
Approximation Algorithm

Prof. Palash Dey

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Week – 10

Lecture 48

Lecture 48 : Primal-dual Algorithm for Steiner Forest Contd.

 Welcome. So, in the last class we have started seeing the primal dual method-based
algorithm for generalized Steiner tree or Steiner forest problem. So, let us continue that.
So, let us briefly recall each edge have a cost ce which is greater than equal to 0 for every
edge. And we have k pairs of vertices s1 , t1 ,…, sk , t k and I want to pick a set of edges of

minimum total sum of cost such that in the graph induced by this set of edges all si is

connected to t i is connected for every for every i∈[k].

 Now, why this is a generalized Steiner tree problem? In the standard Steiner tree
problem, we are given a set of terminals which we need to connect amongst themselves.
In the standard Steiner tree problem, we are given a set of terminal vertices which we
need to connect. Let us denote this terminal this set of terminal vertices as T. So, set T of
terminal vertices which we need to connect with minimum cost So, how come this is a
special case of the standard Steiner tree problem is a special case of generalized Steiner
tree.

 Because in the generalized Steiner tree you define for every i j so, 1 and cardinality So,
suppose this set T of terminals be {1 ,2 ,…,l}. So, this is l. Now, for every pair of vertices
you define S={i} and T={ j}. So, maybe for s1 , t1 then s2 , t2. So, you see we have l

choose to pair.

 So, in the generalized Steiner tree problem we have
l (l−1)
2

 pairs to connect. So, if we

have a algorithm for generalized tiner tree problem, we can use that algorithm for the

standard tiner tree problem that k will be replaced by cardinality of
t (t−1)
2

 ok. So, with

this now let us resume our primal dual algorithm and we have observed that we need to
bound the cardinality of δ (S) intersection if by some α to get an α factor approximation

algorithm for all S in let us call that collection Ѕ. So, Ѕ is the set of all union of all those

si's ok. but it turns out that we cannot uniformly bound with some constant and here is an

example.

 So, consider a complete graph on k+1 vertices. So, let V={1 ,…,k+1} ok, all the source
vertices are 1. So, we have s1 s2 ,…, sk all are the first vertex. On other hand t1=2, t2=3,

t k=k+1 and the cost of every edge is 1.

 Cost of every edge is 1. Now, let us see where the primal dual algorithm get wrong or
go wrong. So, in the beginning all vertices are isolated vertices and in the beginning the
set of all connected components calc are k+1 and the algorithm picks one such
component. So, let the algorithm picks C equal to 1 this component in the first iteration.
then y1 this dual variable will be increased to.

 1 and that is all other dual variables will remain 0 throughout the algorithm. So, check
that y1 is the only nonzero dual variable at the end of the algorithm. So, let us see. So, in

the first iteration this is vertex 1 and yC is increased and all this edges. So, this is say 2

this is 3.

 up to this is k all these edges becomes tight. So, the algorithm will simply keep picking
all these edges in k iterations. So, the edges picked by the algorithm is 1 2 then 1 3 up to
1 k. So, these are the set of edges picked by the algorithm. Now, you see what is so, this
is F.

 Now, you see what is intersection of δ (C), but C for C take this one δ (C) and F this is

k ok. So, we cannot uniformly bound. in any iteration we cannot say that for every set S
the intersection of boundary edges of S with F this cardinality is small. It can be as high
as k for some set although for other sets other singleton sets in the first iteration these are
the other sets 2, 3 and so on. So, these are the candidate components in the first iteration
you see for other sets the intersection is small.

 So, however, for other connected components of the first iteration before any edge is
picked, δ (C) other component δ (C)∩F is only 1 ok. In particular this sum which we

are actually interested to bound that |δ (i)∩F|=1 to this is k+1. So, let us make it k+1.

So, for the connected component 1 this intersection is k, but for other k connected
component this is exactly 1. So, this is 2 k in particular this sum is small and this is what
we are interested in we are interested in not just 1 we are interested in the sum.

