. Let us write what do we need to prove? 

To prove that sum over current connected component C in  C.  ∑C∈C
|δ (C )∩F ’| is less 

than equal to 2|C| for every iteration ok. So, consider any iteration consider any  iteration 
i arbitrary iteration for this iteration we will show this inequality. So, let F i={e1 ,…,ei} is 

the  set  of  edges  that  are  picked  till  iteration  i.

 or just before the beginning of iteration i, i - 1. So, this is F i. So, this we will show at the 

beginning of every iteration  ok and let us call the remaining edges to be H of F i, F
'∖F i 

that is H ok. So, note that F i∪H   is same as F i∪F
’ and both are feasible solutions of the 

problem, both are feasible solution and they are same not both they are actually same. So, 
let  us  write  this   is  a  feasible  solution  ok.

 Now, first an easy observation is that if we remove any edge  e∈H  from this feasible 
solution  F i∪H ,  then  the  solution  becomes  infeasible.  why  because  of  our  clean  up 

process this H, e was introduced or added to set F after i-th iteration or after (i - 1)-th 
iteration  and hence  it  was  not  removed by the  clean  up process  that  means,  H e  is 
essential  for  maintaining  feasibility  of  the  solution  ok.  So,  all  the  edges  of  H  are 
necessary, all the edges of H are necessary for feasibility  of the solution. So, now, let us 
draw the conected components the C. So, suppose these are the conected components.

 So, this is C what you do we first contract each of the conected components into a single 

we  contract  each  connected  component  of  C  into  single  vertex  let  V ’ be  the  set  of 
contracted vertices. this there can be edges connecting these two and so on, but this will 
be a forest. So, after contraction it look like each set will be an one vertex, this is how it  

will look like  if the graph is this. So, this is V ’. Now, we see that you know in V ’ there 
are two kinds of vertices, one whose connected component has exactly one of si and t i.

 So, we call those vertices red vertices. So, we color  the vertices of V ’ red or we color a 
vertex red. its corresponding connected component has exactly 1 of  si and  t i for any 

i∈[k ] ok.  So,  some vertices are colored red vertices,  other vertices are colored blue. 

Now,  you  can  see  that  this  inequality  ∑C∈C
|δ (C )∩F ’| is  less  than  equal  to  2|C|



 is equivalent to showing something about this forest V ’ these are forest. So, there could 
be some isolated vertices there could be some other trees and so on. So, in terms of the 

forest  the RHS is number of red vertices in V ’ ok. These are the exactly the number of 
nitrate components which is exactly one vertex in C and the left hand side the LHS is at 
most  summation sum of  degrees  of  red vertices.  Each c  is  the  degree  of  red vertex  

δ (C )∩F ’ is  the  is  at  most  the  degree  of  the  red  vertex.

 So, v∈R degree v. So, it is enough to show  enough to show that sum of degrees of red 
vertices is less than equal to twice number of red vertices which is exactly what we will  
show now ok. To prove the claim first observe that there we cannot have a degree 1 blue 
vertex.  observe that  we cannot  have any blue vertex of   degree 1 you prove it  as  a 
homework easy proof. So, the degree of every blue vertex is at least 2. So, then we can 
write summation sum of degrees of red vertices is sum of degrees of all vertices  minus  
sum  of  degrees  of  blue  vertices  ok.

 Now, sum of degrees of all vertices because it is a forest this is at most twice the number 
of vertices because it is a forest. So, this is less than equal to twice cardinality r plus 
cardinality b. minus because we cannot have a blue vertex of degree 1 each degree of 
every blue vertex is at least 2. So, this is less than equal to twice cardinality B. So, this is 
twice  cardinality  R  which  is  exactly  what  we  need  to  prove  ok.

 So, you prove this claim that we cannot have a blue vertex of degree 1 very easy and 
with  this  we  have  we  conclude  the  proof  of  the  lemma  and  thus  the  proof  of 
approximation factor of our algorithm ok. So, let us stop here. Thank you.