 So, this suggests that the problem was we only increase one dual variable and that is it.
So, the natural thing because this sum is small the average is small the average is is
around 2 average intersection is around 2 to get the benefit of average it makes sense to

increase the dual variables of several sets in C simultaneously. ok. Again so, we increase
all the dual variables in calc simultaneously and whenever a new edge the dual constraint
corresponding to a new edge becomes tight, we pick that edge in our solution and we
iterate. So, the same the remaining parts of primal dual algorithm remains same.

 So, let us name the edges in the order they are added. So, let e1 be the edge peaked in

iteration 1, e2 be the edge peaked in iteration 2, ei be the edge picked in iteration i and so

on. So, what why it is needed because it can happen that the solution when the dual when
the primal dual method terminates the solution the set of edges need not be minimal. So,
it may be possible to get rid of some edges and output a minimal solution and that is
necessary because the edges the cost are greater than equal to 0. So, we can actually
assume without loss of generality that costs are strictly greater than 0.

 Because, all the edges which whose edge cost is 0, we can initially pick them and what is
called the we can merge the both endpoints of it ok. So, that if that I leave it to you as an
exercise. So, what we do after the algorithm the main loop of primal dual method
terminates that means, if the set of edges is a Steiner forest, we see if we can remove any
edge to make it minimal. Now, although the edges can be removed in any order without
hampering approximation guarantee or running time, the analysis becomes much smaller
much easier if we try to remove the edges from in the reverse order of their addition.

 So, once the main loop of primer dual method terminates with a Steiner forest. if we go
over the edges in reverse order of their inclusion or stack order. to check if any of them
can be removed without disconnecting si and t i ok. So, with this let us write down the

pseudo code as usual we start with the dual feasible solution y equal to 0 and primal
partial infeasible solution f equal to empty set and we keep track of the number of edges
added. So, that that is needed in the last clean up step.

 So, while not all si - t i pairs are connected in (V , F) what do we do? We need to pick

one edge. So, we call l+1 let C be the set of all connected components C of (V , F) such

that cardinality C∩{si , t i} this is exactly 1. Then we increase this dual variable

simultaneously that is very important increase yC for all C in C uniformly. you see

cardinality of C is at most n number of candidate components. So, again in every iteration
only at most n dual variables will be set to nonzero values and if number of iterations is at
most m because in every iteration we will be adding an edge.

 So, total number of dual variables which can ever be set to nonzero values is at most m
times n which is polynomial meaning. So, we increase yC for all C in C uniformly until

for some edge el∈δ (C
’) C ’ in calc the dual constraint becomes tight. cel cost of this edge

becomes equal to S such that el∈δ (S) yS this becomes equality. And then as usual

standard thing we include el∈F the solution that we are building So, this finishes the

while loop. So, at the end of the while loop F is a Steiner forest, but it may not be
minimal.

 So, what we do? We remove edges unnecessary edges from F in the reverse order of

their addition. So, F ’ equal to F while or not while we will do in the reverse direction for

k=l , l−1 ,…,1. If F ’ minus ek is a feasible solution then we remove ek from F ’ that is it

and at the end we have a minimal solution. So, return F ’. So, this is the primal dual
algorithm.

 So, here is a big theorem that we will prove the above algorithm has an approximation
factor of at most 2. So, for that we need to have one lemma. So, let us write down the
that in any iteration if you look at calc the set of all connected components which has
exactly one of si and ti. So, for any C that means, for any iteration the corresponding C.
 iteration of the algorithm. If I look at the final solution and look at how many boundary

edges it picks from all C in C and sum them. delta c intersection F ’ this sum is less than
equal to twice cardinality C ok. So, these are lemma we need to show and assuming this
lemma we will first prove this theorem and then we will prove this lemma ok. So, let us
stop here. Thank you.

